
JOURNAL OF EDUCATION: RABINDRA BHARATI UNIVERSITY 

ISSN: 0972-7175 

 

Vol. : XXIII, No. :6(V), 2020– 2021   548 
  

WEB APPLICATION RECOGNITION AND ERADICATING VULNERABILITIES IN DATA 

MINING WITH STATISTICAL ANALYSIS 

 
1
Dr. V. Bapuji,   

2
B. Anvesh Kumar 

1Associate Professor, 2Assistant Professor, 1,2Dept. of Master of Computers and Applications, 
1,2Vaageswari College of Engineering,  Karimnagar, Telangana. 

E-Mail: 1Bapuji.vala@gmail.com, 2anveshbodddupalli@gmail.com 

 

ABSTRACT 

Although there has been significant research on online application security for more than ten years, the issue 

of web application security is still difficult to solve. Vulnerable source code, frequently written in dangerous 

languages like PHP, is a significant contributor to this issue. Code of origin Static analysis tools can help 

uncover vulnerabilities, but they frequently produce false positives and demand a lot of human work from 

programmers to patch the code. We investigate the usage of many techniques to find source code flaws with 

fewer false positives. In order to anticipate the existence of false positives, we integrate data mining with taint 

analysis, which identifies prospective vulnerabilities. This approach brings together two approaches that are 

apparently orthogonal: humans coding the knowledge about vulnerabilities (for taint analysis), joined with the 

seemingly orthogonal approach of automatically obtaining that knowledge (with machine learning, for data 

mining). Given this enhanced form of detection, we propose doing automatic code correction by inserting 

fixes in the source code. Our approach was implemented in the WAP tool, and an experimental evaluation 

was performed with a large set of PHP applications. Our tool found 388 vulnerabilities in 1.4 million lines of 

code. Its accuracy and precision were approximately 5% better than PhpMinerII's and 45% better than Pixy's. 

Key words: CNN, RCNN, SSD, dataset, weapon detection. 

 

INTRODUCTION 

Agriculture is India's main source of welfare. Rainfall is necessary for agriculture to succeed. Additionally, it 

benefits water resources. The country's economy grows as a result of farmers being able to better manage their 

crops thanks to historical rainfall data. Precipitation forecasting is useful for avoiding flooding, which protects 

lives and property. Forecasting rainfall is difficult for meteorological experts because of variations in the timing 

and volume of precipitation. To develop a predictive model for precise rainfall, forecasting is one of the most 

difficult tasks for academics from a number of domains, including meteorological data mining, environmental 

machine learning, functional hydrology, and numerical forecasting. In these problems, a common question is 

how to infer the past predictions and make use of future predictions. A variety of sub-processes are typically 

composed of the substantial process in rainfall. It is at times not promise to predict the precipitation correctly by 

on its global system. Climate forecasting stands out for all countries around the globe in all the benefits and 

services provided by the meteorological department. The job is very complicated because it needs specific 

numbers and all signals are intimated without any assurance. Accurate precipitation forecasting has been an 

important issue in hydrological science as early notice of stern weather can help avoid natural disaster injuries 

and damage if prompt and accurate forecasts are made. The theory of the modular model and the integrati2on of 

different models has recently gained more interest in rainfall forecasting to address this challenge. A huge range 

of rainfall prediction methodologies is available in India. In India, there are two primary methods of forecasting 

rainfall. Regression, Artificial Neural Network (ANN), Decision Tree algorithm, Fuzzy logic and team process 

of data handling are the majority frequently used computational methods used for weather forecasting The basic 

goal is to follow information rules and relationships while gaining intangible and potentially expensive 

knowledge. Artificial NN is a promising part of this wide field Rainfall prediction remains a serious concern and 

has attracted the attention of governments, industries, risk management entities, as well as the scientific 

mailto:Bapuji.vala@gmail.com
mailto:anveshbodddupalli@gmail.com


JOURNAL OF EDUCATION: RABINDRA BHARATI UNIVERSITY 

ISSN: 0972-7175 

 

Vol. : XXIII, No. :6(V), 2020– 2021   549 
  

community. Rainfall is a climatic factor that affects many human activities like agricultural production, 

construction, power generation, forestry and tourism, among others [1]. To this extent, rainfall prediction is 

essential since this variable is the one with the highest correlation with adverse natural events such as landslides, 

flooding, mass movements and avalanches. These incidents have affected society for years [2]. Therefore, 

having an appropriate approach for rainfall prediction makes it possible to take preventive and mitigation 

measures for these natural phenomena. 

