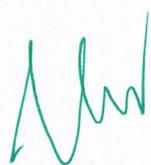


POWER SYSTEM CONTROL AND ECONOMIC OPERATION OF POWER SYSTEM

Dr. M. RAMESH
VARAPARLA HARI BABU


ISBN 978-0-359-67709-2

90000

9 780359 677092

ID: 24764849
www.lulu.com

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

A review of performance optimization and current research in PMEDM

M. Jawahar^{a,c,*}, Ch. Sridhar Reddy^{b,c}, Ch. Srinivas^{a,b,c}

^aResearch scholar, Mechanical Engineering Department, JNTUH, Kukatpally, Hyderabad, TS, India

^bProfessor and Head, Mechanical Engineering Department, JNTUHCE, Manthani, TS, India

^cProfessor and Principal, Mechanical Engineering Department, Vaageswari College of Eng. - Karimnagar, TS, India

ARTICLE INFO

Article history:

Received 6 August 2019

Accepted 10 August 2019

Available online xxxx

Keywords:

PMEDM

Machining parameters

Dielectric fluid

Powder concentration

Nanopowder

ABSTRACT

The EDM method is non-conventional in machining for machining of geometrically unpredictable or hard materials and electrically conductive materials that cannot be machined with ordinary forms of machining. With latest strategies, research has emphasized EDM's increased machining efficiency. PMEDM is an ongoing method where a Mixed conductive powder with the dielectric liquid to improve EDM machining capabilities in this direction. This paper introduces the review work done to improve the performance characteristics of machining like MRR, SR and TWR for different Machining parameters like I_p , Duty factor, T_{on} , T_{off} . Work piece material, powder type, concentrated powder with different dielectric liquids and powder materials. Also in the paper reports and summaries Current trends in the research, PMEDM using various powders such as Nano powders mixed in dielectric fluids and examined the current challenges, future scope of research and impediments of the PMEDM process.

© 2019 Elsevier Ltd. All rights reserved.

Selection and peer-review under responsibility of the scientific committee of the 1st International Conference on Manufacturing, Material Science and Engineering.

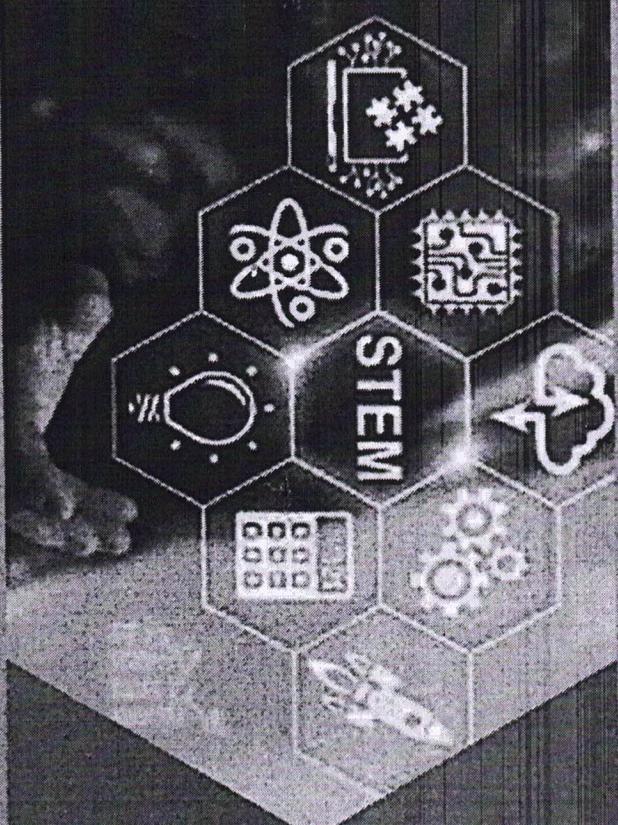
1. Introduction

EDM is a non-conventional technique of electro-thermal machining, sometimes called spark eroding, sparks machining method. It is used primarily for machining hard materials and high quality safe materials such as titanium, super combinations of solidified steels that are generally used in aircraft and other mechanical applications [1]. It is manufacturing processes where electrical energy is acquired by favoured shape to produce electrical sparks, and the material removal is due to spark thermal energy [2]. In EDM work piece is generally associated with positive terminal and tool with negative terminal. And possible differentiation is connected between work piece and tool. Many input parameters mainly affect EDM efficiency such as circuit voltage (v_c), operating voltage (v_w), peak current (I_p), t_{on} , t_{off} , work piece gap and tool gap, polarity, dielectric medium and internal flushing through the gap of the spark. EDM is an electro thermal technique involving the Plasma channel arrangement between the tools and piece of work, primarily used to machine such hard-to-machine alloys as well as high quality and temperature safe alloys (HSTR). These materials are widely in the die and mould manufacturing industries [3].

1.1. Working principle of PMEDM

PMEDM was developed in the previous few centuries One of the most significant and creative processes to overcome the inconvenience of the EDM method and to upgrade the EDM limit [4]. The concept of powdered blended EDM appears in Fig. 1. PMEDM is used to enhance the MRR and to decrease the contrast between SR and standard EDM by increase the Work piece gap and electrode gap. When the voltage was applied to the Powder particles, it becomes strong and continues with a crisscross pattern [5]. These loaded Particles are being accelerated and behave as conductors promoting the gap breakdown due to the electrical field. This improves the gap between the piece of work and the tool. These particles come close to one another under the sparking region and organize in the shape of the chain like constructions. In the present flow direction, the Powder particles interlocking happen. The formation of chain enables to bridge the distance between the discharge electrodes. Due to the impact of bridging, the insulation intensity of dielectric fluid decreases, resulting in a simple short circuit. This results in early explosion in and below the gap area the series discharge begins. The quicker sparking in a spill creates quicker erosion from the job piece's surface and thus improves the MRR. PMEDM was used to enhance rough machining effectiveness. PMEDM has enabled machining efficiency to be improved by

* Corresponding author. Mobile +91 9908959193.


E-mail address: jawahar.mamidala123@gmail.com (M. Jawahar).

ISBN No : 978-81-940546-0-3

ICRSTEM - 2019

International Conference on Research Trends in
Science, Technology, Engineering & Management

10th-12th May 2019

Organized by

JAYAMUKHI
INSTITUTE OF TECHNOLOGICAL SCIENCES

Accredited by NBA, UGC - AUTONOMOUS,
Permanently Affiliated to JNTU, Hyderabad, Approved by AICTE
Narsampet, Warangal (R), Telangana - 506332.

