

SERVICE DELIVERY BY COMMERCIAL BANKS

A STUDY OF RURAL CUSTOMERS

E. Hari Prasad

©Author

All rights reserved. No part of this work may be reproduced, stored, adapted, or transmitted in any form or by any means, electronic, mechanical, photocopying, micro-filming recording or otherwise, or translated in any language, without the prior written permission of the copyright owner and the publisher. The book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold, hired out, or otherwise circulated without the prior publisher's written consent in any form of binding or cover other than that in which it is published.

The views and opinions expressed in this book are author(s) own and the facts reported by them have been verified to the extent possible, and the publishers are not in any way liable for the same.

First Published, 2018

Published by

Kalpaz Publications

C-30, Satyawati Nagar,
Delhi – 110052
E-mail: kalpaz@hotmail.com
Ph.: 9212142040

Printed at: G Print Process, Delhi

Cataloging in Publication Data—DK

Courtesy: D.K. Agencies (P) Ltd. <docinfo@dkagencies.com>

Hari Prasad, E., author.

**Service Delivery by Commercial Banks: A Study of Rural
Customers / by E. Hari Prasad.**

pages cm

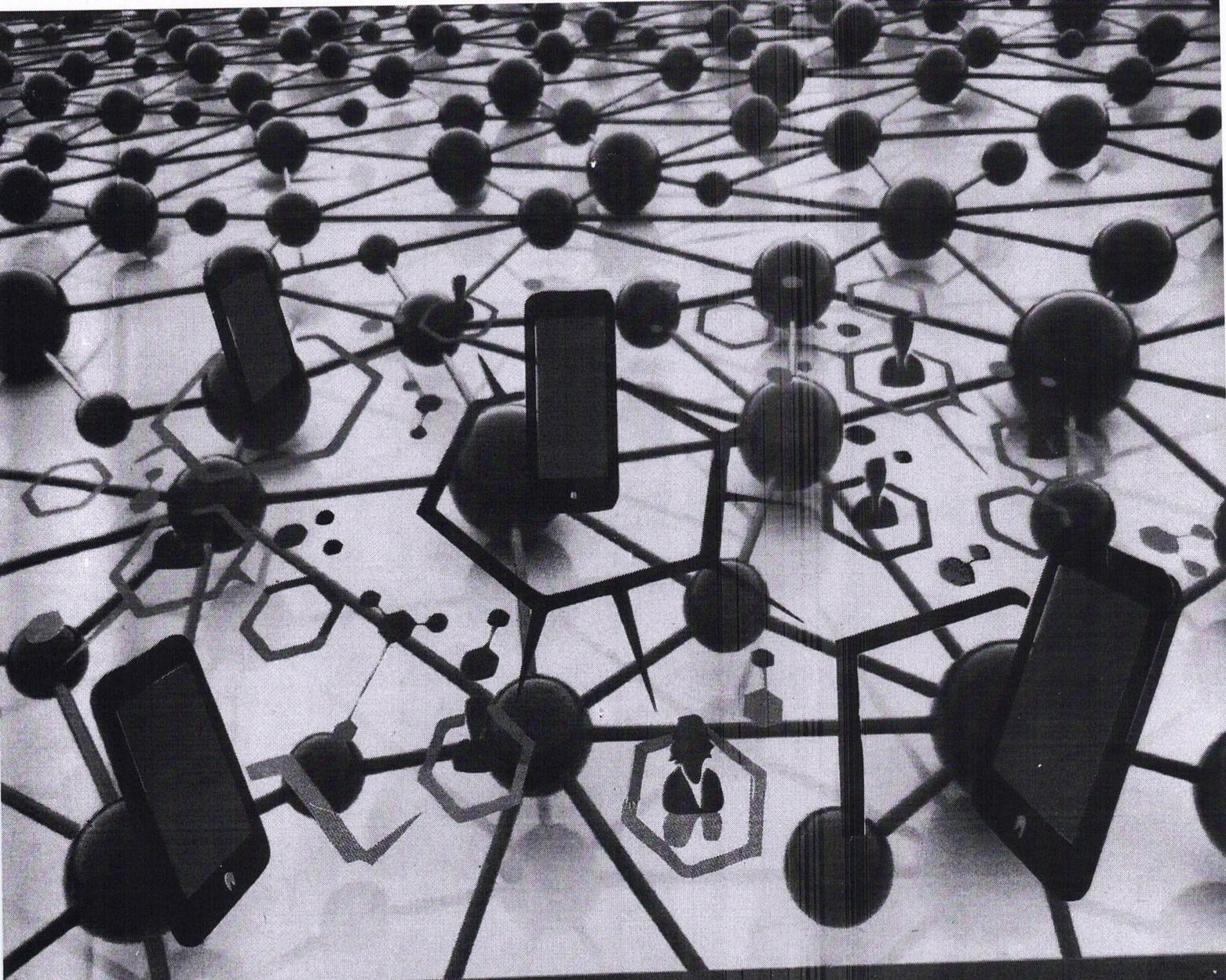
Includes bibliographical references.