To solve this uncertainty, we used various machine learning techniques and models to make accurate and timely 

predictions. These paper aims to provide end to end machine learning life cycle right from Data preprocessing to 

implementing models to evaluating them. Data preprocessing steps include imputing missing values, feature 

transformation, encoding categorical features, feature scaling and feature selection. We implemented models 

such as Logistic Regression, Decision Tree, K Nearest Neighbour, Rule-based and Ensembles. For evaluation 

purpose. 

 

2. LITERATURE SURVEY 

1) WASP: protecting web applications using positive tainting and syntax aware evaluation 

AUTHORS: W. Halfond, A. Orso, and P. Manolios 

Many software systems have evolved to include a Web-based component that makes them available to the 

public via the Internet and can expose them to a variety of Web-based attacks. One of these attacks is SQL 

injection, which can give attackers unrestricted access to the databases that underlie Web applications and has 

become increasingly frequent and serious. This paper presents a new highly automated approach for protecting 

Web applications against SQL injection that has both conceptual and practical advantages over most existing 

techniques. From a conceptual standpoint, the approach is based on the novel idea of positive tainting and on 

the concept of syntax-aware evaluation. From a practical standpoint, our technique is precise and efficient, has 

minimal deployment requirements, and incurs a negligible performance overhead in most cases. We have 

implemented our techniques in the Web application SQL-injection preventer (WASP) tool, which we used to 

perform an empirical evaluation on a wide range of Web applications that we subjected to a large and varied set 

of attacks and legitimate accesses. WASP was able to stop all of the otherwise successful attacks and did not 

generate any false positives. 

2) Defending against injection attacks through context-sensitive string evaluation 

AUTHORS: T. Pietraszek and C. V. Berghe Injection vulnerabilities pose a major threat to application-

level security. Some of the more common types are SQL injection, cross- site scripting and shell injection 

vulnerabilities. Existing    methods    for    defending    against injection attacks, that is, attacks exploiting 

these vulnerabilities, rely heavily on the application developers and are therefore error- prone. 

3) SigFree: A signature-free buffer overflow attack blocker 

AUTHORS: X. Wang, C. Pan, P. Liu, and S. Zhu We propose SigFree, an online signature-free out-of-the-box 

application-layer method for blocking code-injection buffer overflow attack messages targeting at various 

Internet services such as Web service. Motivated by the observation that buffer overflow attacks typically 

contain executables whereas legitimate client requests never contain executables in most Internet services, 

SigFree blocks attacks by detecting the presence of code. Unlike the previous code detection algorithms, 

SigFree uses a new data-flow analysis technique called code abstraction that is generic, fast, and hard for exploit 

code to evade. 

4) Vulnerability removal with attack injection 

AUTHORS: J. Antunes, N. F. Neves, M. Correia, P. Verissimo the increasing reliance put on networked 

computer systems demands higher levels of dependability. This is even more relevant as new threats and forms 

of attack are constantly being revealed, compromising the security of systems. This paper addresses this problem 

by presenting an attack injection methodology for the automatic discovery of vulnerabilities in software 



JOURNAL OF EDUCATION: RABINDRA BHARATI UNIVERSITY 

ISSN: 0972-7175 

 

Vol. : XXIII, No. :6(V), 2020– 2021   550 
  

components. The proposed methodology, implemented in AJECT, follows an approach similar to hackers and 

security analysts to discover vulnerabilities in network-connected servers. AJECT uses a specification of the 

server's communication protocol and predefined test case generation algorithms to automatically create a large 

number of attacks. Then, while it injects these attacks through the network, it monitors the execution of the 

server in the target system and the responses returned to the clients. The observation of an unexpected behavior 

suggests the presence of a vulnerability that was triggered by some particular attack (or group of attacks). This 

attack can then be used to reproduce the anomaly and to assist the removal of the error. To assess the usefulness 

of this approach, several attack injection campaigns were performed with 16 publicly available POP and IMAP 

servers. The results show that AJECT could effectively be used to locate vulnerabilities, even on well-known 

servers tested throughout the years. 

5) Fast black-box testing of system recovery code 

AUTHORS: R. Banabic and G. Candea Fault injection---a key technique for testing the robustness of software 

systems---ends up rarely being used in practice, because it is labor- intensive and one needs to choose between 

performing random injections (which leads to poor coverage and low representativeness) or systematic testing 

(which takes a long time to wade through large fault spaces). As a result, testers of systems with high reliability 

requirements, such as MySQL, perform fault injection in an ad-hoc manner, using explicitly- coded injection 

statements in the base source code and manual triggering of failures. 