Website : www.jits.in

MM
Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

A Review on Optimization of Machining Performances and Current Research Work in Die Sinking EDM

118

Research Scholar, Department of
Mechanical Engineering, Jawaharlal
Nehru Technological University
Hyderabad, Telangana, India

Dr.C.Sridhar Reddy²
Professor and Head, Department of
Mechanical Engineering, JNTUH
College of Engineering, Manthani
Telangana, India

Dr.Chr.Srinivas³
Professor and Principal, Department
of Mechanical Engineering,
Vagetwari College of Engineering,
Karimnagar, Telangana, India

Abstract— Electrical discharge machining is a non-traditional machining process, used for machining of geometrically complex or very hard and electrically conductive materials which cannot be machined by conventional machining processes. The present work reviews extensive research in non-traditional mixed Electrical

3. Work piece holder, Tool holder and table – Used to hold tool and work piece firmly so that the vibrations are reduced.
4. Servo control Mechanism – Used to provide a constant gap between tool and work piece.

3. Work piece holder. Tool holder and table – Used to hold tool and work piece firmly so that the vibrations are reduced.

4. Servo control Mechanism – Used to provide a constant gap between tool and work piece.

Discharge machining (PMDM). In PMEDM process powders can be mixed in separate tank in order to improve EDM machining performance. The emphasis is given in the field of PMEDM mechanism, influences of powder characteristics and machining input parameters on various machining responses. In this article, comprehensive review of the research going on in the PMEDM of optimization of machining parameters were presented and discussed the summary of work performed by the earlier researchers on performance of EDM process parameters through in depth literature survey. This paper also reports and summarized on the current research trends in PMEDM by using water and nano powders mixed into dielectric fluids and discussed the current challenges, future research scope and limitations of PMEDM process.

Fluid. Nano powders

1. INTRODUCTION

Electrical Discharge Machining (EDM) is a nonconventional process. EDM originally observed by English Scientist Joseph Priestly in 1770 the development of EDM was very inaccurate and with failure. Further two Russian scientists, B. R. Lazarenko and Dr. N.I. Lazarenko in 1943, developed EDM process. Also they invented the relaxation circuit and a simple servo controller too, that helped maintain the gap width between the tool and the work-piece. Further more investigation is done in the improvement of EDM process for the development of machining characteristics in the direction of material removal rate and surface finish.

THE WORKING PRINCIPLE OF EDRM

- Unit – Used to provide the Direct Current to produce spark between the tool and work piece.
- Dielectric fluid reservoir, pumps, filters and control valve – Used to supply dielectric to the tool and work piece. The tool and work piece are immersed in dielectric fluid.

Fig. Die sinking electrical discharge machining

1.2 PROCESS PARAMETERS OF EDM

Unconventional Machining Process depends upon the number

ESTIMATING AND COSTING IN CIVIL ENGINEERING

FIRST EDITION

Authors

Mr.K Rajesh

Assistant Professor
Vaageswari College of
Engineering,
Thimmapur, Karimnagar
Telengana-505481

Mr.V. Mahesh

Assistant Professor
Vaageswari College of
Engineering,
Thimmapur, Karimnagar
Telengana-505481

(SCIENTIFIC INTERNATIONAL PUBLISHING HOUSE)

Mr.
Principal
Vaageswari College of Engineering
505481

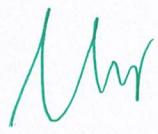
**Title of the Book: ESTIMATING AND COSTING IN CIVIL
ENGINEERING**

Edition: First - 2019

Copyrights © Authors

No part of this text book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the copyright owners.

Disclaimer


The authors are solely responsible for the contents published in this text book. The publishers or editors do not take any responsibility for the same in any manner. Errors, if any, are purely unintentional and readers are requested to communicate such errors to the editors or publishers to avoid discrepancies in future.

ISBN: 978-93-5625-345-2

MRP: Rs. 550/-

**PUBLISHER & PRINTER: Scientific International Publishing
House, Mannargudi, Tamilnadu, India- 614001**

WEBSITE: www.sipinternationalpublishers.com

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

CONTENTS

UNIT	TITLE	PAGE
1	1.1 SPECIFICATION WRITING	8 – 31
	1.2 REPORT WRITING	32 – 43
2	2.1 VALUATION	44 – 71
	2.2 RENT CALCULATION	72 – 86
3	3.1 ANALYSIS OF RATES FOR SANITARY AND WATER SUPPLY WORKS	87 – 109
	3.2 ANALYSIS OF RATES FOR BRIDGE / ROAD WORKS AND MISCELLANEOUS ITEMS	110 – 155
4	TAKING OFF QUANTITIES OF P.H. ENGINEERING STRUCTURES USING TRADE SYSTEM	156 – 174
	TAKING OFF QUANTITIES OF ROAD / BRIDGE STRUCTURES USING TRADE SYSTEM	175 – 185

ENGLISH AND COMMUNICATION SKILLS

FIRST EDITION

Authors

Mr. Mudam Madhu Kumar
Assistant Professor
Vaageswari College of
Engineering,
Thimmapur, Karimnagar
Telengana-505481

Mr. Korem Ramesh
Assistant Professor
Vaageswari College of
Engineering,
Thimmapur, Karimnagar
Telengana-505481

(SCIENTIFIC INTERNATIONAL PUBLISHING HOUSE)

Mur
Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

Title of the Book: English and Communication Skills

Edition: First - 2019

Copyrights © Authors

No part of this text book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the copyright owners.

Disclaimer

The authors are solely responsible for the contents published in this text book.

The publishers or editors do not take any responsibility for the same in any manner. Errors, if any, are purely unintentional and readers are requested to communicate such errors to the editors or publishers to avoid discrepancies in future.

ISBN: 978-93-5625-344-5

MRP: Rs. 550/-

**PUBLISHER & PRINTER: Scientific International Publishing
House, Mannargudi, Tamilnadu, India- 614001**

WEBSITE: www.sipinternationalpublishers.com

Principal
Swami College of Engineering
CAR.005/827.

SYLLABUS

Module-I	GENERAL INTRODUCTION AND LISTENING SKILL
Introduction to communication skills; Communication process; Elements of communication; Soft skills vs. hard skills; Importance of soft skills for engineers; Listening skills; Significance; Stages of listening; Barriers and effectiveness of listening; Listening comprehension.	
Module-II	SPEAKING SKILL
Significance; Essentials; Barriers and effectiveness of speaking; Verbal and non-verbal communication; Generating talks based on visual prompts; Public speaking; Addressing a small group or a large formal gathering; Oral presentation; Power point presentation.	
Module-III	VOCABULARY AND GRAMMAR
The concept of Word Formation; Root words from foreign languages and their use in English; Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives; Synonyms; Antonyms; Standard abbreviations; Idioms and phrases; One word substitutes Sentence structure; Uses of phrases and clauses; Punctuation; Subject verb agreement; Modifiers; Articles; Prepositions.	
Module-IV	READING SKILL
Significance, Techniques of reading, Skimming-Reading for the gist of a text, Scanning - Reading for specific information, Intensive, Extensive reading, Reading comprehension, Reading for information transfer, Text to diagram, Diagram to text.	
Module-V	WRITING SKILL
Significance; Effectiveness of writing; Organizing principles of Paragraphs in documents; Writing Introduction and conclusion; Techniques for writing precisely, Letter writing; Formal and Informal letter writing, E-mail writing , Report Writing.	
Text Books:	
1. Handbook of English (Prepared by the faculty of English, IARE).	
Reference Books:	
1. Norman Whitby, -Business Benchmark: Pre-Intermediate to Intermediate – BEC Preliminary, Cambridge University Press, 2 nd Edition,2008. 2. Devaki Reddy, Shreesh Chaudhary, -Technical English", Macmillan, 1 st Edition,2009. 3. Rutherford, Andrea J, "Basic Communication Skills for Technology", Pearson Education,2 nd Edition, 2010. 4. Raymond Murphy, -Essential English Grammar with Answers, Cambridge University Press, 2 nd Edition,2010. 5. Dr.NVSudershan,-PresidentKalam's CalltotheNation, BalaBharathi Publications, Secunderabad, 1 st Edition,2003.	