ISBN 9789386397027

1. Banks and banking—Customer services—India—
Karimnagar (District) 2. Consumers—India—Karimnagar
(District)—Attitudes. 1. Title.

LCC HG1616.C87H37 2017 | DDC 332.1068 23

Umesh


Principal

Pageswari College of Engineering

Dr. E. Hari Prasad is an Associate Professor of Commerce and Management. At Present, he is Head, Department of Business Management in Vaageswari College of Engineering, Karimnagar, Telangana state. He had received his PhD from Dr. BRA Open University Hyderabad. He published 9 papers in International journals and 4 in national journals. He presented nearly 15 papers to national and international conferences. He had delivered key note speech on service sector and economic reforms in India in International conferences held by Pacific University, Udaipur. He is continuing research in banking and finance areas.

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

MOBILITY MODELS : COMPARISON ENVIRONMENT FOR ROUTING PROTOCOLS

Mobility Models: Comparison Environment for Routing Protocols

Dr. Gulab Singh

A.P.H. PUBLISHING CORPORATION
4435-36/7, ANSARI ROAD, DARYA GANJ,
NEW DELHI-110002

Principal

Vaageswari College of Engineering
SAP 505 527

Published by
S.B. Nangia
A.P.H. Publishing Corporation
4435-36/7, Ansari Road, Darya Ganj,
New Delhi-110002
Phone: 011-23274050
e-mail: aphbooks@gmail.com

2017

© Reserved

Typeset by
Ideal Publishing Solutions
C-90, J.D. Cambridge School,
West Vinod Nagar, Delhi-110092

Printed at
BALAJI OFFSET
Navin Shahdara, Delhi-110032

Principal
Mageswari College of Engineering

Dr. Gulab Singh

CONTENTS

Chapter-1: Introduction

Chapter-2: Background And Literature Survey

Chapter-3: The Mobile ad Network and Using Different (MANET) Routing Protocol

Chapter- 4: Design and Analysis of ad Hoc Network Routing Protocols

Chapter-5: Research Methodology Using Network Simulator

Chapter-6: Results and Discussions

Chapter-7: Conclusions

Chapter-8: Future Scope

Chapter-9: References

Dr. Gulab Singh is an associate professor working in Department of Computer Science and Engineering VAAGESWARI COLLEGE OF ENGINEERING, Karimnagar, Telangana, India. He has a passion for learning new things and enjoys natural world. He was Head of Department in VAAGESWARI ENGINEERING COLLEGE, Karimnagar. He has gained his M.TECH-CS from Osmania University (UCE-OU), Hyderabad. Then completed his Doctorate in Computer Science from BUNDELKHAND UNIVERSITY. The work in this book is the Research Work presented by him in the Doctorate Degree. The thesis entitled "TRAFIC PATTREN BASED PERFORMANCE: COMPARISON OF MANET ROUTING PROTOCOL FOR DIFFERENT MOBILITY MODELS" is core content of this book. This book was published with an aim to be used as an aid for the research scholars who are carrying out their research work in same domain. He is currently working as an associate professor in VAAGESWARI COLLEGE OF ENGINEERING in CSE Department.

