¥2 VAAGESWARI COLLEGE OF ENGINEERING

(Sponsored by SREE VAAGESWARI EDUCATIONAL SOCIETY)
Accredited by NAAC with A+ Grade

. ESTD . 2005 ‘ Approved by AICTE New Delhi and Affiliated to JNTUH Hyderabad
Recognised by the Govt. of Telangana State

ARTIFICIAL INTELLIGENCE

MCA Il YEAR | SEMESTER

NOTES PREPARED
BY

Dr.V.BAPUJI
Professor & Head

Pf'uu:i\r.:\

\aageswari College of Engineering

KARIMN AGAR-505 527.

DEPARTMENT OF MASTER OF COMPUTER APPLICATIONS
(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NAAC — ‘A+’ Grade)
Beside LMD Police Station,Ramakrisha Colony,Thimmapur,karimnagar, Telangana State, India

Artificial Intelligence Page 1




UNIT - |

Problem Solving by Search-I: Introduction to Al, Intelligent Agents Problem Solving by Search —lI:
Problem-Solving Agents, Searching for Solutions, Uninformed Search Strategies: Breadth-first search,
Uniform cost search, Depth-first search, Iterative deepening Depth-first search, Bidirectional search,
Informed (Heuristic) Search Strategies: Greedy best-first search, A* search, Heuristic Functions, Beyond
Classical Search: Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces,
Searching with Non-Deterministic Actions, Searching with Partial Observations, Online Search Agents
and Unknown Environment .

UNIT-II

Problem Solving by Search-Il and Propositional Logic .Adversarial Search: Games, Optimal Decisions in
Games, Alpha—Beta Pruning, Imperfect Real-Time Decisions.

Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems, Constraint Propagation,
Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems.

UNIT-II

Propositional Logic: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional
Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and
backward chaining, Effective Propositional Model Checking, Agents Based onPropositional Logic.

Logic and Knowledge Representation

First-Order Logic: Representation, Syntax and Semantics of First-Order Logic, Using FirstOrder Logic,
Knowledge Engineering in First-Order Logic.

Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification and Lifting, Forward
Chaining, Backward Chaining, Resolution.

UNIT-IV

Knowledge Representation: Ontological Engineering, Categories and Objects, Events. Mental Events and
Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information.

Planning

Classical Planning: Definition of Classical Planning, Algorithms for Planning with StateSpace Search,

Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches.

Planning and Acting in the Real World: Time, Schedules, and Resources, Hierarchical Planning, Planning
and Acting in Nondeterministic Domains, Multi agent Planning.

UNIT-V

Learning: Forms of Learning, Supervised Learning, Learning Decision Trees.Knowledge in Learning:
Logical Formulation of Learning,
Knowledge in Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive

Logic Programming. kL .\%
N p

Principal o
College of Engine y

Vaageswarl R.505 527

WARIMNAGA

Artificial Intelligence Page 2




TEXT BOOKS

1. Artificial Intelligence A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson
Education.

REFERENCES:

1. Artificial Intelligence, 3rd Edn., E. Rich and K. Knight (TMH)

2. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
3. Artificial Intelligence, Shivani Goel, Pearson Education.

4. Artificial Intelligence and Expert systems — Patterson, Pearson Education.

Artificial Intelligence Will Reach Human Levels By Around 2029. Follow That Out Further
To, Say, 2045, We Will Have Multiplied The Intelligence, The Human Biological Machine
Intelligence Of Our Civilization A Billion-Fold.”

Note: These notes are not enough, For more learning refer the above Text book and Reference Books

T

Principal

. of Engineering
I swari College g
\aaﬁ?{AR”"NQGnR.EOS 527

Artificial Intelligence Page 3




UNIT I:

Problem Solving by Search-I: Introduction to Al, Intelligent Agents Problem Solving by Search —II: Problem-
Solving Agents, Searching for Solutions,

Uninformed Search Strategies: Breadth-first search, Uniform cost search, Depth-first search, Iterative
deepening Depth-first search, Bidirectional search, Informed (Heuristic) Search Strategies: Greedy best-first
search, A* search, Heuristic Functions, Beyond Classical Search: Hill-climbing search, Simulated annealing
search.

VAAGESWARI COLLEGE OF ENGINEERING-DEPARTMENT OF MCA

Introduction:

> Artificial Intelligence is concerned with the design of intelligence in an artificial device. The term
was coined by John McCarthy in 1956.

> Intelligence is the ability to acquire, understand and apply the knowledge to achieve goals in the
world.

> Alis the study of the mental faculties through the use of computational models

» Alis the study of intellectual/mental processes as computational processes.

» Al program will demonstrate a high level of intelligence to a degree that equals or exceeds the
intelligence required of a human in performing some task.

> Alis unique, sharing borders with Mathematics, Computer Science, Philosophy,
Psychology, Biology, Cognitive Science and many others.

> Although there is no clear definition of Al or even Intelligence, it can be described as an attempt
to build machines that like humans can think and act, able to learn and use knowledge to solve

problems on their own.

History of Al:

Important research that laid the groundwork for Al:

> In 1931, Goedel layed the foundation of Theoretical Computer Science1920-30s:
He published the first universal formal language and showed that math itself is either
flawed or allows for unprovable but true statements.

> In 1936, Turing reformulated Goedel’s result and church’s extension thereof. MLMNX

Principal o
ari College of Enginee

V: SWi 9
\aaginmu.\!n GAR-505 527

Artificial Intelligence Page 4



http://www.idsia.ch/~juergen/goedel.html

» In 1956, John McCarthy coined the term "Artificial Intelligence" as the topic of the Dartmouth

Conference, the first conference devoted to the subject.

» In 1957, The General Problem Solver (GPS) demonstrated by Newell, Shaw & Simon

» In 1958, John McCarthy (MIT) invented the Lisp language.

> In 1959, Arthur Samuel (IBM) wrote the first game-playing program, for checkers, to achieve
sufficient skill to challenge a world champion.

» In 1963, Ivan Sutherland's MIT dissertation on Sketchpad introduced the idea of interactive
graphics into computing.

> In 1966, Ross Quillian (PhD dissertation, Carnegie Inst. of Technology; now CMU) demonstrated
semantic nets

> In 1967, Dendral program (Edward Feigenbaum, Joshua Lederberg, Bruce Buchanan, Georgia

Sutherland at Stanford) demonstrated to interpret mass spectra on organic chemical compounds.
First successful knowledge-based program for scientific reasoning.

> In 1967, Doug Engelbart invented the mouse at SR

> In 1968, Marvin Minsky & Seymour Papert publish Perceptrons, demonstrating limits of simple
neural nets.

» 1In 1972, Prolog developed by Alain Colmerauer.

> In Mid 80’s, Neural Networks become widely used with the Backpropagation algorithm (first
described by Werbos in 1974).

» 1990, Major advances in all areas of Al, with significant demonstrations in machine learning,
intelligent tutoring, case-based reasoning, multi-agent planning, scheduling, uncertain reasoning,
data mining, natural language understanding and translation, vision, virtual reality, games, and
other topics.

> In 1997, Deep Blue beats the World Chess Champion Kasparov

» In 2002,iRobot, founded by researchers at the MIT Artificial Intelligence Lab, introduced Roomba,

VN

Principal

a vacuum cleaning robot. By 2006, two million had been sold.

Foundations of Artificial Intelligence:

Vaageswa

WARIMNAGAR-505 527

» Philosophy
e.g., foundational issues (can a machine think?), issues of knowledge and believe, mutual

knowledge

Artificial Intelligence Page 5

ri College of Engineering



http://www-formal.stanford.edu/jmc/history/dartmouth.html
http://www-formal.stanford.edu/jmc/history/dartmouth.html
http://aitopics.org/publication/gps-program-simulates-human-thought
http://aitopics.org/publication/heuristic-dendral-program-generating-explanatory-hypotheses-organic-chemistry
http://www.irobot.com/

> Psychology and Cognitive Science
e.g., problem solving skills
» Neuro-Science
e.g., brain architecture
» Computer Science And Engineering
e.g., complexity theory, algorithms, logic and inference, programming languages, and system
building.
» Mathematics and Physics
e.g., statistical modeling, continuous mathematics,
> Statistical Physics, and Complex Systems.
SUB AREAS OF Al:

1) Game Playing
Deep Blue Chess program beat world champion Gary Kasparov

2) Speech Recognition
PEGASUS spoken language interface to American Airlines' EAASY SABRE reseration system, which
allows users to obtain flight information and make reservations over the telephone. The 1990s has
seen significant advances in speech recognition so that limited systems are now successful.

3) Computer Vision
Face recognition programs in use by banks, government, etc. The ALVINN system from CMU
autonomously drove a van from Washington, D.C. to San Diego (all but 52 of 2,849 miles), averaging
63 mph day and night, and in all weather conditions. Handwriting recognition, electronics and
manufacturing inspection, photo interpretation, baggage inspection, reverse engineering to
automatically construct a 3D geometric model.

4) Expert Systems
Application-specific systems that rely on obtaining the knowledge of human experts in an area and
programming that knowledge into a system.

a. Diagnostic Systems : MYCIN system for diagnosing bacterial infections of the blood and
suggesting treatments. Intellipath pathology diagnosis system (AMA approved). Pathfinder

medical diagnosis system, which suggests tests and makes diagnoses. Whirlpool customer

assistance center. k&‘w\k}&
\

Principa

i ‘e of
\aageswari College of €ng
-EEQKEAR\ ANAGAR 505 527

Artificial Intelligence Page 6

Engineering




5)

6)

7)

8)
9)

b. System Configuration
DEC's XCON system for custom hardware configuration. Radiotherapy treatment planning.
c. Financial Decision Making
Credit card companies, mortgage companies, banks, and the U.S. government employ Al
systems to detect fraud and expedite financial transactions. For example, AMEX credit
check.
d. Classification Systems
Put information into one of a fixed set of categories using several sources of information.
E.g., financial decision making systems. NASA developed a system for classifying very faint
areas in astronomical images into either stars or galaxies with very high accuracy by learning
from human experts' classifications.
Mathematical Theorem Proving
Use inference methods to prove new theorems.
Natural Language Understanding

AltaVista's translation of web pages. Translation of Catepillar Truck manuals into 20 languages.

Scheduling and Planning

Automatic scheduling for manufacturing. DARPA's DART system used in Desert Storm and Desert
Shield operations to plan logistics of people and supplies. American Airlines rerouting contingency
planner. European space agency planning and scheduling of spacecraft assembly, integration and
verification.

Artificial Neural Networks:

Machine Learning

APPLICATION OF Al:

Al algorithms have attracted close attention of researchers and have also been applied
successfully to solve problems in engineering. Nevertheless, for large and complex problems, Al

algorithms consume considerable computation time due to stochastic feature of the search

Principal .
e of r__'n?:._p:gr‘_"- a

approaches

1) Business; financial strategies

Vaageswari Colleg

WARIMNAGAR 505 527

Artificial Intelligence Page 7



http://babelfish.altavista.digital.com/cgi-bin/translate

2) Engineering: check design, offer suggestions to create new product, expert systems
for all engineering problems

3) Manufacturing: assembly, inspection and maintenance

4) Medicine: monitoring, diagnosing

5) Education: in teaching

6) Fraud detection

7) Object identification

8) Information retrieval

9) Space shuttle scheduling

Building Al Systems:

1) Perception
Intelligent biological systems are physically embodied in the world and experience the world
through their sensors (senses). For an autonomous vehicle, input might be images from a
camera and range information from a rangefinder. For a medical diagnosis system, perception is
the set of symptoms and test results that have been obtained and input to the system manually.

2) Reasoning
Inference, decision-making, classification from what is sensed and what the internal "model" is
of the world. Might be a neural network, logical deduction system, Hidden Markov Model
induction, heuristic searching a problem space, Bayes Network inference, genetic algorithms,
etc.
Includes areas of knowledge representation, problem solving, decision theory, planning, game
theory, machine learning, uncertainty reasoning, etc.

3) Action
Biological systems interact within their environment by actuation, speech, etc. All behavior is
centered around actions in the world. Examples include controlling the steering of a Mars rover
or autonomous vehicle, or suggesting tests and making diagnoses for a medical diagnosis

system. Includes areas of robot actuation, natural language generation, and speech synthesis.

THE DEFINITIONS OF Al: w \r\)\
MO

Principal .

i | Engineering
\Vaageswan College oE _ng?f
WARIMNAGAR 5095 52

Artificial Intelligence Page 8




a) "The exciting new effort to make computers

think . . . machines with minds, in the full and
literal sense" (Haugeland, 1985)

"The automation of] activities that we
associate with human thinking, activities such
as decision-making, problem solving,

b) "The study of mental faculties through
the use of computational models"
(Charniak and McDermott, 1985)

"The study of the computations that
make it possible to perceive, reason, and
act" (Winston, 1992)

learning..."(Bellman, 1978)

c) "The art of creating machines that perform
functions that require intelligence when
performed by people" (Kurzweil, 1990)

d) "A field of study that seeks to explain and
emulate intelligent behavior in terms of
computational processes" (Schalkoff, 1
990)

"The study of how to make computers do

things at which, at the moment, people

are better" (Rich and Knight, 199 1)

"The branch of computer science that is
concerned with the automation of
intelligent behavior" (Luger and
Stubblefield, 1993)

The definitions on the top, (a) and (b) are concerned with reasoning, whereas those on the bottom, (c)
and (d) address behavior.The definitions on the left, (a) and (c) measure success in terms of human
performance, and those on the right, (b) and (d) measure the ideal concept of intelligence called
rationality

INTELLIGENT SYSTEMS:

In order to design intelligent systems, it is important to categorize them into four categories (Luger and
Stubberfield 1993), (Russell and Norvig, 2003)
1. Systems that think like humans

2. Systems that think rationally
3. Systems that behave like humans
4

Systems that behave rationally

Human- Like Rationally

Cognitive Science Approach Laws of thought Approach

Think:

“Machines that think like humans” “ Machines that think Rationally”

Turing Test Approach Rational Agent Approach

Act:

“Machines that behave like humans” “Machines that behave Rationally”

M&T}\

Principal

\iaageswarl 2 o gine
g»(p,mm_\!n GAR-505 52

Artificial Intelligence Page 9

College of Englneering




Scientific Goal: To determine which ideas about knowledge representation, learning, rule systems
search, and so on, explain various sorts of real intelligence.

Engineering Goal:To solve real world problems using Al techniques such as Knowledge representation,
learning, rule systems, search, and so on.

Traditionally, computer scientists and engineers have been more interested in the engineering
goal, while psychologists, philosophers and cognitive scientists have been more interested in the
scientific goal.

Cognitive Science: Think Human-Like

a. Requires a model for human cognition. Precise enough models allow simulation by
computers.

b. Focusis not just on behavior and I/0O, but looks like reasoning process.

c. Goal is not just to produce human-like behavior but to produce a sequence of steps of the
reasoning process, similar to the steps followed by a human in solving the same task.

Laws of thought: Think Rationally

a. The study of mental faculties through the use of computational models; that it is, the study of
computations that make it possible to perceive reason and act.

b. Focus is on inference mechanisms that are probably correct and guarantee an optimal solution.

c. Goalis to formalize the reasoning process as a system of logical rules and procedures of
inference.

d. Develop systems of representation to allow inferences to be like
“Socrates is a man. All men are mortal. Therefore Socrates is mortal”
TURING TEST: ACT HUMAN-LIKE

a. The art of creating machines that perform functions requiring intelligence when performed by
people; that it is the study of, how to make computers do things which, at the moment, people
do better.

b. Focusis on action, and not intelligent behavior centered around the representation of the world
c. Example: Turing Test
o 3 rooms contain: a person, a computer and an interrogator.

o The interrogator can communicate with the other 2 by teletype (to avoid the
machine imitate the appearance of voice of the person)

Artificial Intelligence Page 10




o The interrogator tries to determine which the person is and which the machine
is.

o The machine tries to fool the interrogator to believe that it is the human, and
the person also tries to convince the interrogator that it is the human.

o If the machine succeeds in fooling the interrogator, then conclude that the
machine is intelligent.

Rational agent: Act Rationally

a. Tries to explain and emulate intelligent behavior in terms of computational process; that it is
concerned with the automation of the intelligence.

b. Focusis on systems that act sufficiently if not optimally in all situations.

c. Goalisto develop systems that are rational and sufficient

The difference between strong Al and weak Al:

Strong Al makes the bold claim that computers can be made to think on a level (at least) equal to

humans.

Weak Al simply states that some "thinking-like" features can be added to computers to make them
more useful tools... and this has already started to happen (witness expert systems, drive-by-wire cars
and speech recognition software).

Al Problems:

Al problems (speech recognition, NLP, vision, automatic programming, knowledge
representation, etc.) can be paired with techniques (NN, search, Bayesian nets, production systems,
etc.).Al problems can be classified in two types:

1. Common-place tasks(Mundane Tasks)

2. Expert tasks

Common-Place Tasks:

1. Recognizing people, objects. wu\-%
2. Communicating (through natural language).
1131-'““‘-'.11'.1\

. . of Engineering
v, swari College 2
S ARIMNAGAR-505 527

3. Navigating around obstacles on the streets.

Artificial Intelligence Page 11




These tasks are done matter of factly and routinely by people and some other animals.
Expert tasks:

1. Medical diagnosis.

2. Mathematical problem solving

3. Playing games like chess
These tasks cannot be done by all people, and can only be performed by skilled specialists.

Clearly tasks of the first type are easy for humans to perform, and almost all are able to
master them. The second range of tasks requires skill development and/or intelligence and only some
specialists can perform them well. However, when we look at what computer systems have been able to
achieve to date, we see that their achievements include performing sophisticated tasks like medical

diagnosis, performing symbolic integration, proving theorems and playing chess.

1. Intelligent Agent’s:
Agents andenvironments:

SENSOrSs

actuators

Fig 2.1: Agents and Environments
Agent:
An Agent is anything that can be viewed as perceiving its environment through sensors and acting

upon that environment through actuators.

v A human agent has eyes, ears, and other organs for sensors and hands, legs, mouth, and
other body parts foractuators.

v" A robotic agent might have cameras and infrared range finders for sensors and various
motors foractuators.

v A software agent receives keystrokes, file contents, and network packets as sensory

Artificial Intelligence Page 12




inputs and acts on the environment by displaying on the screen, writing files, and sending

network packets.

Percept:

We use the term percept to refer to the agent's perceptual inputs at any given instant.

PerceptSequence:

An agent's percept sequence is the complete history of everything the agent has ever perceived.

Agent function:

Mathematically speaking, we say that an agent's behavior is described by the agent function that

maps any given percept sequence to an action.

Agentprogram

Internally, the agent function for an artificial agent will be implemented by an agent program. It is

important to keep these two ideas distinct. The agent function is an abstract mathematical

description; the agent program is a concrete implementation, running on the agent architecture.

To illustrate these ideas, we will use a very simple example-the vacuum-cleaner world shown in Fig

2.1.5. This particular world has just two locations: squares A and B. The vacuum agent perceives

which square it is in and whether there is dirt in the square. It can choose to move left, move right,

suck up the dirt, or do nothing. One very simple agent function is the following: if the current

square is dirty, then suck, otherwise move to the other square. A partial tabulation of this agent

function is shown in Fig 2.1.6.

A

=

o

020

B

S A0

020

Fig 2.1.5: A vacuum-cleaner world with just two locations.

\aagesw
WA

VN

Principal

ari g
RIMNAGAR 505 527

Artificial Intelligence

Page 13

College of Engineering




Agentfunction

Percept Sequence Action
[A, Clean] Right
[A, Dirty] Suck
[B, Clean] Left
[B, Dirty] Suck
[A, Clean], [A, Clean] Right
[A, Clean], [A, Dirty] Suck

Fig 2.1.6: Partial tabulation of a simple agent function for the example: vacuum-cleaner
world shown in the Fig 2.1.5

Function REFLEX-VACCUM-AGENT ([location, status]) returns an action If

status=Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

Fig 2.1.6(i): The REFLEX-VACCUM-AGENT program is invoked for each new percept (location, status) and
returns an action each time

Strategies of Solving Tic-Tac-Toe Game Playing
Tic-Tac-Toe Game Playing:

Tic-Tac-Toe is a simple and yet an interesting board game. Researchers have used various approaches to
study the Tic-Tac-Toe game. For example, Fok and Ong and Grim et al. have used artificial neural
network based strategies to play it. Citrenbaum and Yakowitz discuss games like Go-Moku,
Hex and Bridg-It which share some similarities with Tic-Tac-Toe.