HEAT POWER ENGINEERING

FIRST EDITION

Author

Mr. J Vijay Kumar
Assistant Professor
Vaageswari College of Engineering,
Thimmapur, Karimnagar
Telengana-505481

(SCIENTIFIC INTERNATIONAL PUBLISHING HOUSE)

*Principal
College of Engineering
527*

Title of the Book: HEAT POWER ENGINEERING

Edition: First - 2020

Copyrights © Authors

No part of this text book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the copyright owners.

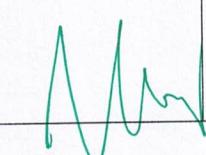
Disclaimer

The authors are solely responsible for the contents published in this text book. The publishers or editors do not take any responsibility for the same in any manner. Errors, if any, are purely unintentional and readers are requested to communicate such errors to the editors or publishers to avoid discrepancies in future.

ISBN: 978-93-5625-347-6

MRP: Rs. 550/-

**PUBLISHER & PRINTER: Scientific International Publishing
House, Mannargudi, Tamilnadu, India- 614001**


WEBSITE: www.sipinternationalpublishers.com

Princip
Amarswari College of Eng
TIRUNAGAR-505 521

HEAT POWER ENGINEERING

DETAILED SYLLABUS

Unit	Name of the Topic	Page No
I	<p>BASICS OF THERMODYNAMICS AND THERMODYNAMIC PROCESSES OF PERFECT GASES</p> <p>Introduction:- Definitions and units of mass, weight, volume, density, specific weight, specific gravity and specific volume – pressure – units of pressure – temperature - absolute temperature – S.T.P and N.T.P conditions – heat - specific heat capacity at constant volume and at constant pressure – work – power – energy – types - law of conservation of energy – thermodynamic system – types – thermodynamic equilibrium - properties of systems – intensive and extensive properties – State of System - process – cycle – point and path functions - zeroth, first and second laws of thermodynamics.</p> <p>Perfect gases: - laws of perfect gases – Boyle's, Charle's, Joule's, Regnault's and Avogadro's laws – General Gas Equation - Characteristic gas equation – relation between specific heats and gas constant – Universal gas constant –Change in Internal Energy- enthalpy – change in enthalpy – entropy</p> <p>Thermodynamic processes:- Constant volume, Constant pressure, Constant temp.(isothermal) ,Isentropic (reversible adiabatic) and, Polytropic Processes – p-V and T-s diagrams, work done , change in internal energy , heat transfer , change in enthalpy, change in entropy for above processes – Simple problems – hyperbolic ,Free expansion and throttling processes(Description only) .</p> <p>Steady flow system: – control volume – steady flow energy equation – assumptions – Engineering applications</p>	1 - 55
II	<p>THERMODYNAMIC AIR CYCLES AND FUELS & COMBUSTION</p> <p>Air cycles: – air standard efficiency – reversible and irreversible processes – assumptions in deriving air standard efficiency – Carnot cycle – Otto cycle – Diesel cycle - Comparison of ideal and actual p-v diagrams of Otto and Diesel cycles – Simple problems</p> <p>Fuels & Combustion: Classifications of fuels - merits and demerits – requirements of a good fuel – Octane number – detonation - Pre-ignition – Cetane number – Diesel knock – comparison of detonation and diesel knock - fuel additives – Stages of Combustion – Delay period – Variables affecting delay period – Methods of generating air swirl in diesel engine combustion chambers – Types of combustion chambers – combustion equations – stoichiometric air required for complete combustion of fuels – excess air – products of combustion – analysis of exhaust gases - calorific value of fuels.</p>	56 - 98

III	<p>AIR COMPRESSORS AND GAS TURBINES</p> <p>Air Compressors:- Uses of compressed air – classifications of Air compressor – reciprocating compressor - single stage reciprocating compressor – compression processes – clearance volume and its effects – volumetric efficiency – multi stage compression – merits and demerits – Two stage compressor with imperfect cooling- with perfect inter cooling – rotary compressors – Roots blower - vane blowers – centrifugal and axial flow air compressors – simple problems.</p> <p>Gas turbines – uses - classifications – merits and demerits constant pressure combustion gas turbine – gas turbine with intercooler, reheater, regenerator - effects – closed cycle gas turbines - merits and demerits – jet propulsion - turbojet engines – turbo propeller engines – ramjet – Working principle - merits and demerits –Rocket engines – applications of rockets</p>	99 - 135
IV	<p>FORMATION & PROPERTIES OF STEAM AND STEAM CALORIMETERS</p> <p>Steam - Properties – formation of steam – saturation temperature – enthalpy of water – enthalpy of evaporation – conditions of steam – dryness fraction – enthalpy of wet, dry and superheated steam - advantages of superheated steam – p-v diagram - T-H diagram – T-S diagram - H-S diagram – P-H diagram – critical conditions of water – specific volume of water and steam – density of steam – external work done during evaporation – internal latent heat – internal energy of steam – entropy of water and steam – steam tables - Mollier chart.</p> <p>Expansion process of Steam: Constant Volume process – Constant Pressure Process – Constant Temperature process – Hyperbolic Process – Isentropic process – Polytropic process – Throttling process. – Simple problems.</p> <p>Steam Calorimeter: Determination of dryness fraction of steam – bucket calorimeter - combined separating and throttling calorimeters</p>	136 -178
V	<p>STEAM BOILERS AND PERFORMANCE OF BOILERS</p> <p>Steam Boilers: Introduction - Classification of boilers – comparison of fire tube and water tube boilers – high pressure boilers – advantages of high pressure boilers - Lamont and BHEL high pressure boilers – boiler mountings and accessories - function - construction and working – comparison of mountings and accessories – feed water treatment – internal and external treatments - starting boiler from cold condition – safety precautions in boiler operation – causes of Indian boiler act.</p> <p>Performance of boilers: Evaporation rate - actual, equivalent and factor of evaporation – boiler efficiency – factors influencing boiler efficiency - boiler power – Simple problems – boiler plant - efficiency of economizer and super heater – Simple problems - boiler trial – heat losses in a boiler- heat balance sheet – Simple problems</p>	179-227

HIGH VOLTAGE ENGINEERING

FIRST EDITION

Authors

Dr. K Chandra Mouli

Assistant Professor
Vaageswari College of
Engineering,
Thimmapur, Karimnagar
Telengana-505481

Mr. S. Rajesh

Assistant Professor
Visvesvaraya College of
Engineering & Technology,
M.P Patelguda, Bonguloor 'X '
Roads, Ibrahimpatnam, Hyderabad

(SCIENTIFIC INTERNATIONAL PUBLISHING HOUSE)

Principal
Vaageswari College of Engin
CAR.505 527.