 

Existing System 

There is a large corpus of related work, so we just summarize the main areas by discussing representative 

papers, while leaving many others unreferenced to conserve space. Static analysis tools automate the auditing of 

code, either source, binary, or intermediate. Taint analysis tools like CQUAL and Splint (both for C code) use 

two qualifiers to annotate source code: the untainted qualifier indicates either that a function or parameter returns 

trustworthy data (e.g., a sanitization function), or a parameter of a function requires trustworthy data (e.g., 

mysql_query). The tainted qualifier means that a function or a parameter returns non-trustworthy data (e.g., 

functions that read user input). 

 

PROPOSED SYSTEM 

This paper explores an approach for automatically protecting web applications while keeping the programmer in 

the loop. The approach consists in analyzing the web application source code searching for input validation 

vulnerabilities, and inserting fixes in the same code to correct these flaws. The programmer is kept in the loop 

by being allowed to understand where the vulnerabilities were found, and how they were corrected. This 

approach contributes directly to the security of web applications by removing vulnerabilities, and indirectly by 

letting the programmers learn from their mistakes. This last aspect is enabled by inserting fixes that follow 

common security coding practices, so programmers can learn these practices by seeing the vulnerabilities, and 

how they were removed. We explore the use of a novel combination of methods to detect this type of 

vulnerability: static analysis with data mining. Static analysis is an effective mechanism to find vulnerabilities 

in source code, but tends to report many false positives (non-vulnerabilities) due to its undesirability 

 

MODULE DESCRIPTIONS 

Taint Analysis: 

The taint analyzer is a static analysis tool that operates over an AST created by a lexer and a parser, for PHP 

5 in our case. In the beginning of the analysis, all symbols (variables, functions) are untainted unless they are an 

entry point. The tree walkers build a tainted symbol table (TST) in which every cell is a program statement 

from which we want to collect data. Each cell contains a subtree of the AST plus some data. For instance, for 

statement $x = $b + $c; the TST cell contains the subtree of the AST that represents the dependency of $x on 



JOURNAL OF EDUCATION: RABINDRA BHARATI UNIVERSITY 

ISSN: 0972-7175 

 

Vol. : XXIII, No. :6(V), 2020– 2021   551 
  

 $b and $c. For each symbol, several data items are stored, e.g., the symbol name, the line number of the 

statement, and the  taintedness. 

 

Predicting False Positives 

The static analysis problem is known to be related to Turing's halting problem, and therefore is undividable for 

non- trivial languages. In practice, this difficulty is solved by making only a partial analysis of some language 

constructs, leading static analysis tools to be unsound. In our approach, this problem can appear, for example, 

with string manipulation operations. For instance, it is unclear what to do to the state of a tainted string that is 

processed by operations that return a substring or concatenate it with another string. Both operations can untaint 

the string, but we cannot decide with complete certainty. We opted to let the string be tainted, which may lead to 

false positives but not false negatives. 

Code Correction: 

Our approach involves doing code correction automatically after the detection of the vulnerabilities is performed 

by the taint analyzer and the data mining component. The taint analyzer returns data about the vulnerability, 

including its class (e.g., SQLI), and the vulnerable slice of code. A fix is a call to a function that sanitizes or 

validates the data that reaches the sensitive sink. Sanitization involves modifying the data to neutralize 

dangerous Meta characters or metadata, if they are present. Validation involves checking the data, and executing 

the sensitive sink or not depending on this verification. 

 

Testing: 

Our fixes were designed to avoid modifying the (correct) behavior of the applications. So far, we witnessed no 

cases in which an application fixed by WAP started to function incorrectly, or that the fixes themselves worked 

incorrectly. However, to increase the confidence in this observation, we propose using software testing 

techniques to a program to determine for instance if the program in general contains errors, or if modifications 

to the program introduced errors. This verification is done by checking if these test cases produce incorrect or 

unexpected behavior or outputs. We use two software testing techniques for doing these two verifications, 

respectively: 1) program mutation, and 

2) Regression testing 

 
 



JOURNAL OF EDUCATION: RABINDRA BHARATI UNIVERSITY 

ISSN: 0972-7175 

 

Vol. : XXIII, No. :6(V), 2020– 2021   552 
  

 
Fig.1. Login page 

 
 