Artificial Intelligence Page 14




Track; 4TraiE:k 5Track &
Track 1 i ‘L\‘ 2 I 3
Track 2 4 5 ; I &
Track 3 ) ? a I a
TrEcl; 8 - Track 7
Fig 1.

A Formal Definition of the Game:

The board used to play the Tic-Tac-Toe game consists of 9 cells laid out in the form of a 3x3 matrix (Fig.
1). The game is played by 2 players and either of them can start. Each of the two players is assigned a
unique symbol (generally 0 and X). Each player alternately gets a turn to make a move. Making a move is
compulsory and cannot be deferred. In each move a player places the symbol assigned to him/her in a

hitherto blank cell.

Let a track be defined as any row, column or diagonal on the board. Since the board is a square
matrix with 9 cells, all rows, columns and diagonals have exactly 3 cells. It can be easily observed that
there are 3 rows, 3 columns and 2 diagonals, and hence a total of 8 tracks on the board (Fig. 1). The goal
of the game is to fill all the three cells of any track on the board with the symbol assigned to one before
the opponent does the same with the symbol assigned to him/her. At any point of the game, if
there exists a track whose all three cells have been marked by the same symbol, then the player
to whom that symbol have been assigned wins and the game terminates. If there exist no track
whose cells have been marked by the same symbol when there is no more blank cell on the board then

the game is drawn.

Let the priority of a cell be defined as the number of tracks passing through it. The priorities of the
nine cells on the board according to this definition are tabulated in Table 1. Alternatively, let the
priority of a track be defined as the sum of the priorities of its three cells. The priorities of the eight
tracks on the board according to this definition are tabulated in Table 2. The prioritization of the cells
and the tracks lays the foundation of the heuristics to be used in this study. These heuristics are

somewhat similar to those proposed by Rich and Knight.

Artificial Intelligence Page 15




0 0 0 0 X 0 X 0 X ] X
X X X X XX XX

0 [1] 0 0 0 0 ojojo
(i) (ii) (i) (iv) (v) (vi) (vii)

Casel

X X x X XX XX

o 0 0 0|x 0|x 0|x o)X

0 0 0]o olo ofojo

Strategy 1:
Algorithm:
1. View the vector as a ternary number. Convert it to a decimal number.
2. Use the computed number as an index into Move-Table and access the vector stored there.
3. Set the new board to that vector.
Procedure:
1) Elements of vector:
0: Empty
1: X
2:0
-> the vector is a ternary number
2) Store inside the program a move-table (lookuptable):
a) Elements in the table: 19683 (3°)

b) Element = A vector which describes the most suitable move from the

¢ Data Structure:
000 000 000 000 000 000 | @f—000 010 000
X
000 000 001
;With this game-board| . We can move
| - @u\%
222 222 222 H Principal

| i ) i Engineering
V: swari College © gin
\aaginmr.\.‘u:‘-nm-ﬁcs 527

Comments:

Artificial Intelligence Page 16




1. A lot of space to store the Move-Table.
2. A lot of work to specify all the entries in the Move-Table.
3. Difficult to extend
Explanation of Strategy 2 of solving Tic-tac-toe problem
Stratergy 2:
Data Structure:
1) Use vector, called board, as Solution 1
2) However, elements of the vector:
2: Empty
3: X
5:0
3) Turn of move: indexed by integer
1,2,3, etc
Function Library:
1.Make2:
a) Return a location on a game-board.
IF (board[5] = 2)
RETURN 5; //the center cell.
ELSE
RETURN any cell that is not at the board’s corner;
/I (cell: 2,4,6,8)
b) Let P represent for X or O
c) can_win(P) :

P has filled already at least two cells on a straight line (horizontal, vertical, or
diagonal)

d) cannot_win(P) = NOT(can_win(P))

2. Posswin(P):

Artificial Intelligence Page 17




IF (cannot_win(P))
RETURN 0;
ELSE

RETURN index to the empty cell on the line of

can_win(P)

Let odd numbers are turns of X

Let even numbers are turns of O

3. Go(n): make a move
Algorithm:

1. Turn = 1: (X moves)

Go(1) //make a move at the left-top cell

2. Turn = 2: (O moves)
IF board[5] is empty THEN
Go(5)
ELSE
Go(1)
3. Turn = 3: (X moves)
IF board[9] is empty THEN
Go(9)
ELSE
Go(3).
4. Turn = 4: (O moves)
IF Posswin (X) <>0 THEN
Go (Posswin (X))

/[Prevent the opponent to win

ELSE Go (Make2)

5. Turn =5: (X moves)

\')I--‘.ilk';‘l'J‘

. . f Engineering
J swari College © =
\aagihmm‘“ﬂ GAR-505 527

Artificial Intelligence

Page 18




IF Posswin(X) <>0 THEN
Go(Posswin(X))
//Win for X.
ELSE IF Posswin(O) <> THEN
Go(Posswin(0))
/[Prevent the opponent to win
ELSE IF board[7] is empty THEN
Go(7)
ELSE Go(3).

Comments:

1. Not efficient in time, as it has to check several conditions before making each
move.

2. Easier to understand the program’s strategy.

3. Hard to generalize.

Introduction to Problem Solving, General problem solving

Problem solving is a process of generating solutions from observed data.
—a problem is characterized by a set of goals,

-a set of objects, and

-a set of operations.

These could be ill-defined and may evolve during problem solving.

Principal .

: ye of Engineering
] swari College © 9
N ARIMNAGAR-505 527

Searching Solutions:

To build a system to solve a problem:
1. Define the problem precisely
2. Analyze the problem
3. Isolate and represent the task knowledge that is necessary to solve the problem

4. Choose the best problem-solving techniques and apply it to the particular problem.

Artificial Intelligence Page 19




Defining the problem as State Space Search:

The state space representation forms the basis of most of the Al methods.

e Formulate a problem as a state space search by showing the legal problem states, the legal
operators, and the initial and goal states.

e Astate is defined by the specification of the values of all attributes of interest in the world

e An operator changes one state into the other; it has a precondition which is the value of certain
attributes prior to the application of the operator, and a set of effects, which are the attributes
altered by the operator

e The initial state is where you start

e The goal state is the partial description of the solution

Formal Description of the problem:
1. Define a state space that contains all the possible configurations of the relevant objects.
2. Specify one or more states within that space that describe possible situations from which the
problem solving process may start ( initial state)
3. Specify one or more states that would be acceptable as solutions to the problem. ( goal states)

Specify a set of rules that describe the actions (operations) available

State-Space Problem Formulation:

Example: A problem is defined by four items:
1. initial state e.g., "at Arad—
2. actions or successor function:  S(x) = set of action—state pairs
e.g., S(Arad) = {<Arad - Zerind, Zerind>, ... }
3. goal test (or set of goal states)
e.g., X = "at Bucharestl, Checkmate(x)
4. path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be >0

A solution is a sequence of actions leading from the initial state to a goal state

Artificial Intelligence Page 20




Example: 8-queens problem

Initial State: Any arrangement of 0 to 8 queens on board.
Operators: add a queen to any square.

Goal Test: 8 queens on board, none attacked.

N

Path cost: not applicable or Zero (because only the final state counts, search cost might

be of interest).

State Spaces versus Search Trees:
e State Space
o Set of valid states for a problem
o Linked by operators
o e.g., 20 valid states (cities) in the Romanian travel problem
e Search Tree
— Root node =initial state

— Child nodes = states that can be visited from parent Uﬁ%

— Note that the depth of the tree can be infinite

Principal

. . llege of Engineering
« E.g., via repeated states Vaageswan o AR08 527.

— Partial search tree

Artificial Intelligence Page 21




*  Portion of tree that has been expanded so far
— Fringe
* Leaves of partial search tree, candidates for expansion

Search trees = data structure to search state-space

Properties of Search Algorithms

Which search algorithm one should use will generally depend on the problem domain.

There are four important factors to consider:

1. Completeness — |s a solution guaranteed to be found if at least one solution exists?

2. Optimality — Is the solution found guaranteed to be the best (or lowest cost) solution if there exists

more than one solution?

3. Time Complexity — The upper bound on the time required to find a solution, as a function of the

complexity of the problem.

4. Space Complexity — The upper bound on the storage space (memory) required at any point during the
search, as a function of the complexity of the problem.

General problem solving, Water-jug problem, 8-puzzle problem
General Problem Solver:
The General Problem Solver (GPS) was the first useful Al program, written by Simon, Shaw, and Newell

in 1959. As the name implies, it was intended to solve nearly any problem.

Newell and Simon defined each problem as a space. At one end of the space is the starting point; on the
other side is the goal. The problem-solving procedure itself is conceived as a set of operations to cross

that space, to get from the starting point to the goal state, one step at a time.

The General Problem Solver, the program tests various actions (which Newell and Simon called

operators) to see which will take it closer to the goal state. An operator is any activity that changes the

Artificial Intelligence Page 22




state of the system. The General Problem Solver always chooses the operation that appears to bring it

closer to its goal.
Example: Water Jug Problem
Consider the following problem:
A Water Jug Problem: You are given two jugs, a 4-gallon one and a 3-gallon one, a
pump which has unlimited water which you can use to fill the jug, and the ground on which

water may be poured. Neither jug has any measuring markings on it. How can you get

exactly 2 gallons of water in the 4-gallon jug?

State Representation and Initial State :
We will represent a state of the problem as a tuple (x, y) where x represents the amount of
water in the 4-gallon jug and y represents the amount of water in the 3-gallon jug. Note 0 <x< 4,

and 0 <y <3. Our initial state: (0, 0)

Goal Predicate - state = (2, y) where 0< y< 3.

Operators -we must defi ne a set of operators that will take us from one state to another:

1. Fill 4-gal jug (x,y) — (4y)
x<4
2.Fill 3-gal jug (x.y) — (x,3)
y<3
3. Empty 4-gal jug on ground (x,y) — (0,y)
x>0
4. Empty 3-gal jug on ground (x,y) — (x,0)
y>0
5. Pour water from 3-gal jug (x,y) —!4,y-(4-X)
to 1l 4-gal jug 0<x+y 4andy>0
6. Pour water from 4-gal jug (x,y) — (X - (3-y), 3)
to Il 3-gal-jug O<x+y 3andx>0
7. Pour all of water from 3-gal jug (x,y) — (x+y, 0)

Artificial Intelligence Page 23




into 4-gal jug O<xty 4dandy O
8.Pour all of water from 4-gal jug (x,y) — (0, x+y)
into 3-gal jug 0<x+y 3andx O

Through Graph Search, the following solution is found :

Gals in 4-gal jug Gals in 3-gal jug Rule Applied
0 0
1. Fill 4
4 0
6. Pour 4 into 3to Il
1 3
4, Empty 3
1 0
8. Pour all of 4 into 3
0 1
1. Fill 4
4 1
6. Pour into 3
2 3
Second Solution:
Number Rules applied 4-gjug 3-gjug
of Steps
1 Initial State
2 R2 {Fill 3-gjug} 0 3
3 R 7 {Pour all water from 3 to 4-g jug } 3 0
4 R2 {Fill 3-g jug} 3 3
5 RS {Pour from 3 to 4-g jug until it is full} 4 2
6 R3 {Empty 4-gallon jug} 0 2
7 R7 {Pour all water from 3 to 4-g jug} ‘ 2 0
Goal State

Control strategies
Control Strategies means how to decide which rule to apply next during the process of searching for a

solution to a problem.

Requirement for a good Control Strategy

Artificial Intelligence Page 24




1. It should cause motion
In water jug problem, if we apply a simple control strategy of starting each time from the top of
rule list and choose the first applicable one, then we will never move towards solution.

2. It should explore the solution space in a systematic manner
If we choose another control strategy, let us say, choose a rule randomly from the applicable
rules then definitely it causes motion and eventually will lead to a solution. But one may arrive

to same state several times. This is because control strategy is not systematic.
Systematic Control Strategies (Blind searches):
Breadth First Search:
Let us discuss these strategies using water jug problem. These may be applied to any search problem.

Construct a tree with the initial state as its root.

Generate all the offspring of the root by applying each of the applicable rules to the initial state.
(0,0

(4,0) (. 3)
Now for each leaf node, generate all its successors by applying all the rules that are appropriate.

8 Puzzle Problem.

The 8 puzzle consists of eight numbered, movable tiles set in a 3x3 frame. One cell of the frame is always
empty thus making it possible to move an adjacent numbered tile into the empty cell. Such a puzzle is

illustrated in following diagram.

8

123 | 2

| ! < I| 6 | 4
8 4 x .

| = \<

5 | -

Goal Initial \.’]'-lllk'.l'l':“ﬂ Sotine
: e of Engineering

J swari College ©! g

N ARIMNAGAR-505 527

Artificial Intelligence Page 25




The program is to change the initial configuration into the goal configuration. A solution to the problem
is an appropriate sequence of moves, such as “move tiles 5 to the right, move tile 7 to the left, move tile

6 to the down, etc”.
Solution:

To solve a problem using a production system, we must specify the global database the rules, and the
control strategy. For the 8 puzzle problem that correspond to these three components. These elements
are the problem states, moves and goal. In this problem each tile configuration is a state. The set of all
configuration in the space of problem states or the problem space, there are only 3, 62,880 different
configurations o the 8 tiles and blank space. Once the problem states have been conceptually identified,
we must construct a computer representation, or description of them . this description is then used as
the database of a production system. For the 8-puzzle, a straight forward description is a 3X3 array of
matrix of numbers. The initial global database is this description of the initial problem state. Virtually

any kind of data structure can be used to describe states.

A move transforms one problem state into another state. The 8-puzzle is conveniently interpreted as
having the following for moves. Move empty space (blank) to the left, move blank up, move blank to the
right and move blank down,. These moves are modeled by production rules that operate on the state

descriptions in the appropriate manner.

The rules each have preconditions that must be satisfied by a state description in order for them to be
applicable to that state description. Thus the precondition for the rule associated with “move blank up”

is derived from the requirement that the blank space must not already be in the top row.

The problem goal condition forms the basis for the termination condition of the production system. The
control strategy repeatedly applies rules to state descriptions until a description of a goal state is
produced. It also keeps track of rules that have been applied so that it can compose them into sequence

representing the problem solution. A solution to the 8-puzzle problem is given in the following figure.
Example:- Depth — First — Search traversal and Breadth - First - Search traversal

for 8 — puzzle problem is shown in following diagrams.

Artificial Intelligence Page 26




N[N
0
"
[
~
4
b

G =
[ 1 =
= S
7L
.
[71 2 =
=N
2] s | 5|

Secarrh tree for S-purzle

T

Exhaustive Searches, BFS and DFS
Search is the systematic examination of states to find path from the start/root state to the goal state.

Many traditional search algorithms are used in Al applications. For complex problems, the traditional
algorithms are unable to find the solution within some practical time and space limits. Consequently,

many special techniques are developed; using heuristic functions. The algorithms that use heuristic

Artificial Intelligence Page 27




functions are called heuristic algorithms. Heuristic algorithms are not really intelligent; they appear to

be intelligent because they achieve better performance.

Heuristic algorithms aremore efficient because they take advantage of feedback from the data to direct

the search path.

Uninformed search

Also called blind, exhaustive or brute-force search, uses no information about the problem to guide the

search and therefore may not be very efficient.

Informed Search:

Also called heuristic or intelligent search, uses information about the problem to guide the search,
usually guesses the distance to a goal state and therefore efficient, but the search may not be always

possible.

Uninformed Search Methods:

Breadth- First -Search:

Consider the state space of a problem that takes the form of a tree. Now, if we search the goal along
each breadth of the tree, starting from the root and continuing up to the largest depth, we call it

breadth first search.

e Algorithm:
1. Create avariable called NODE-LIST and set it to initial state
2. Until a goal state is found or NODE-LIST is empty do
a. Remove the first element from NODE-LIST and call it E. If NODE-LIST was empty,
quit
b. For each way that each rule can match the state described in E do:
i.  Apply the rule to generate a new state
ii. If the new state is a goal state, quit and return this state
iii. Otherwise, add the new state to the end of NODE-LIST

BFS illustrated:

Step 1: Initially fringe contains only one node corresponding to the source state A.

Artificial Intelligence Page 28




FRINGE: A

Step 2: A is removed from fringe. The node is expanded, and its children B and C are generated.
They are placed at the back of fringe.

FRINGE: B C

Step 3: Node B is removed from fringe and is expanded. Its children D, E are generated and put
at the back of fringe.

U

(1) 1"1-'-.m-'|1-'-"’E .
x ] ngineent
I swari College © :
\aagiAR"u‘th_nR.c—,os 527

FRINGE: CDE

Step 4: Node C is removed from fringe and is expanded. Its children D and G are added to the
back of fringe.

Artificial Intelligence Page 29

a




®
LN /B
;

F F
/2\% éf\
G)(G) H E) (G) (g
UU S/ \ ‘ \I'I/

Figure 4

FRINGE:DEDG

Step 5: Node D is removed from fringe. Its children C and F are generated and added to the back
of fringe.

Figure 5
FRINGE:EDGCF

Step 6: Node E is removed from fringe. It has no children.

Figure 6
FRINGE:DGCF

Step 7: D is expanded; B and F are put in OPEN.

1‘:1-111L;i11:||E R
x ] nainearn
ri College © -
‘Jaageswa ANAGAR-505 527

AR

Figure 7

FRINGE:GCFBF

Artificial Intelligence Page 30




Step 8: G is selected for expansion. It is found to be a goal node. So the algorithm returns the
path A C G by following the parent pointers of the node corresponding to G. The algorithm
terminates.

Breadth first search is:

e One of the simplest search strategies

e Complete. If there is a solution, BFS is guaranteed to find it.

o If there are multiple solutions, then a minimal solution will be found

e The algorithm is optimal (i.e., admissible) if all operators have the same cost. Otherwise,

breadth first search finds a solution with the shortest path length.

e Time complexity :0(b?)
e Space complexity :0(b?)
e Optimality :‘Yes

b - branching factor(maximum no of successors of any node),
d — Depth of the shallowest goal node
Maximum length of any path (m) in search space
Advantages: Finds the path of minimal length to the goal.
Disadvantages:
e Requires the generation and storage of a tree whose size is exponential the depth of the
shallowest goal node.
e The breadth first search algorithm cannot be effectively used unless the search space is quite

small.

Depth- First- Search.

We may sometimes search the goal along the largest depth of the tree, and move up only when further
traversal along the depth is not possible. We then attempt to find alternative offspring of the parent of
the node (state) last visited. If we visit the nodes of a tree using the above principles to search the goal,
the traversal made is called depth first traversal and consequently the search strategy is called depth

first search.

¢ Algorithm:

1. Create avariable called NODE-LIST and set it to initial state

Artificial Intelligence Page 31




2. Until a goal state is found or NODE-LIST is empty do
a. Remove the first element from NODE-LIST and call it E. If NODE-LIST was empty,
quit
b. For each way that each rule can match the state described in E do:
i Apply the rule to generate a new state
ii. If the new state is a goal state, quit and return this state
iii. Otherwise, add the new state in front of NODE-LIST
DFS illustrated:

A State Space Graph

Step 1: Initially fringe contains only the node for A.

Figure 1

FRINGE: A

Step 2: A is removed from fringe. A is expanded and its children B and C are put in front of

fringe.
‘/\ N J\If;\

/‘\“ Princ D gineer
f Engine
} I gwan College ©
4 \aag?ﬂ\m MNAGAR-505 527
\Ej \

Figure2
FRINGE: B C

Artificial Intelligence Page 32




Step 3: Node B is removed from fringe, and its children D and E are pushed in front of fringe.

FRINGE:DEC

Step 4: Node D is removed from fringe. C and F are pushed in front of fringe.

FRINGE:CFEC

Step 5: Node C is removed from fringe. Its child G is pushed in front of fringe.

Figure 5

FRINGE: GFEC
Step 6: Node G is expanded and found to be a goal node. W\%

1‘)1-1“{\-'[11:& ) ‘g
. §f Engineering
I gwari College © 9
Ve A RIMNAGAR-505 527

Artificial Intelligence Page 33




FRINGE:GFEC

The solution path A-B-D-C-G is returned and the algorithm terminates.

Depth first searchis:

1. The algorithm takes exponential time.

2. If Nis the maximum depth of a node in the search space, in the worst case the algorithm will

d
take time O(b ).

3. The space taken is linear in the depth of the search tree, O(bN).

Note that the time taken by the algorithm is related to the maximum depth of the search tree. If the
search tree has infinite depth, the algorithm may not terminate. This can happen if the search space is
infinite. It can also happen if the search space contains cycles. The latter case can be handled by

checking for cycles in the algorithm. Thus Depth First Search is not complete.