Title of the Book: HIGH VOLTAGE ENGINEERING

Edition: First - 2020

Copyrights © Authors

No part of this text book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the copyright owners.

Disclaimer

The authors are solely responsible for the contents published in this text book. The publishers or editors do not take any responsibility for the same in any manner. Errors, if any, are purely unintentional and readers are requested to communicate such errors to the editors or publishers to avoid discrepancies in future.

ISBN: 978-93-5625-349-0

MRP: Rs. 550/-

**PUBLISHER & PRINTER: Scientific International Publishing
House, Mannargudi, Tamilnadu, India- 614001**

WEBSITE: www.sipinternationalpublishers.com

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

HIGH VOLTAGE ENGINEERING

INTRODUCTION

Generation and transmission of electric energy -Voltage stresses -Testing voltages -Testing with power frequency voltages -

Testing with lightning impulse voltages -Testing with switching impulses -D.C. voltages -Testing with very low frequency voltage

BREAKDOWN OF GASEOUS INSULATION

Ionisation of Gases -Ionisation processes in gas discharges- Relevant gas ionisation processes- Breakdown Characteristic in gases- Electron Avalanche Mechanism (Townsend Breakdown Process) - Paschen's Law - Streamer Mechanism -Factors affecting the breakdown voltage a Vacuum gap -Time lags of Spark breakdown -Corona Discharges

INSULATION CO-ORDINATION

Insulation Co-ordination-Terminology -Conventional method of insulation co-ordination - Statistical Method of Insulation Co-ordination - Length of Overhead Shielding Wire- Surge Protection

HIGH VOLTAGE TRANSIENT ANALYSIS

Surges on Transmission Lines - Surge Impedance and Velocity of Propagation- Energy stored in surge- Reflection of Travelling waves at a Junction- Open circuited line fed from a infinite source - Short Circuit Line fed from an infinite source- Bewley Lattice Diagram -Analysis of an open-circuit line fed from ideal source -Reflections at 3 substation system

-Reflection and Transmission at a T-junction-Bergeron's Method of Graphical Solution-Representation of Lumped Elements in travelling wave techniques- Branch Time Table for digital computer implementation - Transform Methods of solving Transients

MEASUREMENT OF HIGH VOLTAGES

Peak voltage measurements by spark gaps-Sphere gaps, Reference measuring systems, Uniform field gaps ,Rod gaps -Electrostatic voltmeters-Ammeter in series with high ohmic resistors and high ohmic resistor voltage dividers - Generating voltmeters and field sensors -The measurement of peak voltages -The


Chubb-Fortescue method, Voltage dividers and passive rectifier circuits , Active peak-reading circuits, High-voltage capacitors for measuring circuits, Voltage dividing systems and impulse voltage measurements ,Generalized voltage generation and measuring circuit, Demands upon transfer characteristics of the measuring system, Fundamentals for the computation of the measuring system Voltage dividers Interaction between voltage divider and its lead ,The divider's low-voltage arm- Fast digital transient recorders for impulse measurements, Principles and historical development of transient digital recorders Errors inherent in digital recorders-Specification of ideal A/D recorder and parameters required for h.v-impulse testing -Future trends

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

TABLE OF CONTENT

SNO	UNIT	PAGE NO:
1	INTRODUCTION	
	1.14 Generation and transmission of electric energy	1
	1.2 Voltage stresses	4
	1.3 Testing voltages	5
2	BREAKDOWN OF GASEOUS INSULATION	
	2.1 Ionisation of Gases	7
	2.2 Breakdown Characteristic in gases	17
3	INSULATION CO-ORDINATION	
	3.0 Insulation Co-ordination	35
	3.1 Terminology	35
	3.2 Conventional method of insulation co-ordination	38
	3.3 Statistical Method of Insulation Co-ordination	39
	3.4 Length of Overhead Shielding Wire	41
	3.5 Surge Protection	43
		HIGH VOLTAGE TRANSIENT ANALYSIS
4	4.1 Surges on Transmission Lines	51
	4.2 Reflection of Traveling waves at a Junction	54
	4.3 Bewley Lattice Diagram	58
	4.4 Reflection and Transmission at a T-junction	63
	4.5 Bergeron's Method of Graphical Solution	64
	4.6 Representation of Lumped Elements in travelling wave techniques	65
	4.7 Branch Time Table for digital computer implementation	66

	4.8 Transform Methods of solving Transients	67
5	MEASUREMENT OF HIGH VOLTAGES	
	5.1 Peak voltage measurements by spark gaps	70
	5.2 Remarks on the use of the sphere gap	75
	5.3 Electrostatic voltmeters	85
	5.4 Ammeter in series with high ohmic resistors and high ohmic resistor voltage dividers	86
	5.5 Generating voltmeters and field sensors	97
	5.6 The measurement of peak voltages	99
	5.7 The Chubb– Fortescuemethod	100
	5.8 Technology of H.V. capacitors	119
	5.9 Voltage dividing systems and impulse voltage measurements	121
	5.10 Measurement of High Test Voltages	122
	5.11 Principle of Potential Dividers, Their Types, and Applications	123
	5.12 Pure Capacitive Voltage Dividers	125
	5.13 Resistive Voltage Divider	126
	5.14 Voltage Divider	128
	5.15 Parallel-mixed resistor-capacitor dividers	130
	5.16 Capacitor voltage dividers	133
	5.17 Conduction and breakdown in gases	137
	5.18 Back ground material	138
	5.19 Ionization Process	140
	5.20 Time Lags for Breakdown	141
	5.21 Voltage Time characteristics	144
5.22 Conduction and breakdown in liquid dielectrics	145	

5.23 Pure liquids and commercial liquids	146
5.24 Cconduction and breakdown in pure liquids	148
5.25 Conduction and breakdown in commercial liquids	151
5.26 Breakdown in solid dielectricsintroduction	152
5.27 Intrinsic breakdown	153
5.28 Breakdown of solid dielectrics in practice	155
5.29 Chemical and Electrochemical Deterioration and Breakdown	155
5.30 Breakdown Due to Treeing and Tracking	157
5.31 reakdown of composite insulation	158
5.32 Generation of high dc voltage	160
5.33 Ripple Voltage With Half Wave and Full Wave Rectifiers	163
5.34 Measurement of high d.c., and impulse currents	166
5.35 Elements using Induction Effects(Rogowski coil)	172
5.36 Hall Generators	173

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

MULTIMEDIA SYSTEMS DESIGN

FIRST EDITION

Authors

Dr. Dinesh Kumar
Associate Professor
Vaageswari College of
Engineering,
Thimmapur, Karimnagar
Telengana-505481

Dr. N. Chandra Mouli
Associate Professor and HOD
Vaageswari College of
Engineering,
Thimmapur, Karimnagar
Telengana-505481

Dr. V. Bapuji
Associate Professor and HOD
Vaageswari College of Engineering,
Thimmapur, Karimnagar
Telengana-505481

(SCIENTIFIC INTERNATIONAL PUBLISHING HOUSE)

Title of the Book: Multimedia Systems Design

Edition: First - 2020

Copyrights © Authors

No part of this text book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the copyright owners.