Fig.2. Home page 

 
Fig.3. User page 

 
Fig.4. Login code page 

 

CONCLUSION 



JOURNAL OF EDUCATION: RABINDRA BHARATI UNIVERSITY 

ISSN: 0972-7175 

 

Vol. : XXIII, No. :6(V), 2020– 2021   553 
  

The method for identifying and fixing vulnerabilities in online applications is presented in this work, along 

with a tool that applies the method to PHP programmers and input validation flaws. Static source code analysis 

and data mining are used in the method and the tool to look for vulnerabilities. The top 3 machine learning 

classifiers are employed to identify false positives, and an induction rule classifier is utilized to confirm their 

existence. All classifiers were chosen after carefully weighing all available options. It's crucial to remember 

that this mix of detecting methods can't always produce accurate results. The static analysis problem is 

undividable, and resorting to data mining cannot circumvent this undesirability, but only provide probabilistic 

results. The tool corrects the code by inserting fixes, i.e., sanitization and validation functions. Testing is used to 

verify if the fixes actually remove the vulnerabilities and do not compromise the (correct) behavior of the 

applications. The tool was experimented with using synthetic code with vulnerabilities inserted on purpose, and 

with a considerable number of open source PHP applications. It was also compared with two source code 

analysis tools: Pixy, and PhpMinerII. This evaluation suggests that the tool can detect and correct the 

vulnerabilities of the classes it is programmed to handle. It was able to find 388 vulnerabilities in 1.4 million 

lines of code. Its accuracy and precision were approximately 5% better than PhpMinerII's, and 45% better 

than Pixy's. 

 

REFERENCES 

1. Symantec, Internet threat report. 2012 trends, vol. 18, Apr. 2013. 

2. W. Halfond, A. Orso, and P. Manolios, “WASP: protecting web applications using positive tainting 

and syntax aware evaluation,” IEEE Trans. Softw. Eng., vol. 34, no. 1, pp. 65– 81, 2008. 

3. T. Pietraszek and C. V. Berghe, “Defending against injection attacks through context- sensitive string 

evaluation,” in Proc. 8th Int. Conf. Recent Advances in Intrusion Detection, 2005, pp. 124–145. 

4. X. Wang, C. Pan, P. Liu, and S. Zhu, “SigFree: A signature-free buffer overflow attack blocker,” in 

Proc. 15th USENIX Security Symp., Aug. 2006, pp. 225–240. 

5. J. Antunes, N. F. Neves, M. Correia, P. Verissimo, and R. Neves, “Vulnerability removal with attack 

injection,” IEEE Trans. Softw. Eng., vol. 36, no. 3, pp. 357–370, 2010. 

6. R. Banabic and G. Candea, “Fast black-box testing of system recovery code,” in Proc. 7th ACM Eur. 

Conf. Computer Systems, 2012, pp. 281–294. 

7. Y.-W. Huang et al., “Web application security assessment by fault injection and behavior monitoring,” 
in Proc. 12th Int. Conf. World Wide Web, 2003, pp. 148–159. 

8. Y.-W. Huang et al., “Securing web application code by static analysis and runtime protection,” in Proc. 

13th Int. Conf. World Wide Web, 2004, pp. 40–52. 

9. N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias analysis for static detection of web 

application vulnerabilities,” inProc. 2006Workshop Programming Languages and Analysis for Security, 

Jun. 2006, pp. 27–36. 

10. U. Shankar, K. Talwar, J. S. Foster, and D. Wagner, “Detecting format string vulnerabilities with type 

qualifiers,” in Proc. 10th USENIX Security Symp., Aug. 2001, vol. 10, pp. 16–16. 


	WEB APPLICATION RECOGNITION AND ERADICATING VULNERABILITIES IN DATA MINING WITH STATISTICAL ANALYSIS
	INTRODUCTION
	2. LITERATURE SURVEY
	1) WASP: protecting web applications using positive tainting and syntax aware evaluation AUTHORS: W. Halfond, A. Orso, and P. Manolios
	2) Defending against injection attacks through context-sensitive string evaluation
	3) SigFree: A signature-free buffer overflow attack blocker
	4) Vulnerability removal with attack injection
	5) Fast black-box testing of system recovery code
	Existing System
	PROPOSED SYSTEM

	Taint Analysis:
	Predicting False Positives
	Code Correction:
	Testing:
	Fig.1. Login page
	Fig.3. User page

	REFERENCES


