

DETECTION AND IDENTIFICATION OF CROP YIELD RECOMMENDER SYSTEM USING CLUSTERING ALGORITHMS

¹R. Sagar, ²Dr. N. Chandra Mouli, ³S. Sateesh Reddy

^{1,3} Assistant Professor, ²Associate Professor, ^{1,2,3} Dept. of Computer Science Engineering,

^{1,2,3}Vaageswari College of Engineering, Karimnagar, Telangana

E-Mail: sagarrachuri@gmail.com, cmnarsingoju@gmail.com

ABSTRACT

Without a doubt, the most significant source of income in rural India is provided by agriculture and its affiliated industries. In addition, the agriculture industry makes a significant contribution to the nation's Gross Domestic Product (GDP). However, when compared to worldwide norms, the agricultural output per acre is unsatisfactory. This is one of the many potential reasons why marginal farmers in India commit suicide at higher rates. For farmers, this study suggests a practical and approachable yield prediction system. The suggested system offers farmers connectivity. GPS aids in locating the user. The user enters the inputs for the world and soil type. The most profitable crop list can be selected using machine learning algorithms, and they can also forecast the crop yield for a crop that the user has chosen. To predict the crop yield, selected Machine Learning algorithm the Random Forest which showed the most effective results with 95% accuracy. Additionally, the system also suggests the suitable time to use the fertilizers to boost up the yield.

I. INTRODUCTION

1.1 PROBLEMDEFINITION

The problem that the Indian Agriculture sector is facing is the integration of technology to bring the desired outputs. With the advent of new technologies and overuse of non-renewable energy resources patterns of rainfall and temperature are disturbed. The inconsistent trends developed from the side effects of global warming make it cumbersome for the farmers to clearly predict their crop yield .

1.2 PURPOSEOFTHEPROJECT:

The purpose of the project is to help farmers to generate profits. A lot of work has to be done on the dataset for its analysis and prediction. This whole work is done so as to check the current position of crops and find out the future expected crop so that the framers can predict which crop yield is more.

1.3 SCOPE

This Paper can be used by any farmer of who wants to grow or do farming. It can also be used by students and researchers for their work.

II.EXISTING SYSTEM

The biggest challenge in agriculture is to increase farm production and offer it to the end-user with the best possible price and quality. It is also observed that at least 50% of the farm produce gets wasted, and it never reaches the end-user. One of the recent works, It has been shown that KNN clustering proved much better than SVM or regression. The existing system which recommends crop yield is either hardware-based being costly to maintain, or not easily accessible.

III. PROPOSED SYSTEM

In this project, we have proposed a model that addresses the existing issues. The novelty of the proposed system is to guide the farmers to maximize the crop yield as well as suggest the most

profitable crop for the specific region.

The proposed model provides crop selection based on economic and environmental conditions, and benefit to maximize the crop yield that will subsequently help to meet the increasing demand for the country's food supplies. The proposed model predicts the crop yield by studying factors such as rainfall, temperature, area, season, soil type etc. The system also helps to determine the best time to use fertilizers.

The user provides an area under cultivation and soil type as inputs. According to the requirement, the model predicts the crop yield for a specific crop. The model also recommends the most profitable crop and suggests the right time to use the fertilizers.

3.1 METHOD USED

The Random Forests Algorithm

Let's understand the algorithm in layman's terms. Suppose you want to go on a trip and you would like to travel to a place which you will enjoy.

So what do you do to find a place that you will like? You can search online, read reviews on travel blogs and portals, or you can also ask your friends.