Disclaimer

The authors are solely responsible for the contents published in this text book. The publishers or editors do not take any responsibility for the same in any manner. Errors, if any, are purely unintentional and readers are requested to communicate such errors to the editors or publishers to avoid discrepancies in future.

ISBN: 978-93-5625-351-3

MRP: Rs. 550/-

PUBLISHER & PRINTER: Scientific International Publishing
House, Mannargudi, Tamilnadu, India- 614001

WEBSITE: www.sipinternationalpublishers.com

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

CONTENT

UNIT	TITLE	PAGE
I	INTRODUCTION TO MULTIMEDIA	1-22
II	DEFINING OBJECTS FOR MULTIMEDIA SYSTEMS	23-60
III	MULTIMEDIA DATA AND STANDARDS	61-78
IV	MULTIMEDIA DEVICES AND MAKING MULTIMEDIA	79-108
V	MULTIMEDIA DESIGN, MULTIMEDIA FOR INTERNET	109-150

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

PYTHON PROGRAMMING

FIRST EDITION

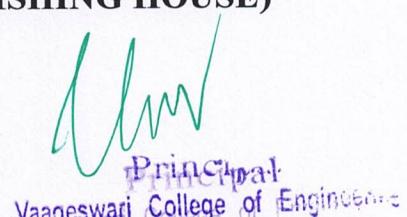
Authors

Dr. V. Bapuji

Associate Professor and HOD
Vaageswari College of
Engineering,
Thimmapur, Karimnagar
Telengana-505481

Dr. Gulab Singh Chouhan

Associate Professor
Vaageswari College of
Engineering,
Thimmapur, Karimnagar
Telengana-505481


Ramyasree Thirupathigari

Assistant Professor

Visvesvaraya College of Engineering & Technology,
M.P Patelguda, Bonguloor 'X' Roads, Ibrahimpatnam, Hyderabad

(SCIENTIFIC INTERNATIONAL PUBLISHING HOUSE)

Title of the Book: Python Programming

Edition: First - 2020

Copyrights © Authors

No part of this text book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the copyright owners.

Disclaimer

The authors are solely responsible for the contents published in this text book.

The publishers or editors do not take any responsibility for the same in any manner. Errors, if any, are purely unintentional and readers are requested to communicate such errors to the editors or publishers to avoid discrepancies in future.

ISBN: 978-93-5625-353-7

MRP: Rs. 550/-

**PUBLISHER & PRINTER: Scientific International Publishing
House, Mannargudi, Tamilnadu, India- 614001**

WEBSITE: www.sipinternationalpublishers.com

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

PREFACE

This book is designed for use in courses on Python Programming at the undergraduate/postgraduate level, particularly designed for the structured curriculum of Bachelor of Technology and Bachelor of Engineering – Computer science & Engineering

Although the contents of the book follows the essential content of complete concepts of python programming is sufficiently broad in scope and rigorous in coverage to satisfy any undergraduate and postgraduate requirements in the field of IT/CSE.

The book is organized into five sections:

Section 1, describes about the basics of python programming which covers the variables, identifiers, arithmetic operator, values & type, python statement, operator, operator precedence, expressions & statements, functions etc.,

Section 2, covers the data types in python, list, characteristics, string, python dictionary, modules, scope of variables, packages, libraries etc.,

Section 3, delivers the file handling & exception handling, data files in python, file operation, file methods & python exception handling etc.,

Section 4, covers about the python modules, listing of modules, variables in a modules, modules loading & execution, frameworks in python etc.,

Section 5, includes the object oriented programming in python, oop concept, class, inheritance, polymorphism, encapsulation, overriding methods, constructor and abstraction in python etc.,

The analyses and discussion, covering these five sections in the various chapters of this book, are based on the readings recommended for this course. However, wherever required, we have supplemented from other sources reference. A select bibliography is given at the end of the book for reference to the authors cited in the text

I hope this thoroughly book on Python Programming will prove handy and useful to students and teachers on the same.

Principal
Vaneswari College of Engineering
NAGAR-644106

SYLLABUS

PYTHON PROGRAMMING

COURSE OBJECTIVES

- To develop Python programs with conditionals, loops and functions.
- To use Python data structures – lists, tuples, dictionaries.
- To do input/output with files in Python
- To use modules, packages and frameworks in python
- To define a class with attributes and methods in python

CHAPTER 1 **BASICS OF PYTHON**

Introduction to Python Programming – Python Interpreter and Interactive Mode – Variables and Identifiers – Arithmetic Operators – Values and Types – Statements. Operators – Boolean Values – Operator Precedence – Expression – Conditionals: If-Else Constructs – Loop Structures/Iterative Statements – While Loop – For Loop – Break Statement-Continue statement – Function Call and Returning Values – Parameter Passing – Local and Global Scope – Recursive Functions

CHAPTER 2 **DATA TYPES IN PYTHON**

Lists, Tuples, Sets, Strings, Dictionary, Modules: Module Loading and Execution – Packages – Making Your Own Module – The Python Standard Libraries.

CHAPTER 3 **FILE HANDLING AND EXCEPTION HANDLING**

Files: Introduction – File Path – Opening and Closing Files – Reading and Writing Files – File Position – Exception: Errors and Exceptions, Exception Handling, Multiple Exceptions

CHAPTER 4 **MODULES, PACKAGES AND FRAMEWORKS**

Modules: Introduction – Module Loading and Execution – Packages – Making Your Own Module – The Python Libraries for data processing, data mining and visualization- NUMPY, Pandas, Matplotlib, Plotly-Frameworks- -Django, Flask, Web2Py

CHAPTER 5 **OBJECT ORIENTED PROGRAMMING IN PYTHON**

Creating a Class, Class methods, Class Inheritance, Encapsulation, Polymorphism, class method