Exhaustive searches- Iterative Deeping DFS

Description:

e It is a search strategy resulting when you combine BFS and DFS, thus combining the advantages
of each strategy, taking the completeness and optimality of BFS and the modest memory

requirements of DFS.

e IDS works by looking for the best search depth d, thus starting with depth limit 0 and make a BFS
and if the search failed it increase the depth limit by 1 and try a BFS again with depth 1 and so

on —first d =0, then 1 then 2 and so on — until a depth d is reached where a goal is found.

Artificial Intelligence Page 34




Algorithm:

procedure IDDFS(root)
for depth from O to oo

found ¢ DLS(root, depth)
if found # null

return found

procedure DLS(node, depth)
if depth = 0 and node is a goal
return node
else if depth >0
foreach child of node
found & DLS(child, depth-1)
if found # null
return found

return null

Performance Measure:

o Completeness: IDS is like BFS, is complete when the branching factor b is finite.
o Optimality: IDS is also like BFS optimal when the steps are of the same cost.

e Time Complexity:

o One may find that it is wasteful to generate nodes multiple times, but actually it is not
that costly compared to BFS, that is because most of the generated nodes are always in
the deepest level reached, consider that we are searching a binary tree and our depth
limit reached 4, the nodes generated in last level = 2% = 16, the nodes generated in all
nodes before last level = 2°+ 2! + 22+ 2°= 15

o Imagine this scenario, we are performing IDS and the depth limit reached depth d, now
if you remember the way IDS expands nodes, you can see that nodes at depth d are
generated once, nodes at depth d-1 are generated 2 times, nodes at depth d-2 are
generated 3 times and so on, until you reach depth 1 which is generated d times,
we can view the total number of generated nodes in the worst case as:

= N(IDS) = (b)d + (d — 1)b%+ (d — 2)b® + ... + (2)b™ + (1)b? = O(b?)

Artificial Intelligence Page 35




o If this search were to be done with BFS, the total number of generated nodes in
the worst case will be like:

« NBFS)=b+b2+b¥+b*+ ... b¢+ (O™ -b)=0®*"}

o If we consider a realistic numbers, and use b = 10 and d = 5, then number of
generated nodes in BFS and IDS will be like

=  N(IDS) =50 + 400 + 3000 + 20000 + 100000 = 123450
= N(BFS) =10 + 100 + 1000 + 10000 + 100000 + 999990 = 1111100
= BFS generates like 9 time nodes to those generated with IDS.

e Space Complexity:

o IDS is like DFS in its space complexity, taking O(bd) of memory.

Weblinks:

i. https://www.youtube.com/watch?v=7QcoljSVT38

ii. https://mhesham.wordpress.com/tag/iterative-deepening-depth-first-search

Conclusion:

e We can conclude that IDS is a hybrid search strategy between BFS and DFS inheriting their
advantages.

e DS is faster than BFS and DFS.

e Itis said that “IDS is the preferred uniformed search method when there is a large search space
and the depth of the solution is not known”.

Heuristic Searches:

A Heuristic technique helps in solving problems, even though there is no guarantee that it will never
lead in the wrong direction. There are heuristics of every general applicability as well as domain specific.
The strategies are general purpose heuristics. In order to use them in a specific domain they are coupler
with some domain specific heuristics. There are two major ways in which domain - specific, heuristic

information can be incorporated into rule-based search procedure.

A heuristic function is a function that maps from problem state description to measures desirability,
usually represented as number weights. The value of a heuristic function at a given node in the search

process gives a good estimate of that node being on the desired path to solution.

Artificial Intelligence Page 36



https://www.youtube.com/watch?v=7QcoJjSVT38
https://mhesham.wordpress.com/tag/iterative-deepening-depth-first-search

Greedy Best First Search

Greedy best-first search tries to expand the node that is closest to the goal, on the: grounds that this is

likely to lead to a solution quickly. Thus, it evaluates nodes by using just the heuristic function:

f(n)=nh(n).

Taking the example of Route-finding problems in Romania, the goal is to reach Bucharest starting from
the city Arad. We need to know the straight-line distances to Bucharest from various cities as shown in
Figure 8.1. For example, the initial state is In (Arad), and the straight line distance heuristic hgp (In

(Arad)) is found to be 366. Using the straight-line distance heuristic hg, the goal state can be reached

faster.

Arad 366 Mehadia 241 Hirsova 151
Bucharest 0 Neamt 234 Urziceni 80
Craiova 160 Oradea 380 lasi 226
Drobeta 242 Pitesti 100 Vaslui 199
Eforie 161 Rimnicu Vilcea 193 Lugoj 244
Fagaras 176 Sibiu 253 Zerind 374
Giurgiu 77 Timisoara 329

Figure 8.1: Values of hg p-straight-line distancesto Bucharest.

The Initial State

3e8

After Expanding Arad

253 329 ard

After Expanding Sibiu

Artificial Intelligence Page 37




266 176 380 193

After Expanding Fagaras

Figure 8.2: Stages in a greedy best-first search for Bucharest using the straight-line distance heuristic

hsip. Nodes are labeled with their h-values.

Figure 8.2 shows the progress of greedy best-first search using hs.p to find a path from Arad to
Bucharest. The first node to be expanded from Arad will be Sibiu, because it is closer to
Bucharest than either Zerind or Timisoara. The next node to be expanded will be Fagaras,
because it is closest.

Fagaras in turn generates Bucharest, which is the goal.

Evaluation Criterion of Greedy Search

» Complete: NO [can get stuck in loops, e.g., Complete in finite space with repeated-
state checking ]
» Time Complexity: O (bm) [but a good heuristic can give dramatic improvement]

» Space Complexity: O (bm) [keeps all nodes in memory]

Artificial Intelligence Page 38




» Optimal: NO

Greedy best-first search is not optimal, and it is incomplete. The worst-case time and space
complexity is O (b™), where m is the maximum depth of the search space.

HILL CLIMBING PROCEDURE:

Hill Climbing Algorithm

We will assume we are trying to maximize a function. That is, we are trying to find a point in the search
space that is better than all the others. And by "better" we mean that the evaluation is higher. We might

also say that the solution is of better quality than all the others.
The idea behind hill climbing is as follows.

1. Pick arandom pointin the search space.

2. Consider all the neighbors of the current state.

3. Choose the neighbor with the best quality and move to that state.

4. Repeat 2 thru 4 until all the neighboring states are of lower quality.

5. Return the current state as the solution state.

We can also present this algorithm as follows (it is taken from the AIMA book (Russell, 1995) and follows

the conventions we have been using on this course when looking at blind and heuristic searches).

everltertion

)

cwrrent

\

e

\’l"\il;"llli!‘ .
i College of Engineering
MNAGAR-505 527

Vaageswar
w AR

Artificial Intelligence Page 39




Algorithm:
Function HILL-CLIMBING(Problem) returns a solution state
Inputs: Problem, problem
Local variables: Current, a node
Next, a node
Current = MAKE-NODE(INITIAL-STATE[Problem])
Loop do
Next = a highest-valued successor of Current
If VALUE[Next] < VALUE[Current] then returnCurrent
Current = Next
End

Also, if two neighbors have the same evaluation and they are both the best quality, then the algorithm

will choose between them at random.
Problems with Hill Climbing

The main problem with hill climbing (which is also sometimes called gradient descent) is that we are not
guaranteed to find the best solution. In fact, we are not offered any guarantees about the solution. It

could be abysmally bad.

You can see that we will eventually reach a state that has no better neighbours but there are better

solutions elsewhere in the search space. The problem we have just described is called a local maxima.

Simulated annealing search

A hill-climbing algorithm that never makes “downhill” moves towards states with lower value (or higher
cost) is guaranteed to be incomplete, because it can stuck on a local maximum. In contrast, a purely
random walk —that is, moving to a successor chosen uniformly at random from the set of successors — is
complete, but extremely inefficient. Simulated annealing is an algorithm that combines hill-climbing
with a random walk in some way that yields both efficiency and completeness.

Figure 10.7 shows simulated annealing algorithm. It is quite similar to hill climbing. Instead of picking the
best move, however, it picks the random move. If the move improves the situation, it is always
accepted. Otherwise, the algorithm accepts the move with some probability less than 1. The probability

decreases exponentially with the “badness” of the move — the amount AE by which the evaluation is

Artificial Intelligence Page 40




worsened. The probability also decreases as the "temperature" T goes down: "bad moves are more
likely to be allowed at the start when temperature is high, and they become more unlikely as T
decreases. One can prove that if the schedule lowers T slowly enough, the algorithm will find a global
optimum with probability approaching 1.

Simulated annealing was first used extensively to solve VLSI layout problems. It has been applied widely

to factory scheduling and other large-scale optimization tasks.

functionSIMULATED-ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to "temperature”

local variables: current, a node

next, a node

T, a "temperature” controlling the probability of downward steps
current &€ MAKE-NODE(INITIAL-STATE[problem])

for t<1to oo do

T <schedule[t]

if T =0 then return current

next €-a randomly selected successor of current
AE<VALUE[next] — VALUE[current]

if AE>0 then current < next

else current € next only with probability e A5/

LOCAL SEARCH IN CONTINUOUS SPACES

» We have considered algorithms that work only in discrete environments, but real-world
environment are continuous.
» Local search amounts to maximizing a continuous objective function in a multi-dimensional
vector space.
» Thisis hard to do in general.
» Canimmediately retreat
v Discretize the space near each state

v Apply a discrete local search strategy (e.g., stochastic hill climbing, simulated annealing)

Artificial Intelligence Page 41




» Often resists a closed-form solution

v" Fake up an empirical gradient

v" Amounts to greedy hill climbing in discretized state space
» Can employ Newton-Raphson Method to find maxima.

» Continuous problems have similar problems: plateaus, ridges, local maxima, etc.

Best First Search:

e A combination of depth first and breadth first searches.

o Depth first is good because a solution can be found without computing all nodes and breadth
first is good because it does not get trapped in dead ends.

e The best first search allows us to switch between paths thus gaining the benefit of both
approaches. At each step the most promising node is chosen. If one of the nodes chosen
generates nodes that are less promising it is possible to choose another at the same level and in
effect the search changes from depth to breadth. If on analysis these are no better than this

previously unexpanded node and branch is not forgotten and the search method reverts to the

OPEN is a priorityqueue of nodes that have been evaluated by the heuristic function but which have not

yet been expanded into successors. The most promising nodes are at the front.

CLOSED are nodes that have already been generated and these nodes must be stored because a graph is

being used in preference to a tree.

Algorithm:

1. Start with OPEN holding the initial state

2. Until a goal is found or there are no nodes left on open do.

e Pick the best node on OPEN
e Generate its successors
e For each successor Do
* Ifit has not been generated before ,evaluate it ,add it to OPEN and record its

parent

Artificial Intelligence Page 42




» Ifit has been generated before change the parent if this new path is better and

in that case update the cost of getting to any successor nodes.

3. If agoal is found or no more nodes left in OPEN, quit, else return to 2.

Example:

(a) The initial state
366

(b) After expanding Arad Thmi D

253 329 374

(c) After expanding Sibiu

N2N

Principal .
) Engineering
wari College of €ng
Ve RIMNAGAR-505 527

1. Itis not optimal.
2. ltis incomplete because it can start down an infinite path and never return to try other

possibilities.

Artificial Intelligence Page 43




3. The worst-case time complexity for greedy search is O (b™), where m is the maximum depth of
the search space.

4. Because greedy search retains all nodes in memory, its space complexity is the same as its time
complexity

A* Algorithm
The Best First algorithm is a simplified form of the A* algorithm.

The A* search algorithm (pronounced "Ay-star") is a tree search algorithm that finds a path from a given

initial node to a given goal node (or one passing a given goal test). It employs a "heuristic estimate"
which ranks each node by an estimate of the best route that goes through that node. It visits the nodes

in order of this heuristic estimate.

Similar to greedy best-first search but is more accurate because A* takes into account the nodes that

have already been traversed.

From A* we note that f= g + h where

g is a measure of the distance/cost to go from the initial node to the current node

his an estimate of the distance/cost to solution from the current node.

Thus fis an estimate of how long it takes to go from the initial node to the solution

Algorithm:

1. Initialize : Set OPEN = (S); CLOSED = ()
g(s)=0, f(s)=h(s)

2. Fail : If OPEN =( ), Terminate and fail.

3. Select : select the minimum cost state, n, from OPEN, Uﬁ\'&)&
save n in CLOSED

Principal .
| . i Vaageswari College of Enc:,-.n; ring
4, Terminate : If n €G, Terminate with success and return f(n) " qianacaARrR-505 527

5. Expand : for each successor, m, of n

Artificial Intelligence Page 44



http://www.fact-index.com/t/tr/tree_search_algorithm.html

a) If m € *OPEN U CLOSED+
Set g(m) =g(n) + ¢(n, m)
Set f(m) = g(m) + h(m)
Insert m in OPEN
b) If m € *OPEN U CLOSED+
Set g(m) = min { g(m), g(n) + c(n, m)}
Set f(m) = g(m) + h(m)
If f(m) has decreased and m € CLOSED
Move m to OPEN.

Description:

e A* begins at a selected node. Applied to this node is the "cost" of entering this node (usually
zero for the initial node). A* then estimates the distance to the goal node from the current
node. This estimate and the cost added together are the heuristic which is assigned to the path
leading to this node. The node is then added to a priority queue, often called "open".

e The algorithm then removes the next node from the priority queue (because of the way a
priority queue works, the node removed will have the lowest heuristic). If the queue is empty,
there is no path from the initial node to the goal node and the algorithm stops. If the node is the
goal node, A* constructs and outputs the successful path and stops.

e If the node is not the goal node, new nodes are created for all admissible adjoining nodes; the
exact way of doing this depends on the problem at hand. For each successive node, A*
calculates the "cost" of entering the node and saves it with the node. This cost is calculated from
the cumulative sum of costs stored with its ancestors, plus the cost of the operation which
reached this new node.

e The algorithm also maintains a 'closed' list of nodes whose adjoining nodes have been checked.
If a newly generated node is already in this list with an equal or lower cost, no further
processing is done on that node or with the path associated with it. If a node in the closed list
matches the new one, but has been stored with a higher cost, it is removed from the closed list,

and processing continues on the new node.

Artificial Intelligence Page 45



http://www.fact-index.com/n/no/node.html
http://www.fact-index.com/p/pr/priority_queue.html

e Next, an estimate of the new node's distance to the goal is added to the cost to form the
heuristic for that node. This is then added to the 'open' priority queue, unless an identical node
is found there.

e Once the above three steps have been repeated for each new adjoining node, the original node
taken from the priority queue is added to the 'closed' list. The next node is then popped from

the priority queue and the process is repeated.The heuristic costs from each city to Bucharest:

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 20
Iasi 226 Vaslui 199
Lugoj 244 Zerind 374

Neamt

W Yaslui

Rimnicu Vilcea

; & Hirsova
M Mehadia Urziceni

g 86
Bucharest

Drobeta [}

Craiova ] Giurgiu Eforie

Artificial Intelligence Page 46




(a) The initial state

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

Climisoars)

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

449=T5+374

591=3384253 450=450+0 526=366+160 417=317+100 5353=300+353

(D) After expanding Pitesti

449=75+374

418=418+0 615=455+160 607=414+193

Artificial Intelligence Page 47




A* search properties:

= The algorithm A* is admissible. This means that provided a solution exists, the first solution
found by A* is an optimal solution. A* is admissible under the following conditions:

= Heuristic function: for every node n, h(n) < h*(n).
= A*isalso complete.
= A*is optimally efficient for a given heuristic.
= A*is much more efficient that uninformed search.
Iterative Deeping A* Algorithm:
Algorithm:

Let L be the list of visited but not expanded node, and
C the maximum depth
1) LetC=0
2) Initialize Lto the initial state (only)
3) If List empty increase C and goto 2),
else
extract anode n from the front of L
4) If nisagoal node,
SUCCEED and return the path from the initial state to n

5) Remove n from L. If the level is smaller than C, insert at the front of L all the children n' of n
with f(n') < C

6) Goto 3)

(1,2,4,9) 0+2=2

(3,5,10) 1+1=2 (7,13) 1+2=3
(6,11) 2+1=3 (8,14) 2+1=3 M \»‘\
N
N
(12) 3+1=4 (15) 3+1=4

. ) ‘1"1'1:1&'11'}‘ ‘En(‘iﬂe
4+1=5 (16) 4+0=4 \,aagis:,g,‘:,h&eﬁigjﬁi05 e27
5+0=5

Artificial Intelligence Page 48

ering




e IDA* is complete & optimal Space usage is linear in the depth of solution. Each iteration is depth
first search, and thus it does not require a priority queue.

e lterative deepening A* (IDA*) eliminates the memory constraints of A* search algorithm
without sacrificing solution optimality.

e Each iteration of the algorithm is a depth-first search that keeps track of the cost, f(n) = g(n) +
h(n), of each node generated.

e As soon as a node is generated whose cost exceeds a threshold for that iteration, its path is cut
off, and the search backtracks before continuing.

e The cost threshold is initialized to the heuristic estimate of the initial state, and in each
successive iteration is increased to the total cost of the lowest-cost node that was pruned during
the previous iteration.

e The algorithm terminates when a goal state is reached whose total cost dees not exceed the
current threshold.

Principal o
. e of Engineering
\aageswan College 505 527

KARIMNAGAR

Artificial Intelligence Page 49




UNIT 1

Problem Solving by Search-Il and Propositional Logic .Adversarial Search: Games, Optimal Decisions in Games,
Alpha—Beta Pruning, Imperfect Real-Time Decisions.

Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems, Constraint Propagation,
Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems.

Constraint Satisfaction Problems

Sometimes a problem is not embedded in a long set of action sequences but requires picking the best
option from available choices. A good general-purpose problem solving technique is to list the
constraints of a situation (either negative constraints, like limitations, or positive elements that you

want in the final solution). Then pick the choice that satisfies most of the constraints.

Formally speaking, a constraint satisfaction problem (or CSP) is defined by a set of variables, X1;X2; : : :

values. Each constraint Ci involves some subset of tvariables and specifies the allowable combinations of
values for that subset. A state of theproblem is defined by an assignment of values to some or all of the

variables, {Xi = vi;Xj =vj; : : :} An assignment that does not violate any constraints is called a consistent or

legalassignment. A complete assignment is one in which every variable is mentioned, and a solution to a
CSP is a complete assignment that satisfies all the constraints. Some CSPs also require a solution that

maximizes an objectivefunction.
CSP can be given an incremental formulation as a standard search problem as follows:
1. Initial state: the empty assignment fg, in which all variables are unassigned.

2. Successor function: a value can be assigned to any unassigned variable, provided that it does not

conflict with previously assigned variables.
3. Goal test: the current assignment is complete.
4. Path cost: a constant cost for every step
Examples:

1. The best-known category of continuous-domain CSPs is that of linear
programming problems, where constraints must be linear inequalities
forming a convex region.

2. Crypt arithmetic puzzles.
Artificial Intelligence Page 50




I W O
+~ T W O
FOUR

Example: The map coloring problem.

The task of coloring each region red, green or blue in such a way that no neighboring regions

have the same color.

We are given the task of coloring each region red, green, or blue in such a way that the

neighboring regions must not have the same color.

To formulate this as CSP, we define the variable to be the regions: WA, NT, Q, NSW, V, SA, and

T. The domain of each variable is the set {red, green, blue}. The constraints require

neighboring regions to have distinct colors: for example, the allowable combinations for WA
and NT are the pairs {(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}.
(The constraint can also be represented as the inequality WA # NT). There are many possible
solutions, such as {WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T =

red}.Map of Australia showing each of its states and territories

Northern
Territary

" Westem
Australia

Tasmania

Variables WA, NT, @, NSW, V 54T

Domains ), = | red, green, blue |
Constraints: adjacent regions must have different colors
eg., WA NT (if the language allows this), or

(WA,NT) = | (red, green), (red. blue), (green, red). (green, blue), . . |

Constraint Graph: A CSP is usually represented as an undirected graph, called constraint graph
where the nodes are the variables and the edges are the binaryconstraints.

Artificial Intelligence Page 51




Constraint graph: nodes are variables, arcs show constraints

©
@ @"‘a@

@

The map-coloring problem represented as a constraint graph.

CSP can be viewed as a standard search problem as follows:

> Initial state : the empty assignment {},in which all variables are unassigned.
> Successor function: a value can be assigned to any unassigned variable, provided that it
does not conflict with previously assigned variables.