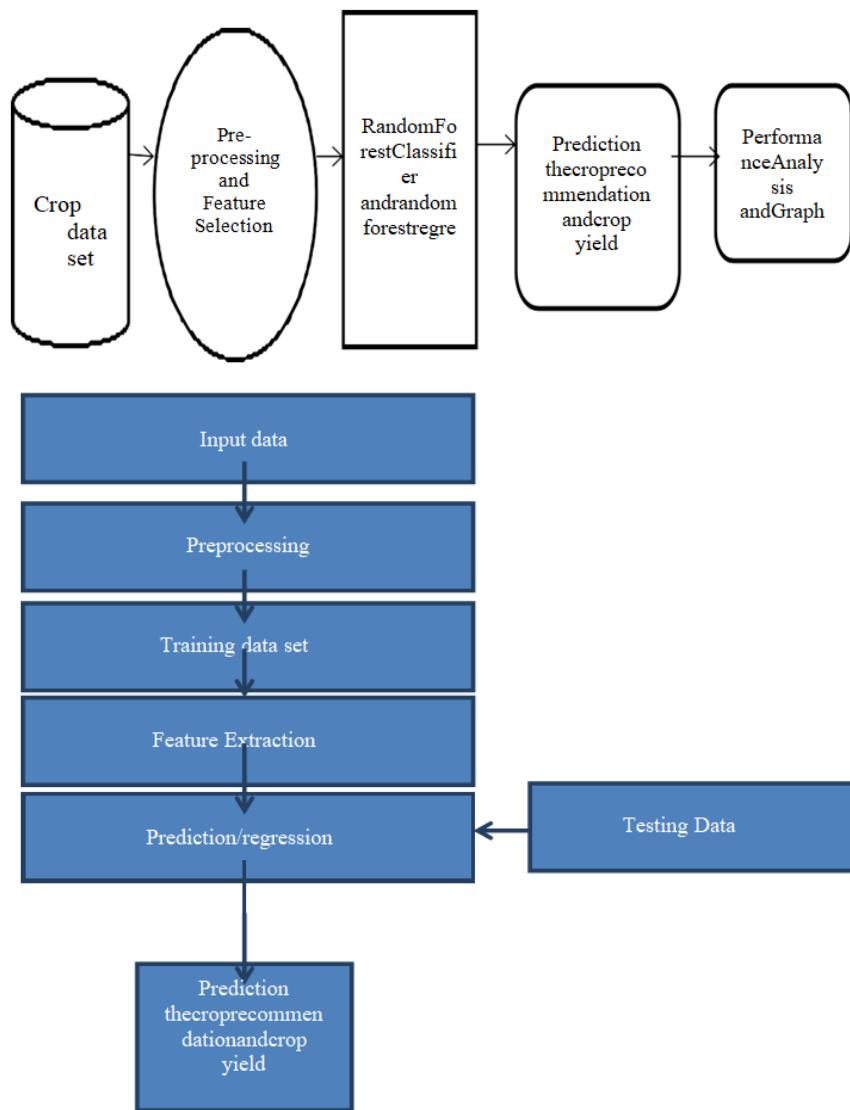
Let's suppose you have decided to ask your friends, and talked with them about their past travel experience to various places. You will get some recommendations from every friend. Now you have to make a list of those recommended places. Then, you ask them to vote (or select one best place for the trip) from the list of recommended places you made. The place with the highest number of votes will be your final choice for the trip.

In the above decision process, there are two parts. First, asking your friends about their individual travel experience and getting one recommendation out of multiple places they have visited. This part is like using the decision tree algorithm. Here, each friend makes a selection of the places he or she has visited so far.

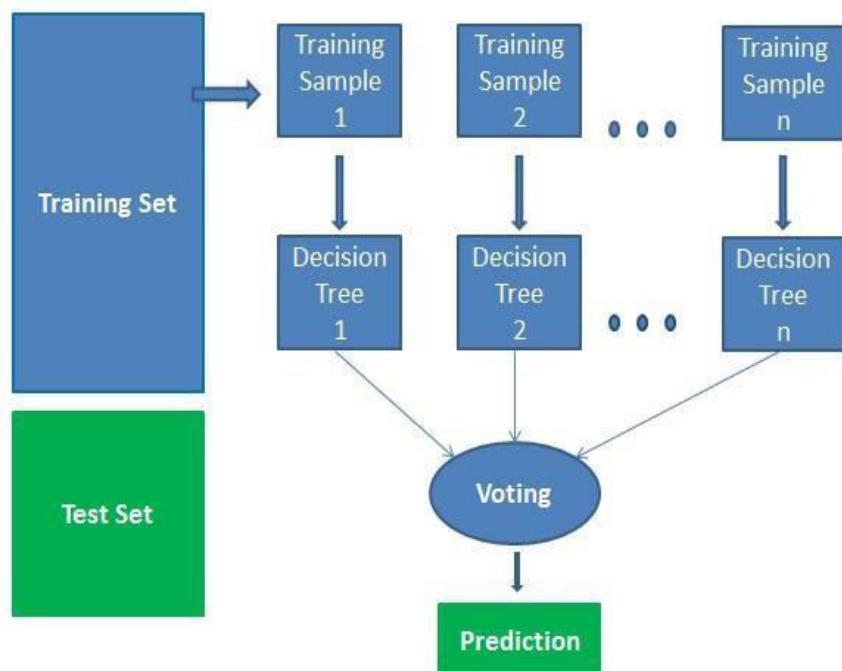
The second part, after collecting all the recommendations, is the voting procedure for selecting the best place in the list of recommendations. This whole process of getting recommendations from friends and voting on them to find the best place is known as the random forests algorithm.

3.2 How does the algorithm work?

It works in four steps:


Select random samples from a given dataset.

Construct a decision tree for each sample and get a prediction result from each decision tree. Perform a vote for each predicted result.


Select the prediction result with the most votes as the final prediction.

IV. MODEL ARCHITECTURE

System architecture is the transformation of an analysis model into a system model. During system design, developers define the design goals of the project and decompose the system into smaller subsystems that can be realized by individual teams.