TABLE OF CONTENTS

Chapter No	Contents	Page No
1	BASICS OF PYTHON	01
	1.1 Introduction	01
	1.2 Variables and Identifiers	06
	1.3 Arithmetic Operator	07
	1.4 Values and Type	13
	1.5 Python Statement	13
	1.6 Operator	14
	1.7 Values and Types	38
	1.8 Operator Precedence	43
	1.9 Expressions and Statements	45
	1.10 Functions	54
	1.11 Types of function	55
2	DATA TYPES IN PYTHON	63
	2.1 Introduction	63
	2.2 Python List	64
	2.3 Characteristics of Lists	64
	2.4 String	79
	2.5 Python Dictionary	87
	2.6 Modules	94
	2.7 Scope of Variables	97
	2.8 Packages in Python	98
	2.9 Libraries in Python	99
	2.10 Use of Libraries in Python Program	104
	2.11 Various ways of Accessing the Packages	110
3	FILE HANDLING AND EXCEPTION HANDLING	119
	3.1 Python File Handling	119
	3.2 Data Files in Python	119
	3.3 File Operation	120
	3.4 Python File Methods	127
	3.5 Python Exception Handling	129
4	INTRODUCTION TO PYTHON MODULES	147
	4.1 Introduction	147
	4.2 Mechanism of Python Modules	147
	4.3 Listing of Modules	148

	4.4 Variable in a Module	149
	4.5 Module Loading and Execution	150
	4.6 Introduction to Python	154
	4.7 Frameworks in Python	164
5	OBJECT ORIENTED PROGRAMMING IN PYTHON	183
	5.1 Introduction	183
	5.2 OOP Concept	183
	5.3 Class	184
	5.4 Inheritance	191
	5.5 Polymorphism	201
	5.6 Encapsulation	202
	5.7 Overriding Methods	204
	5.8 Python Constructor	206
	5.9 Abstraction in Python	213

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527

MACHINE LEARNING

FIRST EDITION

Authors

Dr. V. Bapuji

Associate Professor and HOD
Vaageswari College of
Engineering,
Thimmapur, Karimnagar
Telengana-505481

Dr. D. Srinivas Reddy

Associate Professor
Vaageswari College of
Engineering,
Thimmapur, Karimnagar
Telengana-505481

(SCIENTIFIC INTERNATIONAL PUBLISHING HOUSE)

Principal
Vaageswari College of Engineering
SAP 505 527.

Title of the Book: Machine Learning

Edition: First - 2020

Copyrights © Authors

No part of this text book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the copyright owners.

Disclaimer

The authors are solely responsible for the contents published in this text book.

The publishers or editors do not take any responsibility for the same in any manner. Errors, if any, are purely unintentional and readers are requested to communicate such errors to the editors or publishers to avoid discrepancies in future.

ISBN: 978-93-5625-350-6

MRP: Rs. 550/-

**PUBLISHER & PRINTER: Scientific International Publishing
House, Mannargudi, Tamilnadu, India- 614001**

WEBSITE: www.sipinternationalpublishers.com

Principal
Praswari College of Engineering
CAR-505 527.

PREFACE

Machine learning is transforming industries such as healthcare, education, transportation, food, entertainment, and diverse assembly lines, to name a few. It will have an impact on almost every aspect of people's lives, including their houses, transportation, shopping, food ordering, and so on. Because of developments in computer technology, machine learning today is not the same as machine learning in the past. It evolved from pattern recognition and the assumption that computers may learn without being instructed to do specific tasks; artificial intelligence researchers wanted to see if computers could learn from data.

Because models may change autonomously when they are exposed to new data, the iterative feature of machine learning is critical. They use earlier computations to deliver reliable, repeatable assessments and outputs. The same forces that have propelled data mining and Bayesian analysis to unprecedented heights are fueling renewed interest in machine learning. Things like increased data quantity and diversity, less expensive and more powerful computing processing, and low-cost data storage are examples.

This book not only covers the whole scope of the subject, but it also explores its philosophy. This increases knowledge and makes the subject more interesting. Both learners and researchers will find this book incredibly useful.

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

UNIT 1 : It focuses on basic of machine learning systems followed by its perceptrons ,neural network ,feed forward neural network , supervised, unsupervised, and semi-supervised machine learning techniques, learning systems, perspectives and issues, and other topics.

UNIT 2: Discuss the decision tree method and identity, as well as how to avoid the overfitting problem, Neural Network Representation, Problems, Perceptron, Multilayer Networks, KNN and Curse of Dimensionality

UNIT 3: Discuss and apply the generative learning algorithm to issues such as the Bayes Theorem, Nave Bayes Classifier, and Logistic regression

UNIT 4: Improve the various types of clustering, K-Nearest Neighbour Learning, EM algorithm, latent semantic indexing

UNIT 5: Analyze and recommend relevant machine learning techniques for a variety of issues, including the Markov decision process, Bellman Equation, and various models.

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

SYLLABUS

UNIT 1: INTRODUCTION TO MACHINE LEARNING

Learning Systems – Goals and Applications –Aspects of Developing a Learning Systems- Training Data –Linear Perceptron's as Neurons-Neural Nets – Working
–Layers –Activation Function –Feed Forward Neural Network –Limitations – DBN'S –Deep Learning for Big Data – Local Minima-Rearranging Neurons – Spurious Local Minima –Comparison of AI – Machine Learning and Deep Learning

UNIT II – TYPES OF LEARNING

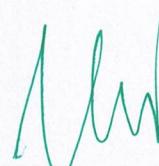
Supervised Learning –Goals and Applications – Unsupervised Learning –Case Study –Classification –MLP is Practice –Overfitting –Linear and Non Linear Discriminative –Decision Tree –Probabilistic –K –Nearest Neighbour Learning Algorithm –Curse of Dimensionality

UNIT III – LEARNING ALGORITHMS

Logistic Regression –Perceptron's - Generative Learning Algorithm – Gaussian Discrimination Analysis –Naïve Bayes-SVM Kernels – Model Selection – Bagging Boosting –Evaluating And Debugging –Classification

UNIT IV – UNSUPERVISED AND LEARNING ALGORITHMS

Clustering – K-means Clustering –EM Algorithm – Mixture of Gaussian – Factor Analysis – Principal and Independent Component Analysis –Latent Semantic Indexing – Spectral or Sub Space Clustering


UNIT V – REINFORCEMENT LEARNING . IOT AND MACHINE LEARNING

Markov Decision Processes –Bellman Equation –Value Iteration And Policy Iteration –Linear Quadratic Regulation –Q Learning –Policy Versus Value Learning –Pomdps –IoT –Recent Trends –Various Models .Case Study :. Spam Filtering Based On Text Classification