> Goal test: the current assignment is complete.

> Path cost: a constant cost(E.g.,1) for every step.

Game Playing
Adversarial search, or game-tree search, is a technique for analyzing an adversarial game in order to try
to determine who can win the game and what moves the players should make in order to win.
Adversarial search is one of the oldest topics in Artificial Intelligence. The original ideas for adversarial
search were developed by Shannon in 1950 and independently by Turing in 1951, in the context of the
game of chess—and their ideas still form the basis for the techniques used today.
2-Person Games:

o Players: We call them Max and Min.

o Initial State: Includes board position and whose turn it is.

o Operators: These correspond to legal moves.

o Terminal Test: A test applied to a board position which determines whether the game is

over. In chess, for example, this would be a checkmate or stalemate situation.
o Utility Function: A function which assigns a numeric value to a terminalstate. For

example, in chess the outcome is win (+1), lose (-1) or draw (0). Note that by

Artificial Intelligence Page 52




convention, we always measure utility relative to Max.

MiniMax Algorithm:
1. Generate the whole game tree.
2. Apply the utility function to leaf nodes to get their values.
3. Use the utility of nodes at level n to derive the utility of nodes at level n-1.
4. Continue backing up values towards the root (one layer at a time).
5. Eventually the backed up values reach the top of the tree, at which point Max chooses the move
that yields the highest value. This is called the minimax decision because it maximises the utility

for Max on the assumption that Min will play perfectly to minimise it.

Algorithm: MINIMAX (Depth-First Version)

To determine the minimax value V' (J), do the following:

1. IfJ is terminal, return V(J) = e(J); otherwise

2. Generate J’s successors J |, J, . .., J,.

3. Evaluate V' (J)), V(J>,), . . ., V(J,) from left to right.

4. IfJ is a MAX node, return V(J) = max[V (J,), ..., V(Jy)].
5. If J is a MIN node, return V(J) = min[V (J,), ..., V(J,)].

function MINIMAX-DECISION(state) returns an action

v MAX-VALUE(state)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)
U —00
for a,s in SUCCESSORS(state) do
v+ MAX(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)
U 00
for a,sin SUCCESSORS(state) do
v+ MIN(v, MAX-VALUE(s))
return v

NN

incipal
Princips 7
i { Engineering
swari College ©
Vaag?&ARlY.‘\NAGAR 505 527

Artificial Intelligence Page 53




Example:

MAX

MIN

Properties of minimax:

= Complete : Yes (if tree is finite)

=  Optimal : Yes (against an optimal opponent)

= Time complexity : Oo(b™)

= Space complexity : O(bm) (depth-first exploration)

=  Forchess, b =35, m =100 for "reasonable" games
- exact solution completely infeasible.
Limitations
— Not always feasible to traverse entire tree

— Time limitations

Alpha-beta pruning algorithm:

* Pruning: eliminating a branch of the search tree from consideration without exhaustive
examination of each node

* o-B Pruning: the basic idea is to prune portions of the search tree that cannot improve the
utility value of the max or min node, by just considering the values of nodes seen so far.

* Alpha-beta pruning is used on top of minimax search to detect paths that do not need to be
explored. The intuition is:

*  The MAX player is always trying to maximize the score. Call this a.

* The MIN player is always trying to minimize the score. Call this 3 .

*  Alpha cutoff: Given a Max node n, cutoff the search below n (i.e., don't generate or examine any
more of n's children) if alpha(n) >= beta(n)

Artificial Intelligence Page 54




(alpha increases and passes beta from below)

* Beta cutoff.: Given a Min node n, cutoff the search below n (i.e., don't generate or examine any
more of n's children) if beta(n) <= alpha(n)
(beta decreases and passes alpha from above)

e Carry alpha and beta values down during search Pruning occurs whenever alpha >= beta

Algorithm:

function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, cwrent state in game

© +— MAX-VALUE(state, —00, +0¢)
return the action m SUCCESSORS(state) with value v

function MAX-VALUE(state, a, 3) veturns a utility value
inputs: state, curent state m game
a, the value of the best alternative for .4 x along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(stale)
v —00
for a, s m SUCCESSORS(state) do
v — MAX(v, MIN-VALUE(s, a, 3))
ifv > 3 thenreturnv
a—MAX(a, v)
return v

function MIN-VALUE(state,a, 3) returns a utility value
inputs: state, cuurent state in game
a, the value of the best alternative for M4 x along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY (state)
v 400
for a, sin SUCCESSORS(state) do

v MIN(v, MAX-VALUE(%a,3))

ifv < athenreturnvy

3« MIN(3, v) '
return v Mﬁ%

f’l"nu:'lp‘ul )
College ©f Engineering

warn
Vaag?(sARHJN AGAR-505 527.

Artificial Intelligence Page 55




Example:

1) Setup phase: Assign to each left-most (or right-most) internal node of the tree,

variables: alpha = -infinity, beta = +infinity

a=-inf
=i
b=+inf max
min
max
min
max

2) Look at first computed final configuration value. It’s a 3. Parent is a min node, so

set the beta (min) value to 3.

a=-inf
b=+inf max
a=-inf
bh=+inf ,
min
max
min
max

Artificial Intelligence Page 56




3) Look at next value, 5. Since parent is a min node, we want the minimum of
3 and 5 which is 3.  Parent min node is done - fill alpha (max) value of its parent max
node. Always set alpha for max nodes and beta for min nodes. Copy the state of the max
parent node into the second unevaluated min child.

a=-inf
b=+inf max
=-inf
b=+inf .

min
max
min
max

4) Look at next value, 2. Since parent node is min with b=+inf, 2 is smaller, change b.

a=-inf

b=+inf max
min
max
min
max

Artificial Intelligence Page 57




5) Now, the min parent node has a max value of 3 and min value of 2. The value of the
2" child does not matter. If it is >2, 2 will be selected for min node. If it is <2, it will be
selected for min node, but since it is <3 it will not get selected for the parent max node.
Thus, we prune the right subtree of the min node. Propagate max value up the tree.

a=-inf

b=+inf max
min
max
min
max

6) Max node is now done and we can set the beta value of its parent and propagate node

state to sibling subtree’s left-most path.

a=-inf
b=+inf max
a=-inf
b=3 .
min
max
min
max

Artificial Intelligence Page 58




7) The next node is 10. 10 is not smaller than 3, so state of parent does not change. We still

have to look at the 2" child since alpha is still —inf.

a=-inf
b=+inf max
a=-inf
b=3 .
min
max
min
max

8) The next node is 4. Smallest value goes to the parent min node. Min subtree is done, so
the parent max node gets the alpha (max) value from the child. Note that if the max node

had a 2" subtree, we can prune it since a>b.

a=-inf
b=+inf max
a=-inf
b=3 ,
min
max
min
max

Artificial Intelligence Page 59




9) Continue propagating value up the tree, modifying the corresponding alpha/beta values.

Also propagate the state of root node down the left-most path of the right subtree.

a=3
b=+inf max
a=-inf a=3
=3 b=+inf .
min
a=4 =3
= b=3 b=+inf
b=

max

a—-inf a=3
=3 Db=+inf
min

@

10) Next value is a 2. We set the beta (min) value of the min parent to 2. Since no other
children exist, we propagate the value up the tree.

a=3
b=+inf max
a=-inf a=3
b=3 b=+inf ,
min
a=4 a=3
a=3 b=3  b=+inf
b=+inf
3 4 2 max
a=3 a=-inf a=3
b= 2 =3 b= 2

e min
max

Artificial Intelligence Page 60




11) We have a value for the 3™ level max node, now we can modify the beta (min) value of
the min parent to 2. Now, we have a situation that a>b and thus the value of the rightmost

subtree of the min node does not matter, so we prune the whole subtree.

a=3
b=+inf max
a=-inf a=3
b=3 b=2 )
min
max
min
max

12) Finally, no more nodes remain, we propagate values up the tree. The root has a value
of 3 that comes from the left-most child. Thus, the player should choose the left-most
child’s move in order to maximize his/her winnings. As you can see, the result is the same

as with the mini-max example, but we did not visit all nodes of the tree.

max
min
a=3
b=+inf
max
min MN%
"., e ‘\L')T .Encmef-‘ ng
74 ;'l‘mi:orlx\?;f R-505 527
max

Artificial Intelligence Page 61




UNIT 11

Knowledge Based Agents A knowledge-based agent needs a KB and an inference
mechanism. It operates by storing sentences in its knowledge base, inferring new sentences
with the inference mechanism, and using them to deduce which actions to take The

interpretation of a sentence is the fact to which it refers.

Knowledge Bases:

Domain—independent
algorithms

Inference engine

Domain—specific content

Knowledge base

Knowledge base = set of sentences in a formal language Declarative approach to building an
agent (or other system): Tell it what it needs toknow - Thenitcan Askitselfwhattodo—
answersshouldfollowfromtheKB Agents can be viewed at the knowledge leveli.e., what they
know, regardless of howimplemented or at the implementation leveli.e.,data

structuresinKBand algorithmsthatmanipulatethem. The Wumpus World:

A variety of "worlds" are being used as examples for Knowledge Representation, Reasoning,
and Planning. Among them the Vacuum World, the Block World, and the Wumpus World.
The Wumpus World was introduced by Genesereth, and is discussed in Russell-Norvig. The
Wumpus World is a simple world (as is the Block World) for which to represent knowledge

and to reason. It is a cave with a number of rooms, represented as a 4x4 square

Artificial Intelligence Page 62




..........

ro
)
rt
"
3
2
-

$rosvccnnna

o A ———  ———  ———
H
'
'
'
)
'
'
'
'
+
i
)
'
'
)
)
)
'
"
+
H
'
'
)
)
)
'
'
)
+

Rules of the Wumpus World The neighborhood of a node consists of the four squares north,
south, east, and west of the given square. In a square the agent gets a vector of percepts, with
components Stench, Breeze, Glitter, Bump, Scream For example [Stench, None, Glitter,
None, None] [J Stench is perceived at a square iff the wumpus is at this square or in its
neighborhood. [ Breeze is perceived at a square iff a pit is in the neighborhood of this
square. [ Glitter is perceived at a square iff gold is in this square [1 Bump is perceived at a
square iff the agent goes Forward into a wall [ Scream is perceived at a square iff the
wumpus is killed anywhere in the cave An agent can do the following actions (one at a time):
Turn (Right), Turn (Left), Forward, Shoot, Grab, Release, Climb 1 The agent can go forward
in the direction it is currently facing, or Turn Right, or Turn Left. Going forward into a wall
will generate a Bump percept. [1 The agent has a single arrow that it can shoot. It will go
straight in the direction faced by the agent until it hits (and kills) the wumpus, or hits (and is
absorbed by) a wall. [1 The agent can grab a portable object at the current square or it can
Release an object that it is holding. 1 The agent can climb out of the cave if at the Start
square.The Start square is (1,1) and initially the agent is facing east. The agent dies if it is in
the same square asthe wumpus. The objective of the game is to kill the wumpus, to pick up
the gold, and to climb out with it. Representing our Knowledge about the Wumpus World
Percept(x, y) Where x must be a percept vector and y must be a situation. It means that at

situation y theagentperceives x.For convenience we introduce the following definitions: [

Artificial Intelligence Page 63




Percept([Stench,y,z,w,v],t) = > Stench(t) [ Percept([x,Breeze,z,w,v],t) = > Breeze(t) [I
Percept([x,y,Glitter,w,v],t) = > AtGold(t) Holding(x, y)

Where x is an object and y is a situation. It means that the agent is holding the object x in
situation y. Action(x, y) Where x must be an action (i.e. Turn (Right), Turn (Left), Forward,)
and y must be a situation. It means that at situation y the agent takes action x. At(X,y,z)
Where x is an object, y is a Location, i.e. a pair [u,v] withu and v in {1, 2, 3,4}, and z is a
situation. It means that the agent x in situation z is at location y. Present(x,s) Means that
object x is in the current room in the situation s. Result(x, y) It means that the result of
applying action x to the situation y is the situation Result(x,y).Notethat Result(x,y) is a term,
not a statement. For example we can say (] Result(Forward, SO) = S1 [
Result(Turn(Right),S1) = S2 These definitions could be made more general. Since in the
Wumpus World there is a single agent, there is no reason for us to make predicates and
functions relative to a specific agent. In other"worlds" we should change things
appropriately.

Validity And Satisfiability
A sentence is valid

if it is true in all models, e.g.,True,Av-A, A=A, (AA(A=B)) =B Validity is connected to
inference via the Deduction Theorem: KB |= «if and onlyif(KB=a) isvalid
Asentenceissatisfiableifitistrue ~ insome  model e.g., AVB, C  Asentence
isunsatisfiableifitistrueinnomodels e.g., A A-A Satisfiability is connected to inference via the

following: KBJ=a iff(KBA—a)isunsatisfiable i.e., prove a by reductionandabsurdum
Proof Methods
Proof methods divide into (roughly)two kinds:

Application of inference rules — Legitimate(sound)generationofnewsentencesfromold —
Proof=asequenceofinferenceruleapplicationscanuseinferencerulesasoperatorsinastand

ardsearch algorithm —  Typicallyrequiretranslationofsentencesintoanormalform  Model
checking — Truthtableenumeration(alwaysexponentialinn) -

Artificial Intelligence Page 64




Improvedbacktracking,e.g.,Davis—Putnam—Loge Mann-Loveland - Heuristic

searchinmodelspace(soundbutincomplete) e.g.,min-conflicts-likehillclimbingalgorithms
Forward and Backward Chaining

Horn Form (restricted) KB = conjunction of Horn clauses Horn clause = — proposition
symbol;or — (conjunctionofsymbols) = symbol Example KB: CA(B = A) A (CAD = B)

Modus Ponens (for Horn Form): complete for Horn KBs
al,...,an,alA---Aa= B B

Canbeusedwithforwardchaining orbackwardchaining. These algorithms
areverynaturalandruninlineartime.,

ForwardChaining

Idea: If anyrulewhosepremisesaresatisfiedintheKB,
additsconclusiontotheKB,untilqueryisfound

ForwardChaining Algorithm

ForwardChaining Algorithm

function PL-FC-Entails?£5B,g) returns rrue or false
inputs: K5, the knowledge base, a set of propositional Horn clauses
g, the query, a proposition symbol

local variables: count, atable, indexed by clause, initially the number of premises
inferred,atable, indexed bysymbol, eachentryinitially fa/se
agenda,alistofsymbols, initiallythesymbols knownin £ £

while agenda is not empty
do p — Poplagenda)
unless mferred(p)do
inferved(p) « true
for each Horn clause ¢ in whose premise p appearsdo

decrement count[c]

Artificial Intelligence Page 65




ForwardChaining Example

Principal

. \ of F_ng.ineerinq
Proof of Completeness Vaageswart O AR 508 527.

FC derives every atomic sentence that is entailed by KB

Artificial Intelligence Page 66




1. FCreachesafixedpointwherenonewatomicsentencesarederived
2. Considerthefinalstateasamodelm,assigningtrue/falsetosymbols

3. Every clause in the original KB is true inm i. Proof:SupposeaclausealA...Aak=bisfalsei
nm Then alA. . . Aakis true in m and b is false in m
Thereforethealgorithmhasnotreachedafixedpoint ! 4. Hence m is a model ofKB 5.
IfKB|=q,thengistrueineverymodelofKB,includingm a. Generalidea:
constructanymodelofK Bby soundinference,checka

Backward Chaining

Idea:workbackwardsfromthequeryq: to prove q byBC, check if g is known already, or prove
by BC all premises of some rule concluding g  Avoidloops:
checkifnewsubgoalisalreadyonthegoalstack Avoid repeated work: check if new subgoal 1.

has already been proved true, or 2. has alreadyfailed

Artificial Intelligence Page 67




Forward vs Backward Chaining

FC IS data-driven, cf. automatic, unconscious processing,
e.g.,0bjectrecognition,routinedecisions Maydolotsofworkthatisirrelevanttothegoal BC is goal-
driven, appropriate forproblem-solving, e.g., Where are my keys? How do | get into a PhD
program? Complexity of BC can be much less than linear in size of KB

FIRST ORDER LOGIC:

Artificial Intelligence Page 68




PROCEDURAL LANGUAGES AND PROPOSITIONAL LOGIC:

Drawbacks of Procedural Languages

Programming languages (such as C++ or Java or Lisp) are by far the largest class of formal
languages in common use. Programs themselves represent only computational processes. Data

structures within programs can represent facts.

For example, a program could use a 4 x 4 array to represent the contents of the wumpus world.
Thus, the programming language statement World*2,2+<& Pit is a fairly natural way to assert that

there is a pit in square [2,2].

What programming languages lack is any general mechanism for deriving facts from other facts;
each update to a data structure is done by a domain-specific procedure whose details are derived by

the programmer from his or her own knowledge of the domain.

A second drawback of is the lack the expressiveness required to handle partial information . For
example data structures in programs lack the easy way to say, “There is a pit in *2,2+ or *3,1+” or “If

the wumpus is in *1,1+ then he is not in *2,2+.”

Advantages of Propositional Logic

The declarative nature of propositional logic, specify that knowledge and inference are separate,
and inference is entirely domain-independent. @ Propositional logic is a declarative language because
its semantics is based on a truth relation between sentences and possible worlds. & It also has

sufficient expressive power to deal with partial information, using disjunction and negation.

Propsitional logic has a third COMPOSITIONALITY property that is desirable in representation
languages, namely, compositionality. In a compositional language, the meaning of a sentence is a
function of the meaning of its parts. For example, the meaning of “S1,4A S1,2” is related to the

meanings of “S1,4” and “S1,2.

Drawbacks of Propositional Logic B Propositional logic lacks the expressive power to concisely

describe an environment with many objects.

For example, we were forced to write a separate rule about breezes and pits for each square, such

as B1,1& (P1,2 vV P2,1).

Artificial Intelligence Page 69




In English, it seems easy enough to say, “Squares adjacent to pits are breezy.” & The syntax and

semantics of English somehow make it possible to describe the environment concisely
SYNTAX AND SEMANTICS OF FIRST-ORDER LOGIC
Models for first-order logic :

The models of a logical language are the formal structures that constitute the possible worlds under
consideration. Each model links the vocabulary of the logical sentences to elements of the possible
world, so that the truth of any sentence can be determined. Thus, models for propositional logic
link proposition symbols to predefined truth values. Models for first-order logic have objects. The
domain of a model is the set of objects or domain elements it contains. The domain is required to be

nonempty—every possible world must contain at least one object.

A relation is just the set of tuples of objects that are related. B Unary Relation: Relations relatesto
single Object B Binary Relation: Relation Relates to multiple objects Certain kinds of relationshipsare

best considered as functions, in that a given object must be related to exactly one object.
For Example:

Richard the Lionheart, King of England from 1189 to 1199; His younger brother, the evil King John,

who ruled from 1199 to 1215; the left legs of Richard and John; crown

crown

on head
brother

person pcrson

king

G brother

left leg left leg

Artificial Intelligence Page 70




Unary Relation : John is a king Binary Relation :crown is on head of john, Richard is brother ofjohn
The unary "left leg" function includes the following mappings: (Richard the Lionheart) ->Richard's

left leg (King John) ->Johns left Leg
Symbols and interpretations

Symbols are the basic syntactic elements of first-order logic. Symbols stand for objects,

relations, and functions.

The symbols are of three kinds: B Constant symbols which stand for objects; Example: John,
Richard B Predicate symbols, which stand for relations; Example: OnHead, Person, King, and Crown

Function symbols, which stand for functions. Example: left leg
Symbols will begin with uppercase letters.

Interpretation The semantics must relate sentences to models in order to determine truth. For this
to happen, we need an interpretation that specifies exactly which objects, relations and functions

are referred to by the constant, predicate, and function symbols.
For Example:

Richard refers to Richard the Lionheart and John refers to the evil king John. & Brother refers to
the brotherhood relation @ OnHead refers to the "on head relation that holds betweenthe crown
and King John; @ Person, King, and Crown refer to the sets of objects that are persons, kings, and

crowns. @ LeftLeg refers to the "left leg" function,

The truth of any sentence is determined by a model and an interpretation for the sentence's
symbols. Therefore, entailment, validity, and so on are defined in terms of all possiblemodels and all
possible interpretations. The number of domain elements in each model may be unbounded-for
example, the domain elements may be integers or real numbers. Hence, the number of possible

models is anbounded, as is the number of interpretations.