₹ 195/-

ISBN: 978-81-7024-937-1

APH PUBLISHING CORPORATION
4435-36/7, Ansari Road, Darya Ganj,
New Delhi 110002 Email: aphbooks@gmail.com

MHD free convection heat transfer couette flow in rotating system

G. Jithender Reddy, P. Manideep, and R. Srinivasa Raju

Citation: AIP Conference Proceedings **1953**, 140143 (2018); doi: 10.1063/1.5033318

View online: <https://doi.org/10.1063/1.5033318>

View Table of Contents: <http://aip.scitation.org/toc/apc/1953/1>

Published by the American Institute of Physics

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

MHD Free Convection Heat Transfer Couette Flow in Rotating System

G.Jithender Reddy¹, P. Manideep^{2, a)}, R. Srinivasa Raju³,

¹ Department of Mathematics, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, Ranga Reddy (Dt), 500090, Telangana State, India.

² Department of Mathematics, Vageshwari College of Engineering, Karimnagar, 505481, Telangana State, India

³ Department of Mathematics, GITAM University, Hyderabad Campus, Rudraram, Medak (Dt), 502329, Telangana State, India.

a) Corresponding author: pamperamanideep@gmail.com

Abstract. The unsteady hydromagnetic free convection heat transfer couette flow, viscous incompressible electrically conducting fluid in a rotating system has been considered. A Finite Element Method (FEM) employed to find the numerical solutions of the dimensionless governing coupled PDEs with suitable boundary conditions. The primary, secondary velocity and temperature have been obtained. These are shown graphical form.

INTRODUCTION

The Couette flow in fluid dynamics, refers to the laminar flow of a viscous fluid in the space between the two parallel plates, one of which moves relative to the other. This flow is driven by virtue of viscous drag force acting on fluid and the applied pressure gradient is parallel to the plates. Such flow was named in honor of Maurice Marie Alfred Couette, a professor of Physics at the French University of Angers in the late 19th century. Shear – driven fluid motion is explained in undergraduate physics and engineering courses using Couette flow. Couette motion is applied application viz. magnetohydrodynamics power generators and pumps, petroleum industry, polymer technology, purification of crude oil and fluid droplets sprays. This flow analyzed Kearsley *et al.*[1] and Singh *et al.*[2]. S. Das *et al.*[3] studied the effect of the magnetic field on unsteady MHD free convection Couette flow between the infinite horizontal parallel plates with the presence of a rotating system by Laplace transform Technique. The finite element method (FEM) is an efficient computer based numerical method to solve various engineering and real world problems such as, Solid mechanics, heat transfer with fluids etc. The complexity of the FEM, simplicity, accuracy and computability which will make it a widely used tool in modeling and design process [4]. Code or programing of Finite element Method is less complicated than many of the spreadsheet and word processing packages found on modern microcomputers. The primary feature of FEM ([5]) is its ability to describe the geometry of the problem being analyzed with great flexibility. Srinivasa Raju *et al.* [6] found both analytical and numerical solutions of unsteady magnetohydrodynamic free convective flow past an exponentially moving vertical plate with heat absorption and chemical reaction. Srinivasa Raju *et al.* [7] studied thermal diffusion and diffusion thermo influence on an unsteady heat and mass transfer magnetohydrodynamic free convection Couette flow using Finite Element Method. Jithender Reddy *et al.* [8] studied MHD free convection fluid flow on a vertical plate with the effect of thermal diffusion and diffusion thermo through finite element technique.