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

SL.NO	TITLE	PAGE NO
UNIT 1	INTRODUCTION TO MACHINE LEARNING	1
1.1	INTRODUCTION	1
	1.1.1 Features of Machine Learning:	3
	1.1.2 Need for Machine Learning	3
1.2	LEARNING SYSTEMS	4
	1.2.1 Designing a Learning System in Machine Learning:	5
1.3	GOALS AND APPLICATION OF MACHINE LEARNING	7
1.4	ASPECTS OF DEVELOPING A LEARNING SYSTEMS	11
	1.4.1 Types of Machine Learning	11
	1.4.2 Supervised Machine Learning	15
	1.4.3 Unsupervised Machine Learning	17
	1.4.4 Semi-Supervised Learning	18
	1.4.5 Reinforcement Learning	18
1.5	TRAINING DATA IN MACHINE LEARNING	20
	1.5.1 Training Data Vs Testing Data in Machine Learning	21
	1.5.2 Getting and Collecting Training Data	22
	1.5.3 Machine Learning Methods Rely on Training Data	23
	1.5.4 Human-in-The-Loop and the Quality of Training Data	24
	1.5.5 Semi-Supervised Learning and Training Data	25
1.6	LINEAR PERCEPTRONS AS NEURONS	26
	1.6.1 Adaptive Linear Neuron (ADALINE)	26
	1.6.1.1 Architecture	27
	1.6.1.2 Training Algorithm	27
	1.6.2 Multiple Adaptive Linear Neuron (MADALINE)	28
	1.6.2.1 Architecture	29
	1.6.2.2 Training Algorithm	29
1.7	NEURAL NETWORKS	31
	1.7.1 Importance of Neural Networks	31
	1.7.2 Basics of Neural Networks	31
	1.7.3 Multi-Layered Perceptron	32
	1.7.4 Application of Neural Networks	32
	1.7.5 Neural Network: Architecture	33
	1.7.6 Neural Network: Algorithms	34
	1.7.7 Perceptron Decision Surface for Non-Linear Data	36

1.8	ACTIVATION FUNCTION	37
	1.8.1 Need of Non-Linear Activation Functions	37
	1.8.2 Variants of Activation Function	39
	1.8.3 Choosing the Right Activation Function	41
1.9	FEEDFORWARD NEURAL NETWORKS	42
	1.9.1 Components of Feedforward Neural Networks	42
	1.9.2 Feedforward Neural Network Function	44
	1.9.3 Phases of Operation in the Feedforward Neural Network	44
	1.9.4 Advantages of Feedforward Neural Networks	45
	1.9.5 Limitations of Feedforward Neural Networks	46
1.10	DEEP BELIEF NETWORKS	46
	1.10.1 Deep Belief Network Architecture	46
	1.10.2 Applications	48
1.11	DEEP LEARNING FOR BIG DATA	49
	1.11.1 Three Applications of Deep Learning in Big Data Analytics	49
	1.11.2 Semantic Indexing	49
	1.11.3 Conducting Discriminative Tasks	50
	1.11.4 Semantic Image and Video Tagging	50
1.12	LOCAL MINIMA	50
1.13	COMPARISON OF AI – MACHINE LEARNING	51
1.14	MACHINE LEARNING AND DEEP LEARNING	53
	TWO MARK QUESTIONS AND ANSWERS	55-58
UNIT II	TYPES OF LEARNING	59
2.1	INTRODUCTION	60
2.2	SUPERVISED MACHINE LEARNING	61
	2.2.1 Categories of Supervised Machine Learning	62
	2.2.2 Advantages and Disadvantages of Supervised Learning	62
	2.2.3 Goals of Supervised Learning	62
	2.2.4 Applications of Supervised Learning	63
2.3	UNSUPERVISED MACHINE LEARNING	64
	2.3.1 Categories of Unsupervised Machine Learning	65
	2.3.2 Advantages and Disadvantages of Unsupervised Learning Algorithm	65
	2.3.3 Applications of Unsupervised Learning	65
2.4	SEMI-SUPERVISED LEARNING	66
	2.4.1 Advantages and Disadvantages of Semi-Supervised Learning	67

2.5	REINFORCEMENT LEARNING	67
	2.5.1 Categories of Reinforcement Learning	67
	2.5.2 Use Cases of Reinforcement Learning	68
	2.5.3 Advantages and Disadvantages of Reinforcement Learning	68
2.6	CASE STUDY IN UNSUPERVISED LEARNING	68
2.7	CLASSIFICATION	69
	2.7.1 The Classification Problems: Two Types of Learners	71
	2.7.2 Types of ML Classification Algorithms:	71
	2.7.3 Evaluating a Classification Model	71
	2.7.4 Use Cases of Classification Algorithms	73
	2.7.5 Multi Use Cases of Classification Algorithms	73
2.8	MULTI LAYER PERCEPTRON	74
	2.8.1 Working of Multilayer Perceptron	75
	2.8.2 Use MLPS For	77
2.9	UNDERFITTING	77
	2.9.1 Goodness of Fit	79
2.10	OVERFITTING	79
	2.10.1 To Avoid the Overfitting in Model	80
	2.10.2 Good Fit in a Statistical Model	83
2.11	LINEAR DISCRIMINANT ANALYSIS OR NORMAL	84
2.12	DECISION TREE REPRESENTATION	88
	2.12.1 Appropriate Problems for Decision Tree Learning	90
	2.12.2 The Basic Decision Tree Learning Algorithm	91
	2.12.3 Need of Decision Trees	93
	2.12.4 Decision Tree Terminologies	94
	2.12.5 Attribute Selection Measures	95
	2.12.6 Issues in Decision Tree Learning	98
	2.12.7 Advantages of the Decision Tree	99
	2.12.8 Disadvantages of the Decision Tree	99
2.13	PROBABILISTIC	99
	2.13.1 The Significance of Probabilistic ML Models	99
	2.13.2 Learning and Prediction are both Types of Inference.	100
	2.13.3 Naive Bayes Algorithm	101
	2.13.4 Types of Naïve Bayes Model	101
2.14	K- NEAREST NEIGHBOR LEARNING	102
	2.14. 1 Learning Algorithms Learning Algorithms	102

	2.14.2 Purpose of KNN	103
	2.14.3 Process of KNN	103
	2.14.4 Required Data Preparation:	106
	2.14.5 K-Nearest Neighbor (KNN) Algorithm for Machine Learning	106
	2.14.6 Need Of KNN Algorithm	107
	2.14.7 Steps Of KNN Algorithm	108
	2.14.8 To Select the Value of K in the KNN Algorithm	109
	2.14.9 Advantages of KNN Algorithm	110
	2.14.10 Disadvantages of KNN Algorithm	110
2.15	CURSE OF DIMENSIONALITY — A —CURSE TO MACHINE LEARNING	110
	2.15.1 Effect of Curse of Dimensionality on Distance Functions	110
	2.15.2 Solutions to Curse of Dimensionality	112
	2.15.3 Other Methods	113
	TWO MARK QUESTIONS AND ANSWERS	114-116
UNIT III	LEARNING ALGORITHMS	117
3.1	LOGISTIC REGRESSION IN MACHINE LEARNING	117
	3.1.1 Logistic Function (Sigmoid Function)	118
	3.1.2 Logistic Regression Equation	119
	3.1.3 Type of Logistic Regression	119
3.2	PERCEPTRON	120
	3.2.1 Activation Function	121
	3.2.2 Types of Activation Functions	121
	3.2.3 Working of Perceptron	122
	3.2.4 Types Of Perceptron Models	123
	3.2.4.1 Single Layer Perceptron Model	123
	3.2.4.2 Multi-Layered Perceptron Model	124
	3.2.4.3 Advantages of Multi-Layer Perceptron	125
	3.2.4.4 Disadvantages of Multi-Layer Perceptron	125
	3.2.5 Perceptron Function	125
	3.2.6 Characteristics of Perceptron	125
	3.2.7 Limitations of Perceptron Model	126
3.4	GENERATIVE LEARNING ALGORITHMS	126
	3.4.1 Mathematical Things Involved In Generative Models	128
	3.4.2 Some Examples of Generative Models	128
3.5	GAUSSIAN DISCRIMINANT ANALYSIS (GDA)	129