Term

ll)-l-"ilk'..il'.l‘ .
. e of Engineern q
Vaageswan College 505 527

WARIMNAGAR

Artificial Intelligence Page 71




A term is a logical expression that refers to an object. Constant symbols are therefore terms.
Complex Terms A complex term is just a complicated kind of name. A complex term is formed by a
function symbol followed by a parenthesized list of terms as arguments to the function symbol For
example: "King John's left leg" Instead of using a constant symbol, we use LeftLeg(John). The formal

semantics of terms :

Consider a term f (tl,. . ., t,). The function symbol frefers to some function in the model (F); the
argument terms refer to objects in the domain (call them d1....dn); and the term as a whole refers to
the object that is the value of the function Fapplied to dI, . . ., d,. For example,: the LeftLeg
function symbol refers to the function “ (King John) -+ John's left leg” and John refers to King John,
then LeftLeg(John) refers to King John's left leg. In this way, the interpretation fixes the referent of

every term.
Atomic sentences

An atomic sentence is formed from a predicate symbol followed by a parenthesized list of terms:

For Example: Brother(Richard, John).

Atomic sentences can have complex terms as arguments. For Example: Married (Father(Richard),

Mother( John)).

An atomic sentence is true in a given model, under a given interpretation, if the relation referred to

by the predicate symbol holds among the objects referred to by the arguments

Complex sentences Complex sentences can be constructed using logical Connectives, just as in

propositional calculus. For Example:

1)]-'“lk-'|1|:|\ .
. e of Eng'.ner-f'-" .]
Vaageswari College 505 527

WARIMNAGAR

Artificial Intelligence Page 72




—Brother (LeftLeg(Richard), John)

Brother (Richard . John) A Brother (John, Richard)
King(Richard ) V King(John)

—King(Richard) = King(John)

NS

Quantifiers

Quantifiers express properties of entire collections of objects, instead of enumerating the objects by
name.
First-order logic contains two standard quantifiers:

1. Universal Quantifier

2. Existential Quantifier

Universal Quantifier

Universal quantifier is defined as follows:

“Given a sentence Vx P, where P is any logical expression, says that P is true for every object x.”
More precisely, Vx P is true 1n a given model if P is true in all possible extended interpretations
constructed from the interpretation given in the model, where each extended interpretation specifies a
domain element to which x refers.

For Example: “All kings are persons,” 1s written in first-order logic as

VxKing(x) =Person(x) .

V 1s usually pronounced “For all”
Thus, the sentence says, -For all x, if x is a king, then x is a person.l The symbol x is called
a variable. Variables are lowercase letters. A variable is a term all by itself, and can also

serve as the argument of a function A term with no variables is called a ground term.

Assume we can extend the interpretation in different ways: x= Richard the Lionheart, x=> King

John, x= Richard’s left leg, x> John’s left leg, x> the crown

The universally quantified sentence Vx King(x) =Person(x) is true in the original model if the
sentence King(x) =Person(x) is true under each of the five extended interpretations. That is, the

universally quantified sentence is equivalent to asserting the following five sentences:

Richard the Lionheart is a king =Richard the Lionheart is a person. King John is a king =King John is
a person. Richard’s left leg is a king =Richard’s left leg is a person. John’s left leg is a king =John’s

left leg is a person. The crown is a king =the crown is a person.
Existential quantification (3)

Universal quantification makes statements about every object. Similarly, we can make a statement

about some object in the universe without naming it, by using an existential quantifier.

Artificial Intelligence Page 73




“The sentence Jx P says that P is true for at least one object x. More precisely, Ix P is true in a given
model if P is true in at least one extended interpretationthat assigns x to a domain element.” 3x is

pronounced “There exists an x such that...” or “For some x . ..".
For example, that King John has a crown on his head, we write 3xCrown(x) AOnHead(x, John)
Given assertions:

Richard the Lionheart is a crown ARichard the Lionheart is on John’s head; King John is a crown
AKing John is on John’s head; Richard’s left leg is a crown ARichard’s left leg is on John’s head; John's
left leg is a crown Alohn’s left leg is on John’s head; The crown is a crown Athe crown is on John’s
head. The fifth assertion is true in the model, so the original existentially quantified sentence is true
in the model. Just as =appears to be the natural connective to use with Vv, Ais the natural

connective to use with 3.

Nested quantifiers

One can express more complex sentences using multiple quantifiers.

For example, “Brothers are siblings” can be written as VxVy Brother (x, y) =Sibling(x, y).

Consecutive quantifiers of the same type can be written as one quantifier with several variables.
For example, to say that siblinghood is a symmetric relationship,
we can writeVx, y Sibling(x, y) ©Sibling(y, x).

In other cases we will have mixtures.

For example: 1. “Everybody loves somebody” means that for every person, there is someone that
person loves: ¥x3y Loves(x, y) . 2. On the other hand, to say “There is someone who is loved by

everyone,” we write 3yVx Loves(x, y) .
Connections between Yand 3

Universal and Existential quantifiers are actually intimately connected with each other, through

negation.

Artificial Intelligence Page 74




Example assertions: 1. “ Everyone dislikes medicine” is the same as asserting “ there does not exist
someone who likes medicine” , and vice versa: “Vx —Likes(x, medicine)” is equivalent to “—3x
Likes(x, medicine)”. 2. “Everyone likes ice cream” means that “ there is no one who does not like ice

cream” : VxLikes(x, lceCream) is equivalent to —3x —Likes(x, IceCream) .

Because Vis really a conjunction over the universe of objects and Tis a disjunction that they obey De

Morgan’s rules. The De Morgan rules for quantified and unquantified sentences are as follows:

Because Vis really a conjunction over the universe of objects and 3is a disjunction that they obey De
Morgan’s rules. The De Morgan rules for quantified and unquantified sentences are as follows:

Vo -P = -dz P -(PVvQ) = -PA-Q

-V P = Jx -P -(PAQ) = -PV-Q

Vz P = -dz P PAQ = —(-PV-Q)
dz P = —-Vz -P PvQ@ = —(-PA-Q)..

Thus, Quantifiers are important in terms of readability.

Equality

First-order logic includes one more way to make atomic sentences, other than using a predicateand

terms .We can use the equality symbol to signify that two terms refer to the same object.

For example,

“Father(John) =Henry” says that the object referred to by Father (John) and the object referred to by

Henry are the same.

Because an interpretation fixes the referent of any term, determining the truth of an equality
sentence is simply a matter of seeing that the referents of the two terms are the same object.The
equality symbol can be used to state facts about a given function.It can also be used with negation

to insist that two terms are not the same object.

For example,

“Richard has at least two brothers” can be written as, 3x, y Brother (x,Richard ) ABrother (y,Richard

) A7 (x=y) .

Artificial Intelligence Page 75




The sentence

3x, y Brother (x,Richard ) ABrother (y,Richard ) does not have the intended meaning. In particular, it
is true only in the model where Richard has only one brother considering the extended
interpretation in which both x and y are assigned to King John. The addition of —(x=y) rules out such

models.

Predicat Tvue | F After | Loves | Raining
Functior Mother | Leftleg

OPFERATOR PRECEDENCE

Backus Naur Form for First Order Logic

USING FIRST ORDER LOGIC Assertions and queries in first-order logic
Assertions:

Sentences are added to a knowledge base using TELL, exactly as in propositional logic. Such

sentences are called assertions.
For example,

John is a king, TELL (KB, King (John)). Richard is a person. TELL (KB, Person (Richard)). All kings are

persons: TELL (KB, Vx King(x) =Person(x)).
Asking Queries:

We can ask questions of the knowledge base using ASK. Questions asked with ASK are called

queries or goals.

Artificial Intelligence Page 76




For example,

ASK (KB, King (John)) returns true.

Anyquery that is logically entailed by the knowledge base should be answered affirmatively.
Forexample, given the two preceding assertions, the query:

“ASK (KB, Person (John))” should also return true.

Substitution or binding list

We can ask quantified queries, such as ASK (KB, 3x Person(x)) .

The answer is true, but this is perhaps not as helpful as we would like. It is rather like answering

“Can you tell me the time?” with “Yes.”

If we want to know what value of x makes the sentence true, we will need a different function,

ASKVARS, which we call with ASKVARS (KB, Person(x)) and which yields a stream of answers.

In this case there will be two answers: {x/John} and {x/Richard}. Such an answer is called a

substitution or binding list.

ASKVARS is usually reserved for knowledge bases consisting solely of Horn clauses, because in such

knowledge bases every way of making the query true will bind the variables to specific values.
The kinship domain

The objects in Kinship domain are people.

We have two unary predicates, Male and Female.

Kinship relations—parenthood, brotherhood, marriage, and so on—are represented by binary
predicates: Parent, Sibling, Brother,Sister,Child, Daughter, Son, Spouse, Wife, Husband,

Grandparent,Grandchild, Cousin, Aunt, and Uncle.
We use functions for Mother and Father, because every person has exactly one of each of these.

We can represent each function and predicate, writing down what we know in termsof the other

symbols.

Artificial Intelligence Page 77




For example:- 1. one’s mother is one’s female parent: Ym, c Mother (c)=m <Female(m) AParent(m,

).

2. 0One’s husband is one’s male spouse: Vw, h Husband(h,w) &Male(h) ASpouse(h,w) .
3. Male and female are disjoint categories: VxMale(x) & —Female(x) .

4. Parent and child are inverse relations: Vp, c Parent(p, c) <Child (c, p) .

5. A grandparent is a parent of one’s parent: Vg, c Grandparent (g, c) ©3p Parent(g, p) AParent(p, c)

6. A sibling is another child of one’s parents: Vx, y Sibling(x, y) ©&x _=y A3p Parent(p, x) AParent(p,
y).

Axioms:

Each of these sentences can be viewed as an axiom of the kinship domain. Axioms are commonly
associated with purely mathematical domains. They provide the basic factual information from

which useful conclusions can be derived.
Kinship axioms are also definitions; they have the form Vx, y P(x,y) ©. . ..

The axioms define the Mother function, Husband, Male, Parent, Grandparent, and Sibling predicates

in terms of other predicates.

Our definitions “bottom out” at a basic set of predicates (Child, Spouse, and Female) in terms of
which the others are ultimately defined. This is a natural way in which to build up the representation
of a domain, and it is analogous to the way in which software packages are built up by successive

definitions of subroutines from primitive library functions.
Theorems:

Not all logical sentences about a domain are axioms. Some are theorems—that is, they are entailed

by the axioms.

For example, consider the assertion that siblinghood is symmetric: Vx, y Sibling(x, y) <Sibling(y, x) .

Artificial Intelligence Page 78




It is a theorem that follows logically from the axiom that defines siblinghood. If we ASK the
knowledge base this sentence, it should return true. From a purely logical point of view, a
knowledge base need contain only axioms and no theorems, because the theorems do not increase
the set of conclusions that follow from the knowledge base. From a practical point of view,
theorems are essential to reduce the computational cost of deriving new sentences. Without them,

a reasoning system has to start from first principles every time.
Axioms :Axioms without Definition

Not all axioms are definitions. Some provide more general information about certain predicates
without constituting a definition. Indeed, some predicates have no complete definition because we

do not know enough to characterize them fully.
For example, there is no obvious definitive way to complete the sentence
VxPerson(x) ©. ..

Fortunately, first-order logic allows us to make use of the Person predicate without completely
defining it. Instead, we can write partial specifications of properties that every person has and

properties that make something a person:
VxPerson(x) =...Vx...=Person(x).

Axioms can also be “just plain facts,” such as Male (Jim) and Spouse (Jim, Laura).Such facts form the
descriptions of specific problem instances, enabling specific questions to be answered. The answers

to these questions will then be theorems that follow from the axioms
Numbers, sets, and lists
Number theory

Numbers are perhaps the most vivid example of how a large theory can be built up from NATURAL
NUMBERS a tiny kernel of axioms. We describe here the theory of natural numbers or non-negative

integers. We need:

predicate NatNum that will be true of natural numbers; @ one PEANO AXIOMS constant symbol, O;

One function symbol, S (successor). @ The Peano axioms define natural numbers and addition.

Artificial Intelligence Page 79




Natural numbers are defined recursively: NatNum(0) . ¥n NatNum(n) = NatNum(S(n)) .

That is, 0 is a natural number, and for every object n, if n is a natural number, then S(n) is a natural

number.

So the natural numbers are 0, S(0), S(S(0)), and so on. We also need axioms to constrain the

successor function: Yn0 !=S(n). Vm, nm I=n= S(m) !=S(n) .

Now we can define addition in terms of the successor function: Ym NatNum(m) = + (0, m) =m .

Vm, n NatNum(m) A NatNum(n) = + (S(m), n) = S(+(m, n))

The first of these axioms says that adding 0 to any natural number m gives m itself. Addition is

represented using the binary function symbol “+” in the term + (m, 0);

To make our sentences about numbers easier to read, we allow the use of infix notation. We can

also write S(n) as n + 1, so the second axiom becomes :
Vm, n NatNum (m) A NatNum(n) = (m+ 1) +n=(m +n)+1.

This axiom reduces addition to repeated application of the successor function. Once we have
addition, it is straightforward to define multiplication as repeated addition, exponentiation as
repeated multiplication, integer division and remainders, prime numbers, and so on. Thus, the
whole of number theory (including cryptography) can be built up from one constant, one function,

one predicate and four axioms.
Sets

The domain of sets is also fundamental to mathematics as well as to commonsense reasoning. Sets

can be represented as individualsets, including empty sets.

Sets can be built up by: adding an element to a set or B Taking the union or intersection of two

sets.

Operations that can be performed on sets are: I To know whether an element is a merber of a set

Distinguish sets from objects that are not sets. U \r\)&
N

Vocabulary of set theory: AT
Pranc ya L
Vaageswari College of Engineering

KARIMNAGAR 505 527

Artificial Intelligence Page 80




The empty set is a constant written as { }. There is one unary predicate, Set, which is true of sets.

The binary predicates are
€ s (x isamember of sets) I sIE s2 (set sl is a subset, not necessarily proper, of set s2).
The binary functions are

s1 N s2 (the intersection of two sets), stll s2 (the union of two sets), and ,X|s- (the set resulting

from adjoining element x to set s).

One possible set of axioms is as follows:

The only sets are the empty set and those made by adjoining something to a set:VsSet(s) ©(s={})
V(3x, s2 Set(s2) As={x|s2}) . @ The empty set has no elements adjoined into it. In other words, thereis
no way to decompose {} into a smaller set and an element: —3x, s {x|s}={} . @ Adjoining an
element already in the set has no effect: Vx, s x€s ©s={x|s} . @ The only members of a set are the
elements that were adjoined into it. We express this recursively, saying that x is a member of s if and
only if s is equal to some set s2 adjoined with some element y, where either y is the same as x or x is
a member of s2: Vx, s x€s &3y, s2 (s={y|s2} A(x=y VxEs2)) @ A set is a subset of another set if and
only if all of the first set’'s members are members of the second set: Vs1, s2 s1 Cs2 &(Vx xEsl
=x€Es2) I Two sets are equal if and only if each is a subset of the othe: Vsl, s2 (s1 =s2) &(s1 Ss2

As2 Cs1)

An object is in the intersection of two sets if and only if it is a member of both sets:Vx, s1, s2x€(s1
N s2) ©(xEsl AxEs2) B An object is in the union of two sets if and only if it is a member ofeither

set: Vx, s1, s2 x€(s1 Us2) & (xEsl VxEs2)

Lists : are similar to sets. The differences are that lists are ordered and the same element canappear

more than once in a list. We can use the vocabulary of Lisp for lists:

Nil is the constant list with no element;s @ Cons, Append, First, and Rest are functions; B Find isthe
predicate that does for lists what Member does for sets. B List? is a predicate that is true only of lists.

The empty listis * +. I The term Cons(x, y), where y is a nonempty list, is wten [x|y]. @ The

Artificial Intelligence Page 81




term Cons(x, Nil) (i.e., the list containing the element x) is written as [x]. B A list of several elements,

such as [A,B,C], corresponds to the nested term B Cons(A, Cons(B, Cons(C, Nil))).
The wumpus world
Agents Percepts and Actions

The wumpus agent receives a percept vector with five elements. The corresponding first-order
sentence stored in the knowledge base must include both the percept and the time at which it
occurred; otherwise, the agent will get confused about when it saw what.We use integers for time

steps. A typical percept sentence would be

Percept ([Stench, Breeze, Glitter,None, None], 5).

Here, Percept is a binary predicate, and Stench and so on are constants placed in a list. The actions

in the wumpus world can be represented by logical terms:

Turn (Right), Turn (Left), Forward,Shoot,Grab, Climb.

To determine which is best, the agent program executes the query:
ASKVARS (Ja BestAction (a, 5)), which returns a binding list such as {a/Grab}.
The agent program can then return Grab as the action to take.

The raw percept data implies certain facts about the current state.

For example: Vt, s, g, m, ¢ Percept ([s, Breeze, g,m, c], t) =Breeze(t) , Vt, s, b, m, c Percept ([s, b,

Glitter,m, c], t) =>Glitter (t),

U

‘l’l'i.iu""l."-"‘ .

. e Of Eﬂ(‘;'-“e'“r"nﬂ'
i eswani College =
'aagKAR\'.'J\.“!-“"—““R 505 527

Artificial Intelligence Page 82




UNIT IlI: Propositional Logic: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional
Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and
backward chaining, Effective Propositional Model Checking, Agents Based on Propositional Logic.

UNIT 11l — Knowledge and Reasoning

These rules exhibit a trivial form of the reasoning process called perception.
Simple -reflex|l behavior can also be implemented by quantified implication sentences.
For example, we have ViGlitter (t) =BestAction(Grab, t) .

Given the percept and rules from the preceding paragraphs, this would yield the desired

conclusion Best Action (Grab, 5)—that is, Grab is the right thing to do.
Environment Representation

Obijects are squares, pits, and the wumpus. Each square could be named—Squarel,2and so
on—but then the fact that Squarel,2and Squarel,3 are adjacent would have to be an -extrall
fact, and this needs one suchfact for each pair of squares. It is better to use a complex term in

which the row and columnappear as integers;
For example, we can simply use the list term [1, 2].
Adjacency of any two squares can be defined as:

VX, Y, a, b Adjacent ([X,y], [a,b]) ©® x=aAly=b—-1vy=b+1) vV(y=bA(x=a—-1vx
=a+1l)).

Each pit need not be distinguished with each other. The unary predicate Pit is true of squares

containing pits.

Since there is exactly one wumpus, a constant Wumpus is just as good as a unary predicate.
The agent’s location changes over time, so we write At (Agent, s, t) to mean that theagent is
at square s at time t.

To specify the Wumpus location (for example) at [2, 2] we can write Vt At (Wumpus, [2, 2],

Artificial Intelligence Page 83




t).
Obijects can only be at one location at a time: Vx, s1, s2, t At(x, s1, t) AAt(X, s2,t) =sl1 =s2.

Given its current location, the agent can infer properties of the square from properties of its

current percept.
For example, if the agent is at a square and perceives a breeze, then that square is breezy:

Vs, t At(Agent, s, t) ABreeze(t) =Breezy(s) .

It is useful to know that a square is breezy because we know that the pits cannot move about.
Breezy has no time argument.

Having discovered which places are breezy (or smelly) and, very importantly, not breezy (or

not smelly), the agent can deduce where the pits =e (and where the wumpus is).
There are two kinds of synchronic rules that could allow such deductions:
Diagnostic rules:

Diagnostic rules lead from observed effects to hidden causes. For finding pits, the obvious

diagnostic rules say that if a square is breezy, some adjacent square must contain a pit, or
Vs Breezy(s) =3r Adjacent (r, s)APit(r) ,

and that if a square is not breezy, no adjacent square contains a pit: Vs—Breezy (s) =—3r
Adjacent (r, s) A Pit (,r) .Combining these two, we obtain the biconditional sentence Vs

Breezy (s )<3r Adjacent(r, s) A Pit (r) .
Causal rules:

Causal rules reflect the assumed direction of causality in the world: some hidden property of
the world causes certain percepts to be generated. For example, a pit causes all adjacent

squares to be breezy:

and if all squares adjacent to a given square are pitless, the square will not be breezy: vs[vr

Adjacent (r, s) =—Pit (r)] = Breezy (s).

Artificial Intelligence Page 84




It is possible to show that these two sentences together are logically equivalent to the

biconditional sentence — Vs Breezy (s )<3r Adjacent(r, s) A Pit (r)l .

The biconditional itself can also be thought of as causal, because it states how the truth value

of Breezy is generated from the world state.

Systems that reason with causal rules are called model-based reasoning systems, because the

causal rules form a model of how the environment operates.