V. IMPLEMENTATION AND RESULT

HOME LOGIN UPLOAD PREVIEW

Crop Recommender System Using Machine Learning Approach

LOGIN

Username: (highlighted in yellow)

Password: (highlighted in yellow)

HOME LOGIN UPLOAD PREVIEW

Crop Recommender System Using Machine Learning Approach

Upload

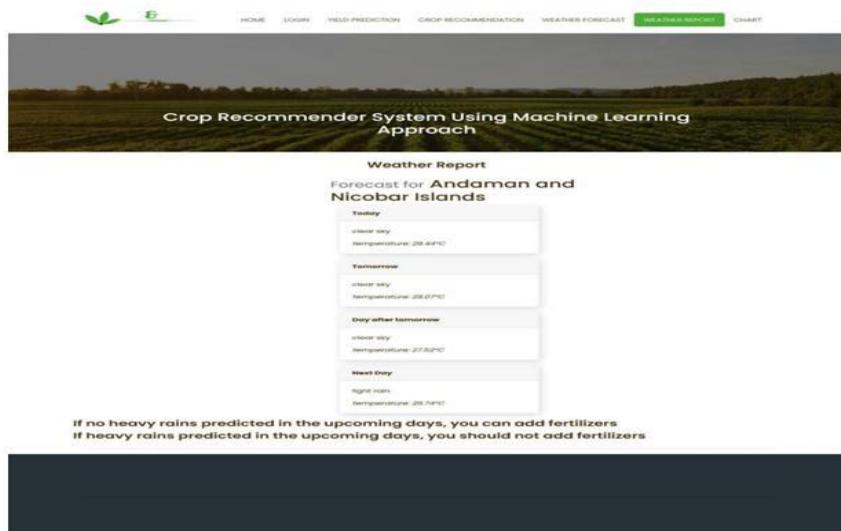
No file selected.

HOME LOGIN YIELD PREDICTION CROP RECOMMENDATION WEATHER FORECAST WEATHER REPORT

Crop Recommender System Using Machine Learning Approach

Crop Yield Prediction

Enter your Details


State_Name: (highlighted in green)

Crop: (highlighted in green)

Area: (highlighted in green)

soil_type: (highlighted in green)

Production would be 2024 Kt/ha
Yield would be 1058 Kt/ha/ha

CONCLUSION

The limits of current technologies and their usefulness for yield prediction were emphasized in this paper. Then, a proposed method connects farmers by walking them through a workable yield prediction system. The built-in prediction technology aids farmers in forecasting crop yields. The built-in recommender system enables the user to investigate potential crops and their yield in order to make more informed judgments. Machine learning algorithms were put into practice and tested on the provided datasets for yield to accuracy. The suggested model also investigated when to apply fertilizers and suggested a suitable time frame.

REFERENCES

1. UmamaheswariS, SreeramS, KritikaN, Prasanth DJ, "BIoT:Blockchain-basedIoTforAgriculture", 11th International Conference on Advanced Computing (ICoAC), 2019 Dec 18 (pp.324-327).IEEE\
2. Jain A. "Analysis of growth and instability in the area, production, yield, and price of rice inIndia",Journal ofSocial ChangeandDevelopment,2018;2:46-6
3. Manjula E, Djodiltachoumy S, "A model for prediction of crop yield" International Journal ofComputationalIntelligenceandInformatics,2017 Mar;6(4):2349-6363.
4. Sagar BM, Cauvery NK., "Agriculture Data Analytics in Crop Yield Estimation: A CriticalReview", Indonesian Journal of Electrical Engineering and Computer Science, 2018 Dec;12(3):1087-93.
5. Wolfert S, Ge L, Verdouw C, Bogaardt MJ, "Big data in smart farming– a review. AgriculturalSystems",2017 May1;153:69-80.
6. Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, Foster I, Godfray HC, Herrero M, HowittRE, Janssen S, Keating BA, "Toward a new generation of agricultural system data, models, andknowledgeproducts:Stateofagriculturalsystemsscience.Agriculturalsystems",2017Jul1;155 :269-88.
7. Johnson LK, Bloom JD, Dunning RD, Gunter CC, Boyette MD, Creamer NG, "Farmer harvestdecisionsandvegetablelossinprimary production.AgriculturalSystems",2019Nov1;176:102672.
8. Kumar R, Singh MP, Kumar P, Singh JP, "Crop Selection Method to maximize crop yield rateusingamachinelearningtechnique",Internationalconferenceonsmarttechnologies.
9. Sriram Rakshith.K, Dr.Deepak.G, Rajesh M, Sudharshan K S, Vasanth S, Harish Kumar N, "ASurvey on Crop Prediction using Machine Learning Approach", In International Journal for ResearchinAppliedScience&EngineeringTechnology(IJRASET),April2019, pp(3231-

10. Veenadhari S, Misra B, Singh CD, "Machine learning approach for forecasting crop yield based on climatic parameters", In 2014 International Conference on Computer Communication and Informatics, 2014 Jan 3 (pp. 1-5). IEEE.
11. Ghadge R, Kulkarni J, More P, Nene S, Priya RL, "Prediction of crop yield using machine learning", Int. Res. J. Eng. Technol. (IRJET), 2018 Feb; 5.
12. Priya P, Muthaiah U, Balamurugan M, "Predicting yield of the crop using machine learning algorithm", International Journal of Engineering Sciences & Research Technology, 2018 Apr; 7(1): 1-7.
13. S. Pavani, August a Sophy Beulet P., "Heuristic Prediction of Crop Yield Using Machine Learning Technique", International Journal of Engineering and Advanced Technology (IJEAT), December 2019, pp (135-138)