From the above investigation, the unsteady hydromagnetic free convection heat transfer Couette flow , viscous incompressible electrically conducting fluid in a rotating system has been considered. We found the numerical solutions of the dimensionless governing coupled PDEs with suitable boundary conditions for distribution of primary velocity, secondary velocity and temperature through Finite Element Method.

Sybil Attack Detection Technique Using Session Key Certificate in Vehicular Ad Hoc Networks

D.Srinivas Reddy¹, Dr.V.Bapuji²
 Dept. of Computer Science & Eng
 Vaageswari College of Engineering,
 Karimnagar, India
 srinivasreddydhava@gmail.com

Dr. A. Govardhan³
 Dept. Computer Science & Eng.
 JNTUH College of Engineering
 Hyderabad, India

Prof. SSVN Sarma⁴
 Dept. of Computer Science & Eng
 Vaagdevi College of Engineering
 Warangal, India

Abstract—The basic need of Mobility is much needed for social and economical development. Intelligent Transportation Systems (ITSs) are predicated to play a considerable role in future and provide safer and efficient transportation. The Adhoc Network formed is an VANET, an emerging standard, for communication between mobile vehicles and mobile/fixed devices. The technologies like Wi-Fi, Bluetooth components are integrated with other mobile connectivity protocols for feasible data transfer between road side equipment and automobile traffic. The most important feature of VANET is Security. Without security, VANET is exposed to several threats, among which one of the threat is Sybil attack. One of the robust secure mechanism adopted is a cryptographic digital signature used to establish the faith between the various participating entities.

Keywords— Sybil Attack, RSU, SADT, Session Key Certificate.

I INTRODUCTION

Vehicular Ad Hoc Network (VANET) is a special categorized wireless ad hoc networks. Its functionality is to establish the communication between mobile vehicles which has the features of high node mobility and faster topological changes and the moving vehicle environment. Hence the routing links and routing paths are inherently unstable. Due to rapid growth of vehicles and due to potential threats, accidents frequency is reported high, as the location of the vehicle changes constantly. This means a constant demand arises for data on the current location and specifically information on the traffic surrounded, routes to be followed and many more. Wireless technology is developed to implement technology in mobile vehicles to reduce risk factors, by exchanging the related information/data to each other.

II VANET ARCHITECTURE

In vehicular networks, the mobile vehicles are intended to communicate with each other through inter vehicle communications [1] Systems. VANET architecture consists of two types of communicational devices. The first one is On-Board Units (OBU's), which is installed in the vehicles. An OBU fitted vehicle can communicate with other OBU vehicle in its range of communicable area via wireless connections.

The mobile network module is composed of a central processing unit for all on-board sensors warning devices. Each OBU is equipped with Global Positioning System (GPS) receiver and an Event Data Recorder (EDR). The GPS receiver provides geographical location information, Velocity, direction of destination and acceleration of vehicles at regular or specified time intervals, as desired by the user. The second part of VANET architecture is the Road Side Units (RSU). RSUs are installed on roadside with fixed locations or signal accessing distance and mounted at centralized locations like road-junctions, parking areas or fuel stations. The main functionality of an RSU is, to act as wireless Access Point (AP), which serves wireless access to users within its coverage area. VANETs enables both Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) Communications.

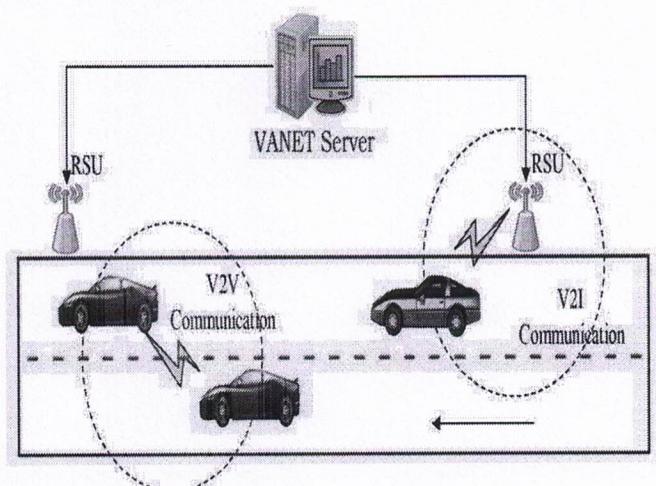


Fig.1. A simple VANET Architecture

III SECURITY SPECIFICATIONS

In general, a security system protects against the attacks and ensures the critical information [2], [3], [4]. Most of the security methods adopted results in a significant overhead, thereby reducing the efficiency of the system in terms of latency and bandwidth. A security system used for VANET