Whichever kind of representation the agent uses, ifthe axioms correctly and completely
describe the way the world works and the way that percepts are produced, then any complete
logical inference procedure will infer the strongest possible description of the world state,
given the available percepts. Thus, the agent designer can concentrate on getting the
knowledgeright, without worrying too much about the processes of deduction.

Inference in First-Order Logic

Propositional Vs First Order Inference
Earlier inference in first order logic is performed with Propositionalization which is a process of

converting the Knowledgebase present in First Order logic into Propositional logic and on that
using any inference mechanisms of propositional logic are used to check inference.

Inference rules for quantifiers:

There are some Inference rules that can be applied to sentences with quantifiers to obtain
sentences without quantifiers. These rules will lead us to make the conversion.

Universal Instantiation (UI):

The rule says that we can infer any sentence obtained by substituting a ground term (a term
without variables) for the variable. Let SUBST (0) denote the result of applying the substitution
Oto the sentence a. Then the rule is written

Vv a
Surst({v/g}, )

For any variable v and ground term g.

For example, there is a sentence in knowledge base stating that all greedy kings are Evils
Artificial Intelligence Page 85




vx King(x) A Greedy(x)=> Euil(z) .
For the variable x, with the substitutions like {x/John},{x/Richard}the following sentences can

be inferred.

King(John) A Greedy(John) = Evil(John).
King(Richard) A Greedy( Richard) = Euvil( Richard) .

Thus a universally quantified sentence can be replaced by the set of all possible instantiations.

Existential Instantiation (El):
The existential sentence says there is some object satisfying a condition, and the instantiation

process is just giving a name to that object, that name must not already belong to another object.
This new name is called a Skolem constant. Existential Instantiation is a special case of a more

general process called “skolemization”.

For any sentence a, variable v, and constant symbol k that does not appear elsewhere in the
knowledge base,

SussT({v/k}. )
For example, from the sentence

3x Crown(z) A OnHead(x,John)

So, we can infer the sentence
Crown(Ch) 4 OnHead(C, John)

As long as C; does not appear elsewhere in the knowledge base. Thus an existentially quantified
sentence can be replaced by one instantiation

Elimination of Universal and Existential quantifiers should give new knowledge base which can
be shown to be inferentially equivalentto oldin the sense that it is satisfiable exactly when the

original knowledge base is satisfiable.

Reduction to propositional inference:

Once we have rules for inferring non quantified sentences from quantified sentences, it becomes
possible to reduce first-order inference to propositional inference. For example, suppose our
knowledge base contains just the sentences

Artificial Intelligence Vx King(x)A Greedy(x) = Evil(x) Page 86
King(John)

Paga )

. I
‘Jfﬁ-'wl} TJUIIFE)I'

Brother( Richard, John) .




[

Then we apply Ul to the first sentence using all possible ground term substitutions from the
vocabulary of the knowledge base-in this case, {xI John) and {x/Richard). We obtain

King(John) A Greedy(John) = Evil(John),
King (Richard) A Greedy(Richard) = Evil(Richard)

We discard the universally quantified sentence. Now, the knowledge base is essentially
propositional if we view the ground atomic sentences-King (John), Greedy (John), and Brother
(Richard, John) as proposition symbols. Therefore, we can apply any of the complete
propositional algorithms to obtain conclusions such as Evil (John).

Disadvantage:

If the knowledge base includes a function symbol, the set of possible ground term substitutions is
infinite. Propositional algorithms will have difficulty with an infinitely large set of sentences.
NOTE.:

Entailment for first-order logic is semi decidable which means algorithms exist that say yes to

every entailed sentence, but no algorithm exists that also says no to every non entailed sentence

Unification and Lifting

Consider the above discussed example, if we add Siblings (Peter, Sharon) to the knowledge base
then it will be

Vx King(x) n Greedy(x) = Evil(x)
King(John)

Greedy(John)

Brother(Richard, John)
Siblings(Peter, Sharon)

Removing Universal Quantifier will add new sentences to the knowledge base which are not
necessary for the query Evil (John)?

King(John) » GreedW(John) = Evil{John)
King(Richard) » Greedv(Richard) = Evil(Richard)
King(Peter) » Greedv(Peter) = Evil(Peter)
King(Sharon) ~ Greedv(Sharon) = Evil(Sharon)

Hence we need to teach the computer to make better inferences. For this purpose Inference rules

were used.
Artificial Intelligence Page 87




First Order Inference Rule:
The key advantage of lifted inference rules over propositionalization is that they make only those

substitutions which are required to allow particular inferences to proceed.

Generalized Modus Ponens:

If there is some substitution 0 that makes the premise of the implication identical to sentences
already in the knowledge base, then we can assert the conclusion of the implication, after
applying 0. This inference process can be captured as a single inference rule called Generalized
Modus Ponens which is a liftedversion of Modus Ponens-it raises Modus Ponens from
propositional to first-order logic

For atomic sentences pi, pi ', and g, where there is a substitution 6 such that SUBST( 6 , pi ) =
SUBST(0 , pi "), for all i,

pl', p2' ...,pn" (pPLAP2A...Apn=Q)

SUBST (9, q)

There are N + 1 premises to this rule, N atomic sentences + one implication.
Applying SUBST (6, q) yields the conclusion we seek. It is a sound inference rule.

Suppose that instead of knowing Greedy (John) in our example we know that everyone is
greedy:
vy Greedy(y)

We would conclude that Evil(John).

Applying the substitution {x/John, y / John) to the implication premises King ( x ) and Greedy (
x ) and the knowledge base sentences King(John) and Greedy(y)will make them identical. Thus,

we can infer the conclusion of the implication.

For our example,

Artificial Intelligence Page 88




p1'is King( John) p1is King(z)
po’is Greedy(y) o is Greedy(z)
Sis{z/John,y/John) qis Bal(x)
SUBST(#, g)is Bdl(John).

Unification:

It is the process used to find substitutions that make different logical expressions look identical.
Unification is a key component of all first-order Inference algorithms.
UNIFY (p, g) = 6 where SUBST (6, p) = SUBST (0, g) 6 is our unifier value (if one exists).
Ex: —Who does John know?I
UNIFY (Knows (John, x), Knows (John, Jane)) = {x/ Jane}.
UNIFY (Knows (John, x), Knows (y, Bill)) = {x/Bill, y/ John}.
UNIFY (Knows (John, x), Knows (y, Mother(y))) = {x/Bill, y/ John}
UNIFY (Knows (John, x), Knows (x, Elizabeth)) = FAIL

» The last unification fails because both use the same variable, X. X can’t equal both John
and Elizabeth. To avoid this change the variable X to Y (or any other value) in Knows(X,
Elizabeth)

Knows(X, Elizabeth) — Knows(Y, Elizabeth)

Still means the same. This is called standardizing apart.
» sometimes it is possible for more than one unifier returned:
UNIFY (Knows (John, x), Knows(y, z)) =??7?

This can return two possible unifications: {y/ John, x/ z} which means Knows (John, z) OR {y/
John, x/ John, z/ John}. For each unifiable pair of expressions there is a single most general
unifier (MGU), In this case it is {y/ John, x/z).

=Y
N © .
An algorithm for computing most general unifiers is shown below. w

Principal .

inaering
\aageswari College oE En(:;;
WARIMNAGAR 505 52

Artificial Intelligence Page 89




function UNIFY(2, ¥,0) returns a substitution to make x and y identical
inputs: x, a variable, constant. list, or compound
y. a variable, constant, list, or compound
@, the substitution built up so far (optional. defaults to empty)

if 0 = failure then return failure
else if x = y then return 8
else if VARIABLE?(z) then return UNIFY-VAR(z, 1,0)
else if VARIABLE?(y) then return UNIFY-VAR(y,X,0)
else if COMPOUND?(z) and COMPOUND?(y) then
return UNIFY(ARGS[z], ARGS[y], UNIFY(OP[2], Op|y].0))
else if LIST?(x) and LIST?(y) then
return UNIFY(REST[z], REST[»], UNIFY(FIRST[x], FIRST[y).0))
else return failure

function UNIFY-VAR(var, v, 0) returns a substitution
inputs: var, a variable
X, any expression
0, the substitution built up so far

if {var/val} € 6 then return UNIFY(val, z,0)
elseif {x/val} € @ then return UNIFY(var, val,f)
else if OCCUR-CHECK ?(var, ) then return failure
else return add {vari/x) to 6

Figure 2.1 The unification algorithm. The algorithm works by comparing the structures of the
inputs, element by element. The substitution 0 that is the argument to UNIFY is built up along the
way and is used to make sure that later comparisons are consistent with bindings that were
established earlier. In a compound expression, such as F (A, B), the function OP picks out the
function symbol F and the function ARCS picks out the argument list (A, B).

The process is very simple: recursively explore the two expressions simultaneously "side by
side,” building up a unifier along the way, but failing if two corresponding points in the

structures do not match. Occur check step makes sure same variable isn’t used twice.

Storage and retrieval
» STORE(s) stores a sentence s into the knowledge base

Artificial Intelligence Page 90




» FETCHO(s) returns all unifiers such that the query g unifies with some sentence in the
knowledge base.
Easy way to implement these functions is Store all sentences in a long list, browse list one
sentence at a time with UNIFY on an ASK query. But this is inefficient.
To make FETCH more efficient by ensuring that unifications are attempted only with sentences
that have some chance of unifying. (i.e. Knows(John, x) vs. Brother(Richard, John) are not
compatible for unification)
» To avoid this, a simple scheme called predicate indexingputs all the Knows facts in one
bucket and all the Brother facts in another.
» The buckets can be stored in a hash table for efficient access. Predicate indexing is useful

when there are many predicate symbols but only a few clauses for each symbol.

But if we have many clauses for a given predicate symbol, facts can be stored under multiple
index keys.

For the fact Employs (AIMA.org, Richard), the queries are
Employs (A IMA. org, Richard) Does AIMA.org employ Richard?
Employs (x, Richard) who employs Richard?

Employs (AIMA.org, y) whom does AIMA.org employ?

Employs Y(x), who employs whom?

We can arrange this into a subsumption lattice, as shown below.

Employs(x,y) Employs(x,y)
Employs(x,Richard) Employs(AIMA.org.y) Employs(x,John) Employs(x,x) Employs
Employs(A IMA.. org,Richard) Emplovs(John,John)
(a) (b)

Figure 2.2 (a) The subsumption lattice whose lowest node is the sentence Employs (AIMA.org,
Richard). (b) The subsumption lattice for the sentence Employs (John, John).

A subsumption lattice has the following properties:
v" child of any node obtained from its parents by one substitution
v’ the -highestl common descendant of any two nodes is the result of applying their most

general unifier

Artificial Intelligence Page 91




[0

v’ predicate with n arguments contains O(2n ) nodes (in our example, we have two
arguments, so our lattice has four nodes)

v Repeated constants = slightly different lattice.

Forward Chainin

First-Order Definite Clauses:
A definite clause either is atomic or is an implication whose antecedent is a conjunction of
positive literals and whose consequent is a single positive literal. The following are first-order
definite clauses:

King(x) 4 Greedv(x) = Evil(x) .

King(John) .

Greedy(y) .

Unlike propositional literals, first-order literals can include variables, in which case those
variables are assumed to be universally quantified.

Consider the following problem;

“The law says that it is a crime for an American to sell weapons to hostile nations. The
country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it
by Colonel West, who is American.”

We will represent the facts as first-order definite clauses

... Itisacrime for an American to sell weapons to hostile nations™:

American{z) A Weapon(y) n Sells(z.y, z) A Hostale(2) = Crimenal(x) (1)

"Nono . . . has some missiles."” The sentence 3 x Owns (Nono, .rc) A Missile (x) is transformed

into two definite clauses by Existential Elimination, introducing a new constant M1:

Owns (Nono, M1) ------------------ )
Missile (M) (3)
"All of its missiles were sold to it by Colonel West™:
Missile (x) A Owns (Nono, x) =>Sells (West, z, NONQ) ----------------- (4)
We will also need to know that missiles are weapons:
Missile (x) =>Weapon (X) ----------- (5)

Artificial Intelligence Page 92




We must know that an enemy of America counts as "hostile":

Enemy (x, America) =>Hostile(x) ----------- (6)
"West, who is American™:

American (West) ---------------- (7)
"The country Nono, an enemy of America ":

Enemy (Nono, America) ------------ (8)

A simple forward-chaining algorithm:
» Starting from the known facts, it triggers all the rules whose premises are satisfied,
adding their conclusions lo the known facts
» The process repeats until the query is answered or no new facts are added. Notice that a

fact is not "new" if it is just renamingof a known fact.

We will use our crime problem to illustrate how FOL-FC-ASK works. The implication sentences
are (1), (4), (5), and (6). Two iterations are required:

v On the first iteration, rule (1) has unsatisfied premises.

Rule (4) is satisfied with {x/MI), and Sells (West, M1, Nono) is added.

Rule (5) is satisfied with {x/M1) and Weapon (M1) is added.

Rule (6) is satisfied with {x/Nono}, and Hostile (Nono) is added.

v On the second iteration, rule (1) is satisfied with {x/West, Y/MI, z /Nono), and Criminal

(West) is added.

It is sound, because every inference is just an application of Generalized Modus Ponens, it is
completefor definite clause knowledge bases; that is, it answers every query whose answers are

entailed by any knowledge base of definite clauses

Principal .
R . Engineering
\aageswar College 0;05 g

WARIMNAGAR

Artificial Intelligence Page 93




function FOL-FC-ASK(K B, a)returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses

a, the query, an atomic sentence
local variables: new, the new sentences inferred on each iteration

repeat until new is empty
new+—{ }
for each sentence r in K5 do
(prA...A Pn = )¢« STANDARDIZE-APART(r)
for each ¢ such that SUBST(@,p; A ... A p,)=SUBSTO,p 4 ... 4 pl)
for some py,...,p, m KB
q' < SUBST(®, q)
if ¢’ is not a renaming of some sentence already in KB or new then do
add ¢’ to new
o« UNIFY(¢',a)
if ¢ 1s not fail then return ¢
add new to KB
return false

Figure 3.1 A conceptually straightforward, but very inefficient, forward-chaining
algorithm. On each iteration, it adds to KB all the atomic sentences that can be inferred
in one step from the implication sentences and the atomic sentences already in KB.

Criminal(West),

Hostile(Nono)

| Sells(West,M,,Nono) 7

LWeapon(M ,)4]

LMissiIe(M V) J I—O;tfrzs(N()rzo,M ,ﬂ rEm'm y(Nono.Americaﬂ

[American(West)|
Figure 3.2 The proof tree generated by forward chaining on the crime example. The initial
facts appear at the bottom level, facts inferred on the first iteration in the middle level, and
facts inferred on the second iteration at the top level.

Efficient forward chaining:
The above given forward chaining algorithm was lack with efficiency due to the the three

sources of complexities:
v’ Pattern Matching

Artificial Intelligence Page 94




v" Rechecking of every rule on every iteration even a few additions are made to rules
v" Irrelevant facts

1. Matching rules against known facts:
For example, consider this rule,
Missile(x) A Owns (Nono, x) =>Sells (West, x, Nono).

The algorithm will check all the objects owned by Nono in and then for each object, it could
check whether it is a missile. This is the conjunct ordering problem:

-Find an ordering to solve the conjuncts of the rule premise so that the total cost is minimizedl.
The most constrained variable heuristic used for CSPs would suggest ordering the conjuncts to
look for missiles first if there are fewer missiles than objects that are owned by Nono.

The connection between pattern matching and constraint satisfaction is actually very close. We
can view each conjunct as a constraint on the variables that it contains-for example, Missile(x) is
a unary constraint on x. Extending this idea, we can express everyfinite-domain CSP as a single
definite clause together with some associated ground facts. Matching a definite clause against a
set of facts is NP-hard

2. Incremental forward chaining:

On the second iteration, the rule Missile (x) =>Weapon (X)

Matches against Missile (M1) (again), and of course the conclusion Weapon(x/M1) is already
known so nothing happens. Such redundant rule matching can be avoided if we make the
following observation:

-Every new fact inferred on iteration t must be derived from at leastone new fact inferred on
iteration t — 11.

This observation leads naturally to an incremental forward chaining algorithm where, at iteration
t, we check a rule only if its premise includes a conjunct p, that unifies with a fact p: newly
inferred at iteration t - 1. The rule matching step then fixes p, to match with p’, but allows the

other conjuncts of the rule to match with facts from any previous iteration.

3. Irrelevant facts:

Artificial Intelligence Page 95




» One way to avoid drawing irrelevant conclusions is to use backward chaining.
» Another solution is to restrict forward chaining to a selected subset of rules
» A third approach, is to rewrite the rule set, using information from the goal.so that only
relevant variable bindings-those belonging to a so-called magic set-are considered during
forward inference.
For example, if the goal is Criminal (West), the rule that concludes Criminal (x) will be

rewritten to include an extra conjunct that constrains the value of x:
Magic(x) A American(z) A Weapon(y)A Sells(x, y, z) A Hostile(z) =>Criminal(x )

The fact Magic (West) is also added to the KB. In this way, even if the knowledge base contains
facts about millions of Americans, only Colonel West will be considered during the forward

inference process.

4. Backward Chaining
This algorithm work backward from the goal, chaining through rules to find known facts that

support the proof. It is called with a list of goals containing the original query, and returns the set
of all substitutions satisfying the query. The algorithm takes the first goal in the list and finds
every clause in the knowledge base whose head, unifies with the goal. Each such clause creates a
new recursive call in which body, of the clause is added to the goal stack .Remember that facts
are clauses with a head but no body, so when a goal unifies with a known fact, no new sub goals
are added to the stack and the goal is solved. The algorithm for backward chaining and proof tree

for finding criminal (West) using backward chaining are given below.

U

Principal .
. .« of Engineering
\J swari College ©f T2
e ARIMNAGAR-508 527

Artificial Intelligence Page 96




function FOL-BC-ASK(KB, goals, @) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query (¢ already applied)
@, the current substitution. initially the empty substitution { }
local variables: answers, a set of substitutions. initially empty

if goals is empty then return {f}
q’ — SUBST(#, FIRST(goals))
for each sentence r in K B where STANDARDIZE- APART(Y) =(p1 A ... A pn =
and 0" < UNIFY(q, ¢’} succeeds
new-goals « [p1, ..., pn|REST(goals)]
answers + FOL-BC-ASK(KB, new-goals, COMPOSE(¢',0) )U answers
return answers

Figure 4.1A simple backward-chaining algorithm.

I Criminal( West)]
|American(_ Westﬂ I Weapon(y) J [Scllx( West, M ,,:}] E{ostile(Nono)|
[} {z/Nono}

[JWissile(;j_Il Missile(My) | ,Bwns(}VO;To,;gl— )—l I—E_nenm(Noﬁo,America)I
{y/M1) {} {} {1}

Figure 4.2 Proof tree constructed by backward chaining to prove that West is a criminal. The
tree should be read depth first, left to right. To prove Criminal (West), we have to prove the four
conjuncts below it. Some of these are in the knowledge base, and others require further
backward chaining. Bindings for each successful unification are shown next to the
corresponding sub goal. Note that once one sub goal in a conjunction succeeds, its substitution
is applied to subsequent sub goals.

Logic programming:

e Prolog is by far the most widely used logic programming language.
e Prolog programs are sets of definite clauses written in a notation different from standard

first-order logic.

Artificial Intelligence Page 97




e Prolog uses uppercase letters for variables and lowercase for constants.
e Clauses are written with the head preceding the body; " : -" is used for left implication,
commas separate literals in the body, and a period marks the end of a sentence
criminal (X) :- american(X), weapon(Y), sells(X,¥.Z), hostile(Z)
Prolog includes "syntactic sugar" for list notation and arithmetic. Prolog program for append (X,
Y, Z), which succeeds if list Z is the result of appending lists x and Y

append([],Y,Y).
append([A[X],Y, [A|Z2]) :- append(X,Y,Z)

For example, we can ask the query append (A, B, [1, 2]): what two lists can be appended to give
[1, 2]? We get back the solutions

A=[] B=(1,2
A=[1] B=[2]
A=[1,2]) B=[)

e The execution of Prolog programs is done via depth-first backward chaining
e Prolog allows a form of negation called negation as failure. A negated goal not P is
considered proved if the system fails to prove p. Thus, the sentence
Alive (X) : - not dead(X) can be read as "Everyone is alive if not provably dead."
e Prolog has an equality operator, =, but it lacks the full power of logical equality. An
equality goal succeeds if the two terms are unifiable and fails otherwise. So X+Y=2+3
succeeds with x bound to 2 and Y bound to 3, but Morningstar=evening star fails.

e The occur check is omitted from Prolog's unification algorithm.