	3.6.1 Working of Naïve Bayes Classifier	130
	3.6.2 A Conditional Probability	132
	3.6.3 Joint Probability	133
	3.6.4 Advantages of Naïve Bayes Classifier	136
	3.6.5 Disadvantages of Naïve Bayes Classifier	136
	3.6.6 Applications of Naïve Bayes Classifier	136
3.7	SUPPORT VECTOR MACHINES (SVM)	136
	3.7.1 Working of SVM	137
	3.7.2 SVM Kernels	138
	3.7.3 Types of SVM Kernel	139
	3.7.4 SVM Kernel Functions	139
3.8	MODEL SELECTION OF MACHINE LEARNING MODEL AND ALGORITHM	141
	3.8.1 Model Selection is a Mantra	141
	3.8.2 Model Selection in the ML Life Cycle	142
	3.8.3 Types of Model Selection	145
3.9	BAGGING	146
	3.9.1 Advantages of using Random Forest technique	146
	3.9.2 Disadvantages of using Random Forest technique	147
3.10	BOOSTING	147
	3.10.1 Advantages of using Gradient Boosting methods	147
	3.10.2 Disadvantages of using a Gradient Boosting methods	147
	3.10.3 Differences between Bagging and Boosting	147
3.11	EVALUATING AND DEBUGGING	148
	3.11.1 Model Debugging Explanation	148
	3.11.2 Need of Debugging	148
	3.11.3 General Steps for Debugging	149
	3.11.4 Most-Used Model Debugging Strategies	150
	3.11.4.1 Sensitivity Analysis	150
	3.11.4.2 Residual Analysis	150
	3.11.4.3 Benchmark Models	152
	3.11.4.3 Benchmark Models	153
	3.11.4.4 Security Audits	154
	3.11.4.5 Data Augmentation	154
3.12	CLASSIFICATION	156
	3.12.1 Types of ML Classification Algorithms	156
	3.12.2 Evaluating a Classification Model	157
	3.12.3 Use Cases of Classification Algorithms	158
	TWO MARK QUESTIONS AND ANSWERS	159-

Principal
Swarni College of Engineering
ACAR-565527.

	UNSUPERVISED AND LEARNING ALGORITHMS	162
UNIT IV	163	
4.1	CLUSTERING	164
	4.1.1 Types of Clustering Methods	164
	4.1.1.1 Partitioning Clustering	165
	4.1.1.2 Density-Based Clustering	166
	4.1.1.3 Distribution Model-Based Clustering	166
	4.1.1.4 Hierarchical Clustering	167
	4.1.1.5 Fuzzy Clustering	167
	4.1.2 Clustering Algorithms	168
	4.1.4 Applications of Clustering	168
4.2	K-MEANS CLUSTERING	169
	4.2.1 Working of K-Means Algorithm	170
4.3	EM ALGORITHM	175
	4.3.1 Flow Chart for EM Algorithm	178
	4.3.2 Advantages of EM Algorithm	178
	4.3.3 Disadvantages of EM Algorithm	179
4.4	MIXTURE OF GAUSSIAN	179
	4.4.1 Expectation-Maximization (EM) Method in Relation to GMM	179
	4.4.2 Key Steps of Using Gaussian Mixture Models	179
	4.4.3 Usage of Gaussian Mixture Models	180
4.5	FACTOR ANALYSIS	181
	4.5.1 Types of Factor Analysis	181
	4.5.1.1 Exploratory Factor Analysis (EFA)	181
4.6	PRINCIPAL AND INDEPENDENT COMPONENT ANALYSIS (ICA)	184
	4.6.1 Working of ICA	184
	4.6.2 Independent Component Analysis Assumptions	185
	4.6.3 ICA in Machine Learning	185
	4.6.4 Applications of ICA	186
	4.6.5 Future of ICA	188
4.7	LATENT SEMANTIC INDEXING	188
	4.7.1 LSI Keywords	189
	4.7.2 Method to Create LSI Keywords	189
	4.7.3 Use of LSI Keywords	189
	4.7.4 Importance of LSI Keywords	190
	4.7.5 Ways to Identify LSI Keywords	190
	4.7.6 Methods to Select the Right LSI Terms	192
	4.7.7 Additional Uses of LSI-Latent Semantic Indexing	194

	4.7.8 Benefits of Using LSI Keywords	194
4.8	SPECTRAL CLUSTERING	195
	4.8.1 Steps for Spectral Clustering	195
	4.8.2 Subspace Clustering	197
	TWO MARK QUESTIONS AND ANSWERS	198- 200
UNIT V	REINFORCEMENT LEARNING IOT AND MACHINE LEARNING	201
5.1	MARKOV DECISION PROCESSES (MDPS)	201
5.2	CHARACTERISTICS FOR MDPS	202
5.3	TYPES OF MARKOV MODELS	202
5.4	COMPONENTS OF MDPS	202
5.5	BELLMAN EQUATION	205
5.6	VALUE ITERATION AND POLICY ITERATION	209
	5.6.1 Policy Iteration:	209
	5.6.2 Policy Enhancement	209
	5.6.3 Value Iteration	210
5.7	LINEAR QUADRATIC REGULATOR	212
5.8	Q -LEARNING	218
	5.8.1 Q – Value	219
	5.8.2 Non –Deterministic Rewards and Actions of Q- Learning	219
	5.8.3 Value of a Policy	220
	5.8.4 Approaches to Implement Reinforcement Learning	220
5.9	POLICY VERSUS VALUE LEARNING	220
	5.9.1 Elements of Reinforcement Learning	221
5.10	PARTIALLY OBSERVABLE MARKOV DECISION PROCESS	222
	5.10.1 Package Functionality	224
5.11	INTERNE OF THINGS (IOT)	226
5.12	RAPID MODEL DEPLOYMENT TO OPERATIONALIZE MACHINE LEARNING QUICKLY	228
5.13	SPAM FILTERING BASED ON TEXT CLASSIFICATION	229
	5.13.1 Problem Setup	229
	5.13.1 Workflow for Text Classification	229
	5.13.2 Working Steps	230
	5.13.3 Importance of Text Classification	230
	5.13.4. Scalability	230

Principal
Sri Sivaswami College of Engineering
Autonomous
GAR 500001

5.14	REAL-TIME ANALYSIS	231
5.15	CONSISTENT CRITERIA	231
5.16	MACHINE LEARNING TEXT CLASSIFICATION ALGORITHMS	231
	5.16.1 Naive Bayes	231
	5.16.2 Support Vector Machines	232
	TWO MARK QUESTIONS AND ANSWERS	233-236

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.