**Unsteady MHD free convection flow of casson fluid over an inclined vertical plate
embedded in a porous media**

P. Manideep, R. Srinivasa Raju, T. Siva Nageswar Rao, and G. Jithender Reddy

Citation: AIP Conference Proceedings **1953**, 140038 (2018); doi: 10.1063/1.5033213

View online: <https://doi.org/10.1063/1.5033213>

View Table of Contents: <http://aip.scitation.org/toc/apc/1953/1>

Published by the American Institute of Physics

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

Unsteady MHD Free Convection Flow of Casson Fluid over an Inclined Vertical Plate Embedded in a Porous Media

P. Manideep^{1, a)}, R. Srinivasa Raju², T. Siva Nageswar Rao³ and G. Jithender Reddy^{4, b)}

¹ Department of Mathematics, Vageshwari College of Engineering, Karimnagar, 505481, Telangana State, India.
² Department of Mathematics, GITAM University, Hyderabad Campus, Rudraram, Medak (Dt), 502329, Telangana State, India.

³ Department of S&H, VFSTR University, Vadlamudi, 522213, Guntur, AP, India

⁴ Department of Mathematics, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, RR(Dt), 500090, Telangana State, India

^{b)} Corresponding author: jithendergurejala@gmail.com,
^{a)} pamperamanideep@gmail.com

Abstract. This paper deals, an unsteady magnetohydrodynamic heat transfer natural convection flow of non-Newtonian Casson fluid over an inclined vertical plate embedded in a porous media with the presence of boundary conditions such as oscillating velocity, constant wall temperature. The governing dimensionless boundary layer partial differential equations are reduced to simultaneous algebraic linear equation for velocity, temperature of Casson fluid through finite element method. Those equations are solved by Thomas algorithm after imposing the boundary conditions through MATLAB for analyzing the behavior of Casson fluid velocity and temperature with various physical parameters. Also analyzed the local skin-friction and rate of heat transfer. Compared the present results with earlier reported studies, the results are comprehensively authenticated and robust FEM.

INTRODUCTION

The study of magnetohydrodynamic free convection flow for non-Newtonian fluid past over a flat plate or surface has attracted the interest of many researchers in view of different non-Newtonian fluids such as power law [1], Jeffrey [2], Maxwell [3] models etc. there is another non-Newtonian fluid model, it is known as Casson fluid, this model was introduced by Casson [4] for analyze the flow behavior of pigment oil and its suspensions of the printing ink type. Few authors [5-8] have studied on a vertical plate. Recently Reddy et al.[9] have studied an unsteady MHD natural free convection fluid flow on an oscillating vertical plate embedded in a porous media with the effect of some physical parameters.

In view of the above literature, the authors are not explored Casson fluid flow over an inclined vertical plate. So that, in this paper, we have consider an unsteady MHD heat transfer flow of Casson fluid over an inclined oscillating vertical plate. The governing equations transformed to non-dimensional partial differential equations by substituting emerging dimensionless parameters. The dimensionless equations reduced to system of linear equations by Finite Element Method, that equations are solved by Thomas algorithm after imposing the boundary conditions to analyze the behavior of velocity and temperature of the Casson fluid over an inclined oscillating plate with the variation of emerging parameters. Also analyze the skin friction and rate of heat transfer near to the inclined plate. Compare the present results with existing results of Asma Khalid [5]. The results are comprehensively authenticated and robust FEM.