Efficient implementation of logic programs:
The execution of a Prolog program can happen in two modes: interpreted and compiled.
> Interpretation essentially amounts to running the FOL-BC-ASK algorithm, with the
program as the knowledge base. These are designed to maximize speed.
First, instead of constructing the list of all possible answers for each sub goal before
continuing to the next, Prolog interpreters generate one answer and a "promise" to generate
the rest when the current answer has been fully explored. This promise is called a choice

point.FOL-BC-ASK spends a good deal of time in generating and composing substitutions

Artificial Intelligence Page 98




when a path in search fails. Prolog will backup to previous choice point and unbind some
variables. This is called ~-TRAILI. So, new variable is bound by UNIFY-VAR and it is

pushed on to trail.

» Prolog Compilers compile into an intermediate language i.e., Warren Abstract Machine
or WAM named after David. H. D. Warren who is one of the implementers of first prolog
compiler. So, WAM is an abstract instruction set that is suitable for prolog and can be
either translated or interpreted into machine language.

Continuations are used to implement choice point’scontinuation as packaging up a procedure
and a list of arguments that together define what should be done next whenever the current goal
succeeds.

> Parallelization can also provide substantial speedup. There are two principal sources of
parallelism

1. The first, called OR-parallelism, comes from the possibility of a goal unifying with
many different clauses in the knowledge base. Each gives rise to an independent branch
in the search space that can lead to a potential solution, and all such branches can be
solved in parallel.

2. The second, called AND-parallelism, comes from the possibility of solving each
conjunct in the body of an implication in parallel. AND-parallelism is more difficult to
achieve, because solutions for the whole conjunction require consistent bindings for all
the variables.

Redundant inference and infinite loops:
Consider the following logic program that decides if a path exists between two points on a
directed graph.

path(X,2) :- 1link(X,Z2).
path(X,2) :- path(X,Y), link(Y,Z)

A simple three-node graph, described by the facts link (a, b) and link (b, ¢)

4 B C
[ — S )
r LT <

It generates the query path (a, ¢)

Hence each node is connected to two random successors in the next layer.

Artificial Intelligence Page 99




| pathia,c}

path(a,c)

{ pa:h:a.Y)j 1 link{¥.c

fail ‘ (1

[ pach(a,&”:} link(Y’.Y) l
7 L

{¥/b}

(a) (b)

Figure 4.3 (a) Proof that a path exists from A to C. (b) Infinite proof tree generated when the
clauses are in the "wrong" order.

Constraint logic programming:

The Constraint Satisfaction problem can be solved in prolog as same like backtracking
algorithm.

Because it works only for finite domain CSP’s in prolog terms there must be finite number of
solutions for any goal with unbound variables.

triangle(X,Y,Z) :-
X>=0, Y>=0, 2>=0, X+¥>=Z, Y+Z>=X, X+Z>=Y.

e If we have a query, triangle (3, 4, and 5) works fine but the query like, triangle (3, 4, Z)
no solution.

e The difficulty is variable in prolog can be in one of two states i.e., Unbound or bound.

e Binding a variable to a particular term can be viewed as an extreme form of constraint
namely -equalityll.CLP allows variables to be constrained rather than bound.

U

Principa \

y §f Engin
J gwari College © 9
N ARIMNAGAR-505 527

The solution to triangle (3, 4, Z) is Constraint 7>=Z>=1.

2. Resolution

eering

Artificial Intelligence Page 100




As in the propositional case, first-order resolution requires that sentences be in conjunctive
normal form (CNF) that is, a conjunction of clauses, where each clause is a disjunction

ofliterals.

Literals can contain variables, which are assumed to be universally quantified. Every sentence of
first-order logic can be converted into an inferentially equivalent CNF sentence. We will
illustrate the procedure by translating the sentence

"Everyone who loves all animals is loved by someone,"” or
Va Vv Animal(y) = Loves(z,v)]= [3v Loves(y,x)]

The steps are as follows:

» Eliminate implications:
tix [-Vy —Adnimal (v)V Loves(z, )|V [3v Loves(y, x)]
» Move Negation inwards: In addition to the usual rules for negated connectives, we need

rules for negated quantifiers. Thus, we have

Yz p becomes 3x p
-Jdx p becomes Vo —p

Our sentence goes through the following transformations:

YV [Ay ~(~Animal(y) V Loves(z,y))] v [3 v Loves(y,x)] .
Vo [y ~—Animal(y) A—Loves(z, v)JV [Iy Loves(y,x)].
Va [y Animal(y) A —~Loves(z,y)] V [y Loves(y,z)].

» Standardize variables: For sentences like (Vo P(x)) v (3x Q(m)} which use the
same variable name twice, change the name of one of the variables. This avoids
confusion later when we drop the quantifiers. Thus, we have

Vx [y Animal (v)N\ —Loves(z,v)}N [z Loves(z,z)]

» Skolemize: Skolemization is the process of removing existential quantifiers by
elimination. Translate 3 x P(x) into P(A), where A is a new constant. If we apply this rule

to our sample sentence, however, we obtain

Artificial Intelligence Page 101




Va [Animak A )N —~Loves(x, A) v Loves( B ,x)

Which has the wrong meaning entirely: it says that everyone either fails to love a particular
animal A or is loved by some particular entity B. In fact, our original sentence allows each person
to fail to love a different animal or to be loved by a different person.

Thus, we want the Skolem entities to depend on x:

tix [Animal F(x)) N ~Loves(z, F(x))] v Loves(G(x),x)

Here F and G are Skolem functions. The general rule is that the arguments of the Skolem
function are all the universally quantified variables in whose scope the existential quantifier

appears.

» Drop universal quantifiers: At this point, all remaining variables must be universally
quantified. Moreover, the sentence is equivalent to one in which all the universal

quantifiers have been moved to the left. We can therefore drop the universal quantifiers

[Animal F(x)) 4 ~Loves(x, F(x)}] v Loves(G(x),x)
» Distribute V over A

[Animal( F(x) N Loves(G(x),x)] N\ [ Loves(x, F(z))V Loves(G(x),x)].

This is the CNF form of given sentence.

The resolution inference rule:

The resolution rule for first-order clauses is simply a lifted version of the propositional resolution
rule. Propositional literals are complementary if one is the negation of the other; first-order

literals are complementary if one unifies with the negation of the other. Thus we have

V- N Ay, mi V-V mn

Where UNIFY (I, m;) == 6.
For example, we can resolve the two clauses

[AnimalF(z)) V Loves(G(x),x)] and [—Loves(u,v)V —Kills(u,v)]

Artificial Intelligence Page 102




By eliminating the complementary literals Loves (G(x), x) and —Loves (u, v), with unifier
0 = {u/G(x), v/x), to produce the resolvent clause
[Animal F{x))y v - Kills(G(x),x)] .
Example proofs:
Resolution proves that KB /= a by proving KB A la unsatisfiable, i.e., by deriving the empty
clause. The sentences in CNF are
—American(z) V = Weapon(y) V —=Sells(x, y, z) V ~ Hostile(z) V Criminal(x)
~Missile(z} v =Ouns(Nono,x )V Sells(West, x, Nono) .
~Enemy(x, America) vV Hostile(x) .
~Missile(xy v Weapon(x) .
Ouwns(Nono, M) . Missile(My) .
American(West) . Enemy(Nono, America) .

The resolution proof is shown in below figure;

l =American(x) v ~Weapon(y) v =Sells{x,v.z) v ~Hostile(z) v Criminal(x) E-Criminal( West) J

Encﬂ't‘an( We.\'l)j L-!Amen‘tan( West) v «Weapon(y) v ~Sells(West,y,z) v ~Hc

~Missile{x) v Weapon(.rﬂ\Lt«Weapon(y) v =Sells(West,y,z) v -H(mile{;)J
[ Missite(M,) 1\%—@;;&(,) v ~Sells(West,y,z) v ~Hostile(z) |
b{lmﬂe(n v = OwnsfNono,x) v Sells( Wext,x,Nono)}\L[ﬁas( West.M,z) v -Ho.s'til!(zd

(Missmmﬂ\L‘-mﬁk(uu v ~Owns(Nono,M,) v ~Hostile(Nono) |

Bwnsm‘om.u.) [ ~Owns(Nono,My) v ~Hostile(Noro) |

[ ~Enemy(x,America) v Hostile(x) [ -aHom'Ie(Nonm

I Emmy(Nona,Ama-imN-Enemy( Nono,America) ]

Figure 5.1 A resolution proof that West is a criminal.

Notice the structure: single "spine™ beginning with the goal clause, resolving against clauses

from the knowledge base until the empty clause is generated. Backward chaining is really just a

special case of resolution with a particular control strategy to decide which resolution to perform

next.
Artificial Intelligence Page 103




UNIT-IV

Planning
Classical Planning: Definition of Classical Planning, Algorithms for Planning with StateSpace Search, Planning

Graphs, other Classical Planning Approaches, Analysis of Planning approaches.

Planning and Acting in the Real World: Time, Schedules, and Resources, Hierarchical Planning, Planning and
Acting in Nondeterministic Domains, Multi agent Planning

Planning Classical Planning: Al as the study of rational action, which means that planning—devising a
plan of action to achieve one’s goals—is a critical part of Al. We have seen two examples of planning
agents so far the search-based problem-solving agent.

DEFINITION OF CLASSICAL PLANNING: The problem-solving agent can find sequences of actions that
result in a goal state. But it deals with atomic representations of states and thus needs good domain-
specific heuristics to perform well. The hybrid propositional logical agent can find plans without domain-
specific heuristics because it uses domain-independent heuristics based on the logical structure of the
problem but it relies on ground (variable-free) propositional
inference,whichmeansthatitmaybeswampedwhentherearemanyactionsandstates.For
example,intheworld,thesimpleactionofmovingastepforwardhadtoberepeated for all four agent
orientations, T time steps, and n® currentlocations.

In response to this, planning researchers have settled on a factored representation— one in which a
state of the world is represented by a collection of variables. We use a language called PDDL, the
Planning Domain Definition Language that allows us to express all 4Tn” actions with one action schema.
There have been several versions of PDDL.we select a simple version and alter its syntax to be consistent
with the rest of the book. We now show how PDDL describes the four things we need to define a search
problem: the initial state, the actions that are available in a state, the result of applying an action, and
the goal test.

Each state is represented as a conjunction of flaunts that are ground, functionless atoms. For example,
Poor A Unknown might represent the state of a hapless agent, and a state in a package delivery

problem might be At(Truck 1, Melbourne) A At(Truck 2, Sydney ). Database semantics is used: the

closed-world assumption means that any flaunts that are not mentioned are false, and the unique
names assumption means that Truck 1 and Truck 2 are distinct.
A set of ground (variable-free) actions can be represented by a single action schema. The schema is a

lifted representation—it lifts the level of reasoning from propositional logic to a restricted subset of

Artificial Intelligence Page 104




first-order logic. For example, here is an action schema for flying a plane from one location to another:
Action(Fly (p, from, to),

PRECOND:At(p, from) A Plane(p) A Airport (from) A Airport (to)

EFFECT:-At(p, from) A At(p, to))

The schema consists of the action name, a list of all the variables used in the schema, a precondition and
an effect.

A set of action schemas serves as a definition of a planning domain. A specific problem within the
domain is defined with the addition of an initial state and a goal.

state is a conjunction of ground atoms. (As with all states, the closed-world assumption is used, which
means that any atoms that are not mentioned are false.) The goal is just like a precondition: a
conjunction of literals (positive or negative) that may contain variables, such as At(p, SFO ) A Plane(p).
Any variables are treated as existentially quantified, so this goal is to have any plane at SFO. The
problem is solved when we can find a sequence of actions that end in a states that entails the goal.
Example: Air cargo transport

An air cargo transport problem involving loading and unloading cargo and flying it from place to place.
The problem can be defined with three actions: Load , Unload , and Fly . The actions affect two
predicates: In(c, p) means that cargo c is inside plane p, and At(x, a) means that object x (either plane or
cargo) is at airport a. Note that some care must be taken to make sure the At predicates are maintained
properly. When a plane flies from one airport to another, all the cargo inside the plane goes with it. In
first-order logic it would be easy to quantify over all objects that are inside the plane. But basic PDDL
does not have a universal quantifier, so we need a different solution. The approach we use is to say that
a piece of cargo ceases to be At anywhere when it is In a plane; the cargo only becomes At the new
airport when it is unloaded. So At really means “available for use at a given location.”

The complexity of classical planning :

We consider the theoretical complexity of planning and distinguish two decision problems. PlanSAT is
the question of whether there exists any plan that solves a planning problem. Bounded PlanSAT asks
whether there is a solution of length k or less; this can be used to find an optimal plan.

The first result is that both decision problems are decidable for classical planning. The proof follows
from the fact that the number of states is finite. But if we add function symbols to the language, then
the number of states becomes infinite, and PlanSAT becomes only semi decidable: an algorithm exists

that will terminate with the correct answer for any solvable problem, but may not terminate on

Artificial Intelligence Page 105




unsolvable problems. The Bounded PlanSAT problem remains decidable even in the presence of
function symbols.

Both PlanSAT and Bounded PlanSAT are in the complexity class PSPACE, a class that is larger (and hence
more difficult) than NP and refers to problems that can be solved by a deterministic Turing machine with
a polynomial amount of space. Even if we make some rather severe restrictions, the problems remain

quite difficult.

Algorithms for Planning with State Space Search

Forward (progression) state-space search:
Now that we have shown how a planning problem maps into a search problem, we can solve planning

problems with any of the heuristic search algorithms from Chapter 3 or a local search algorithm from
Chapter 4 (provided we keep track of the actions used to reach the goal). From the earliest days of
planning research (around 1961) until around 1998 it was assumed that forward state-space search was
too inefficient to be practical. It is not hard to come up with reasons why .

First, forward search is prone to exploring irrelevant actions. Consider the noble task of buying a copy of
Al: A Modern Approach from an online bookseller. Suppose there is an action schema Buy(isbn) with
effect Own(isbn). ISBNs are 10 digits, so this action schema represents 10 billion ground actions. An
uninformed forward-search algorithm would have to start enumerating these 10 billion actions to find
one that leads to the goal.

Second, planning problems often have large state spaces. Consider an air cargo problem with 10
airports, where each airport has 5 planes and 20 pieces of cargo. The goal is to move all the cargo at
airport A to airport B. There is a simple solution to the problem: load the 20 pieces of cargo into one of
the planes at A, fly the plane to B, and unload the cargo. Finding the solution can be difficult because the
average branching factor is huge: each of the 50 planes can fly to 9 other airports, and each of the 200
packages can be either unloaded (if it is loaded) or loaded into any plane at its airport (if it is unloaded).
So in any state there is a minimum of 450 actions (when all the packages are at airports with no planes)
and a maximum of 10,450 (when all packages and planes are at the same airport). On average, let’s say
there are about 2000 possible actions per state, so the search graph up to the depth of the obvious

solution has about 2000 nodes.

M“%\

'|’|'1il~"i]."-"‘ \

1 o of Engineering
v eswari College ! -
‘aagKAR\T.1h!ﬂ":‘“R 505 527

Artificial Intelligence Page 106




At(P1: B)

P AR At(P;, A)
a
AL(P,, A)
: Fly(P A, B) AL(P;, A)
At(P2l B)
~" mpn )
~—
At(P,, B) Fiy(P,, A, B)
B aalt WL At(P,, B)
/ At(P21 B)
~~ AP, B) \‘/ Fy(Py, A, B)
At(P,, A

inverse of the actions to search backward for the initial state.

Figure 10.5 Two approaches to searching for a plan. (a) Forward (progression) search
through the space of states, starting in the initial state and using the problem’s actions to
search forward for a member of the set of goal states. (b) Backward (regression) search
through sets of relevant states, starting at the set of states representing the goal and using the

Backward (regression) relevant-states search:
In regression search we start at the goal and apply the actions backward until we find a sequence of

steps that reaches the initial state. It is called relevant-states search because we only consider actions
that are relevant to the goal (or current state). As in belief-state search (Section 4.4), there is a set of
relevant states to consider at each step, not just a single state.

We start with the goal, which is a conjunction of literals forming a description of a set of states—for
example, the goal -Poor A Famous describes those states in which Poor is false, Famous is true, and any
other fluent can have any value. If there are n ground flaunts in a domain, then there are 2n ground
states (each fluent can be true or false), but 3n descriptions of sets of goal states (each fluent can be
positive, negative, or not mentioned).

In general, backward search works only when we know how to regress from a state description to the

predecessor state description. For example, it is hard to search backwards for a solution to the n-queens

Artificial Intelligence Page 107




problem because there is no easy way to describe the states that are one move away from the goal.
Happily, the PDDL representation was designed to make it easy to regress actions—if a domain can be
expressed in PDDL, then we can do regression search on it.

The final issue is deciding which actions are candidates to regress over. In the forward direction we
chose actions that were applicable—those actions that could be the next step in the plan. In backward
search we want actions that are relevant—those actions that could be the last step in a plan leading up
to the current goal state.

Heuristics for planning:

Neither forward nor backward search is efficient without a good heuristic function. Recall from Chapter
3 that a heuristic function h(s) estimates the distance from a state s to the goal and that if we can derive
an admissible heuristic for this distance—one that does not overestimate—then we can use Ax search to
find optimal solutions. An admissible heuristic can be derived by defining a relaxed problem that is
easier to solve. The exact cost of a solution to this easier problem then becomes the heuristic for the
original problem.

By definition, there is no way to analyze an atomic state, and thus it it requires some ingenuity by a
human analyst to define good domain-specific heuristics for search problems with atomic states.
Planning uses a factored representation for states and action schemas. That makes it possible to define
good domain-independent heuristics and for programs to automatically apply a good domain-
independent heuristic for a given problem.

Planning Graphs:

All of the heuristics we have suggested can suffer from inaccuracies. This section shows how a special
data structure called a planning graph can be used to give better heuristic estimates. These heuristics
can be applied to any of the search techniques we have seen so far. Alternatively, we can search for a
solution over the space formed by the planning graph, using an algorithm called GRAPHPLAN.

A planning problem asks if we can reach a goal state from the initial state. Suppose we are given a tree
of all possible actions from the initial state to successor states, and their successors, and so on. If we
indexed this tree appropriately, we could answer the planning question “can we reach state G from
state SO” immediately, just by looking it up. Of course, the tree is of exponential size, so this approach is
impractical. A planning graph is polynomial- size approximation to this tree that can be constructed
quickly. The planning graph can’t answer definitively whether G is reachable from S0, but it can estimate
how many steps it takes to reach G. The estimate is always correct when it reports the goal is not

reachable, and it never overestimates the number of steps, so it is an admissible heuristic.

Artificial Intelligence Page 108




A planning graph is a directed graph organized into levels: first a level SO for the initial state, consisting
of nodes representing each fluent that holds in SO; then a level AO consisting of nodes for each ground
action that might be applicable in SO; then alternating levels Si followed by Ai; until we reach a
termination condition (to be discussed later).

Roughly speaking, Si contains all the literals that could hold at time i, depending on the actions executed
at preceding time steps. If it is possible that either P or =P could hold, then both will be represented in
Si. Also roughly speaking, Ai contains all the actions that could have their preconditions satisfied at time
i. We say “roughly speaking” because the planning graph records only a restricted subset of the possible
negative interactions among actions; therefore, a literal might show up at level Sj when actually it could
not be true until a later level, if at all. (A literal will never show up too late.) Despite the possible error,
the level j at which a literal first appears is a good estimate of how difficult it is to achieve the literal
from the initial state.

We now define mutex links for both actions and literals. A mutex relation holds between two actions at
a given level if any of the following three conditions holds:

. Inconsistent effects: one action negates an effect of the other. For example, Eat(Cake) and the
persistence of Have(Cake) have inconsistent effects because they disagree on the effect Have(Cake).

o Interference: one of the effects of one action is the negation of a precondition of the other. For
example Eat(Cake) interferes with the persistence of Have(Cake) by its precondition.

o Competing needs: one of the preconditions of one action is mutually exclusive with a
precondition of the other. For example, Bake(Cake) and Eat(Cake) are mutex because they compete on
the value of the Have(Cake) precondition.

A mutex relation holds between two literals at the same level if one is the negation of the other or if
each possible pair of actions that could achieve the two literals is mutually exclusive. This condition is
called inconsistent support. For example, Have(Cake) and Eaten(Cake) are mutex in S1 because the only
way of achieving Have(Cake), the persistence action, is mutex with the only way of achieving
Eaten(Cake), namely Eat(Cake). In S2 the two literals are not mutex, because there are new ways of
achieving them, such as Bake(Cake) and the persistence of Eaten(Cake), that are not mutex.

other Classical Planning Approaches:

Currently the most popular and effective approaches to fully automated planning are:

. Translating to a Boolean satisfiability (SAT) problem
. Forward state-space search with carefully crafted heuristics
. Search using a planning graph (Section 10.3)

Artificial Intelligence Page 109




These three approaches are not the only ones tried in the 40-year history of automated planning. Figure
10.11 shows some of the top systems in the International Planning Competitions, which have been held
every even year since 1998. In this section we first describe the translation to a satisfiability problem
and then describe three other influential approaches: planning as first-order logical deduction; as
constraint satisfaction; and as plan refinement.

Classical planning as Boolean satisfiability :

we saw how SATPLAN solves planning problems that are expressed in propositional logic. Here we show
how to translate a PDDL description into a form that can be processed by SATPLAN. The translation is a
series of straightforward steps:

¢ Proposition Alize the actions: replace each action schema with a set of ground actions formed by
substituting constants for each of the variables. These ground actions are not part of the translation, but
will be used in subsequent steps.

. Define the initial state: assert F O for every fluent F in the problem’s initial state, and -F for every
fluent not mentioned in the initial state.

o Proposition Alize the goal: for every variable in the goal, replace the literals that contain the
variable with a disjunction over constants. For example, the goal of having block A on another block,
On(A, x) A Block (x) in a world with objects A, B and C, would be replaced by the goal

(On(A, A) ABlock (A)) vV (On(A, B) A Block (B)) v (On(A, C) A Block (C)) .

. Add successor-state axioms: For each fluent F, add an axiom of the form

F t+1 & ActionCausesF t V (F t A -ActionCausesNotF t),

where Action CausesF is a disjunction of all the ground actions that have F in their add list, and Action
CausesNotF is a disjunction of all the ground actions that have F in their delete list.

Analysis of Planning approaches:

Planning combines the two major areas of Al we have covered so far: search and logic. A planner can be
seen either as a program that searches for a solution or as one that (constructively) proves the existence
of a solution. The cross-fertilization of ideas from the two areas has led both to improvements in
performance amounting to several orders of magnitude in the last decade and to an increased use of
planners in industrial applications. Unfortunately, we do not yet have a clear understanding of which
techniques work best on which kinds of problems. Quite possibly, new techniques will emerge that
dominate existing methods.

Planning is foremost an exercise in controlling combinatorial explosion. If there are n propositions in a

domain, then there are 2n states. As we have seen, planning is PSPACE- hard. Against such pessimism,

Artificial Intelligence Page 110




the identification of independent sub problems can be a powerful weapon. In the best case—full
decomposability of the problem—we get an exponential speedup.

Decomposability is destroyed, however, by negative interactions between actions. GRAPHPLAN records
mutexes to point out where the difficult interactions are. SATPLAN rep- resents a similar range of mutex
relations, but does so by using the general CNF form rather than a specific data structure. Forward
search addresses the problem heuristically by trying to find patterns (subsets of propositions) that cover
the independent sub problems. Since this approach is heuristic, it can work even when the sub problems
are not completely independent.

Sometimes it is possible to solve a problem efficiently by recognizing that negative interactions can be
ruled out. We say that a problem has serializable sub goals if there exists an order of sub goals such that
the planner can achieve them in that order without having to undo any of the previously achieved sub
goals. For example, in the blocks world, if the goal is to build a tower (e.g., A on B, which in turn is on C,
which in turn is on the Table, as in Figure 10.4 on page 371), then the sub goals are serializable bottom
to top: if we first achieve C on Table, we will never have to undo it while we are achieving the other sub
goals. Planners such as GRAPHPLAN, SATPLAN, and FF have moved the field of planning forward, by

raising the level of performance of planning systems.

Planning and Acting in the Real World:

This allows human experts to communicate to the planner what they know about how to solve the
problem. Hierarchy also lends itself to efficient plan construction because the planner can solve a
problem at an abstract level before delving into details. Presents agent architectures that can handle
uncertain environments and interleave deliberation with execution, and gives some examples of real-
world systems.

Time, Schedules, and Resources:

The classical planning representation talks about what to do, and in what order, but the representation
cannot talk about time: how long an action takes and when it occurs. For example, the planners of
Chapter 10 could produce a schedule for an airline that says which planes are assigned to which flights,
but we really need to know departure and arrival times as well. This is the subject matter of scheduling.
The real world also imposes many resource constraints; for example, an airline has a limited number of
staff—and staff who are on one flight cannot be on another at the same time. This section covers
methods for representing and solving planning problems that include temporal and resource

constraints.

Artificial Intelligence Page 111




The approach we take in this section is “plan first, schedule later”: that is, we divide the overall problem
into a planning phase in which actions are selected, with some ordering constraints, to meet the goals of
the problem, and a later scheduling phase, in which temporal information is added to the plan to ensure

that it meets resource and deadline constraints.

Jobs({ AddEnginel < AddWheels1 < Inspect1 },

{ AddEngine2 < AddWheels2 < Inspect2 })
Resources( EngineHoists(1), WheelStations (1), Inspectors(2), LugNuts(500))

Action(AddEnginel , DURATION: 30,

USE: EngineHoists(1))
Action(AddEngine2, DURATION:60,

USE: EngineHoists(1))
Action(AddWheels1 , DURATION:30,

CONSUME: LugNuts(20), USE: WheelStations(1))
Action( AddWheels2 , DURATION: 15,

CONSUME: LugNuts(20), USE: WheelStations(1))
Action(Inspect;, DURATION: 10,

USE: Inspectors(1))

Figure 11.1 A job-shop scheduling problem for assembling two cars, with resource con-
straints. The notation A < B means that action A must precede action B.

This approach is common in real-world manufacturing and logistical settings, where the planning phase
is often performed by human experts. The automated methods of Chapter 10 can also be used for the
planning phase, provided that they produce plans with just the minimal ordering constraints required
for correctness. G RAPHPLAN (Section 10.3), SATPLAN (Section 10.4.1), and partial-order planners
(Section 10.4.4) can do this; search-based methods (Section 10.2) produce totally ordered plans, but
these can easily be converted to plans with minimal ordering constraints.

Hierarchical Planning :

The problem-solving and planning methods of the preceding chapters all operate with a fixed set of
atomic actions. Actions can be strung together into sequences or branching networks; state-of-the-art
algorithms can generate solutions containing thousands of actions.

For plans executed by the human brain, atomic actions are muscle activations. In very round numbers,
we have about 103 muscles to activate (639, by some counts, but many of them have multiple subunits);
we can modulate their activation perhaps 10 times per second; and we are alive and awake for about

109 seconds in all. Thus, a human life contains about 1013 actions, give or take one or two orders of

Artificial Intelligence Page 112




magnitude. Even if we restrict ourselves to planning over much shorter time horizons—for example, a
two-week vacation in Hawaii—a detailed motor plan would contain around 1010 actions. This is a lot
more than 1000.

To bridge this gap, Al systems will probably have to do what humans appear to do: plan at higher levels
of abstraction. A reasonable plan for the Hawaii vacation might be “Go to San Francisco airport; take
Hawaiian Airlines flight 11 to Honolulu; do vacation stuff for two weeks; take Hawaiian Airlines flight 12
back to San Francisco; go home.” Given such a plan, the action “Go to San Francisco airport” can be
viewed as a planning task in itself, with a solution such as “Drive to the long-term parking lot; park; take
the shuttle to the terminal.” Each of these actions, in turn, can be decomposed further, until we reach
the level of actions that can be executed without deliberation to generate the required motor control
sequence.

Planning and Acting in Nondeterministic Domains: While the basic concepts are the same as in Chapter
4, there are also significant differences. These arise because planners deal with factored representations
rather than atomic representations. This affects the way we represent the agent’s capability for action
and observation and the way we represent belief states—the sets of possible physical states the agent
might be in—for unobservable and partially observable environments. We can also take ad- vantage of
many of the domain-independent methods given in Chapter 10 for calculating search heuristics.
Consider this problem: given a chair and a table, the goal is to have them match—have the same color.
In the initial state we have two cans of paint, but the colors of the paint and the furniture are unknown.
Only the table is initially in the agent’s field of view:

Init(Object(Table) A Object(Chair ) A Can(C1) A Can(C2) A InView (Table)) Goal (Color (Chair, c) A Color
(Table, c))

There are two actions: removing the lid from a paint can and painting an object using the paint from an
open can. The action schemas are straightforward, with one exception: we now allow preconditions and
effects to contain variables that are not part of the action’s variable list. That is, Paint(x, can) does not
mention the variable c, representing the color of the paint in the can. In the fully observable case, this is
not allowed—we would have to name the action Paint(x, can, c). But in the partially observable case, we
might or might not know what color is in the can. (The variable c is universally quantified, just like all the
other variables in an action schema.)

Action(Removelid (can),

PRECOND:Can(can)

EFFECT:Open(can))

Artificial Intelligence Page 113




Action(Paint(x , can),
PRECOND:Object(x) A Can(can) A Color (can, c) A Open(can)
EFFECT:Color (x, c))

To solve a partially observable problem, the agent will have to reason about the percepts it will obtain
when it is executing the plan. The percept will be supplied by the agent’s sensors when it is actually
acting, but when it is planning it will need a model of its sensors. In Chapter 4, this model was given by a

function, PERCEPT(s). For planning, we augment PDDL with a new type of schema, the percept schema:

Multi agent Planning:

we have assumed that only one agent is doing the sensing, planning, and acting. When there are
multiple agents in the environment, each agent faces a multi agent planning problem in which it tries to
achieve its own goals with the help or hindrance of others.

Between the purely single-agent and truly multi agent cases is a wide spectrum of problems that exhibit
various degrees of decomposition of the monolithic agent. An agent with multiple effectors that can
operate concurrently—for example, a human who can type and speak at the same time—needs to do
multi effector planning to manage each effector while handling positive and negative interactions
among the effectors. When the effectors are physically decoupled into detached units—as in a fleet of
delivery robots in a factory— multi effector planning becomes multibody planning. A multibody problem
is still a “standard” single-agent problem as long as the relevant sensor information collected by each
body can be pooled—either centrally or within each body—to form a common estimate of the world
state that then informs the execution of the overall plan; in this case, the multiple bodies act as a single
body.

When a single entity is doing the planning, there is really only one goal, which all the bodies necessarily
share. When the bodies are distinct agents that do their own planning, they may still share identical
goals; for example, two human tennis players who form a doubles team share the goal of winning the
match. Even with shared goals, however, the multibody and multi agent cases are quite different. In a
multibody robotic doubles team, a single plan dictates which body will go where on the court and which
body will hit the ball. In a multi- agent doubles team, on the other hand, each agent decides what to do;
without some method for coordination, both agents may decide to cover the same part of the court and
each may leave the ball for the other to hit.

Planning with multiple simultaneous actions

Artificial Intelligence Page 114




For the time being, we will treat the multi effector, multibody, and multi agent settings in the same way,
labeling them generically as multi actor settings, using the generic term actor to cove cover effectors,
bodies, and agents. The goal of this section is to work out how to define transition models, correct plans,
and efficient planning algorithms for the multi actor setting.

A correct plan is one that, if executed by the actors, achieves the goal. (In the true multi agent setting,
of course, the agents may not agree to execute any particular plan, but at least they will know what
plans would work if they did agree to execute them.) For simplicity, we assume perfect synchronization:

each action takes the same amount of time and actions at each point in the joint plan are simultaneous.

Actors(A, B)
Init( At(A, LeftBaseline) N At(B, RightNet) A
Approaching(Ball, RightBaseline)) A Partner(A, B) A Partner(B, A)
Goal( Returned(Ball) N (At(a, RightNet) Vv At(a, LeftNet))
Action( Hit(actor, Ball),
PRECOND: Approaching(Ball, loc) N At(actor,loc)
EFFECT: Returned(Ball))
Action(Go(actor, to),
PRECOND: At(actor,loc) N to # loc,
EFFECT: At(actor, to) N — At(actor,loc))

Figure 11.10  The doubles tennis problem. Two actors A and B are playing together and
can be in one of four locations: LeftBaseline, RightBaseline, LeftNet, and RightNet. The
ball can be returned only if a player is in the right place. Note that each action must include
the actor as an argument.

Having put the actors together into a multi actor system with a huge branching factor, the principal
focus of research on multi actor planning has been to decouple the actors to the extent possible, so that
the complexity of the problem grows linearly with n rather than exponentially. If the actors have no
interaction with one another—for example, n actors each playing a game of solitaire—then we can
simply solve n separate problems. If the actors are loosely coupled, can we attain something close to
this exponential improvement? This is, of course, a central question in many areas of Al.

The standard approach to loosely coupled problems is to pretend the problems are completely
decoupled and then fix up the interactions. For the transition model, this means writing action schemas

as if the actors acted independently. Let’s see how this works for the doubles tennis problem. Let’s

Artificial Intelligence Page 115




suppose that at one point in the game, the team has the goal of returning the ball that has been hit to
them and ensuring that at least one of them is covering the net.

Planning with multiple agents Cooperation andcoordination:

Now let us consider the true multi agent setting in which each agent makes its own plan. To start with,
let us assume that the goals and knowledge base are shared. One might think that this reduces to the
multibody case—each agent simply computes the joint solution and executes its own part of that
solution. Alas, the “the” in “the joint solution” is misleading. For our doubles team, more than one joint
solution exists:

If both agents can agree on either plan 1 or plan 2, the goal will be achieved. But if A chooses plan 2 and
B chooses plan 1, then nobody will return the ball. Conversely, if A chooses 1 and B chooses 2, then they
will both try to hit the ball.

One option is to adopt a convention before engaging in joint activity. A convention is any constraint on
the selection of joint plans. For example, the convention “stick to your side of the court” would rule out
plan 1, causing the doubles partners to select plan 2. Drivers on a road face the problem of not colliding
with each other; this is (partially) solved by adopting the convention “stay on the right side of the road”
in most countries; the alternative, “stay on the left side,” works equally well as long as all agents in an
environment agree. Similar considerations apply to the development of human language, where the
important thing is not which language each individual should speak, but the fact that a community all
speaks the same language. When conventions are widespread, they are called social laws.

Conventions can also arise through evolutionary processes. For example, seed-eating harvester ants are
social creatures that evolved from the less social wasps. Colonies of ants execute very elaborate joint
plans without any centralized control—the queen’s job is to re- produce, not to do centralized
planning—and with very limited computation,

Communication, and memory capabilities in each ant (Gordon, 2000, 2007). The colony has many roles,
including interior workers, patrollers, and foragers. Each ant chooses to perform a role ac- cording to the
local conditions it observes. One final example of cooperative multi agent behavior appears in the
flocking behavior of birds.

We can obtain a reasonable simulation of a flock if each bird agent (sometimes called a boid) observes

the positions of its nearest neighbors and then chooses the heading and acceleration that maximizes the

weighted sum of these three components. NL N'\D&
k’ L

Principal )

i e of Englneering
yaageswari College ©f =H%
.aagKAR\:.\Nhr:-nR 505 527

Artificial Intelligence Page 116




(b) (c)

Figure 11.11 (a) A simulated flock of birds, using Reynold’s boids model. Image courtesy
Giuseppe Randazzo, novastructura.net. (b) An actual flock of starlings. Image by Eduardo
(pastaboy sleeps on flickr). (c) Two competitive teams of agents attempting to capture the
towers in the NERO game. Image courtesy Risto Miikkulainen.

1.
2.
3.

Cohesion: a positive score for getting closer to the average position of the neighbors
Separation: a negative score for getting too close to any one neighbor

Alignment: a positive score for getting closer to the average heading of the neighbors

If all the boids execute this policy, the flock exhibits the emergent behavior of flying as a pseudo rigid

body with roughly constant density that does not disperse over time, and that occasionally makes

sudden swooping motions. You can see a still images in Figure 11.11(a) and compare it to an actual flock

in (b). As with ants, there is no need for each agent to possess a joint plan that models the actions of

other agents. The most difficult multi agent problems involve both cooperation with members of one’s

own team and competition against members of opposing teams, all without centralized control.

Artificial Intelligence Page 117




UNIT-V

Learning: Forms of Learning, Supervised Learning, Learning Decision Trees.
Knowledge in Learning: Logical Formulation of Learning, Knowledge in Learning, Explanation-Based Learning,
Learning Using Relevance Information, Inductive Logic Programming

Learning
An agent is learning if it improves its performance on future tasks after making observations
about the world.

Forms Of Learning
Any component of an agent can be improved by learning from data.lt depends upon 4 factors:

Which component is to be improved

direct mapping from conditions on the current state to actions
infer relevant properties of the world

results of possible actions

Action-value information

Goals that describe classes of states

e  What prior knowledge the agent already has.

O O O O O

e What representation is used for the data and the component.
o representations: propositional and first-order logical sentences
o Bayesian networks for the inferential components
o factored representation—a vector of attribute values—and outputs that can be either a
continuous numerical value or a discrete value
e What feedback is available to learn from : types of feedback that determine the three main types of
learning
o In unsupervised learning the agent learns patterns in the input even though no explicit
feedback is supplied
o reinforcement learning the agent learns from a series of reinforcements—rewards or
punishments.
o supervised learning the agent observes some example input—output pairs and learns a function
that maps from input to output
o semi-supervised learning we are given a few labeled examples and must make what we can of
a large collection of unlabelled examples

SUPERVISED LEARNING

Given a training set of N example input—output pairs (x1, y1), (x2, y2), . . . (XN, yN) , where each yj was
generated by an unknown function y = f(x), discover a function h that approximates the true function f.
The function h is a hypothesis. To measure the accuracy of a hypothesis we give it a test set of examples
that are distinct from the training set.

Artificial Intelligence Page 118




Conditional Probability Distribution : the function f is stochastic—it is not strictly a function of x, and
what we have to learnis a, P(Y | x)

Classification :When the output y is one of a finite set of values the learning problem is called

classification

Regression : When y is a number (such as tomorrow’s temperature), the learning problem is called
regression

Hypothesis space, H, can be a set of polynomials. A polynomial is fitting a function of a single variable to
some data points.

Ockham’s razor :how do we choose a function or a polynomial from among multiple consistent
hypotheses? One answer is to prefer the simplest hypothesis consistent with the data. This principle is
called Ockham’s razor

Realizable : a learning problem is realizable if the hypothesis space contains the true function.
Unfortunately, we cannot always tell whether a given learning problem is realizable, because the true
function is not known.

Supervised learning can be done by choosing the hypothesis ” h”that is most probable one for the given
data:

h* = argmax P(h|data) .
heH

By Bayes’ rule this is equivalent to

h* = argmax P(data|h) P(h) .
heH

There is a tradeoff between the expressiveness of a hypothesis space and the complexity of finding a
good hypothesis within that space.

LEARNING DECISION TREES
Decision tree induction is one of the simplest and yet most successful forms of machine learning.

The decision tree representation :The aim here is to learn a definition for the goal predicate.

A decision tree represents a function that takes as input a vector of attribute values and returns a
“decision” —a single output value. The input and output values can be discrete or continuous

A decision tree reaches its decision by performing a sequence of tests.

Each internal node in the tree corresponds to a test of the value of one of the input attributes, Ai,
the branches from the node are labeled with the possible values of the attribute, Ai =vik.

Each leaf node in the tree specifies a value to be returned by the function.

O O O O

Decision Tree Algorithm:

The DecisioN-TREE-LEARNING algorithm adopts a greedy divide-and-conquer strategy. This test divides
the problem up into smaller sub problems that can then be solved recursively.

Ve

Principal e
if3 ~7 ; R flege of Engineering
Artificial Intelligence \Jaag?:,;.:mion e Chos 827 Page 119




function DECISION-TREE-LEARNING(examples, attributes, parent examples) returns
atree

if examples is empty then return PLURALITY-VALUE(parent examples)

else if all examples have the same classification then return the classification
else if attributes is empty then return PLURALITY-VALUE(examples)

else

Aé&argmaxa € attributes IMPORTANCE(a, examples)

tree<-a new decision tree with root test A

for each value vk of A do

exs &,e : e Eexamples and e.A = vk}
subtree<DECISION-TREE-LEARNING(exs, attributes —A, examples)

add a branch to tree with label (A = vk) and subtree subtree

return tree

Expressiveness of decision trees
A Boolean decision tree is logically equivalent to the assertion that the goal attribute is true if and

only if the input attributes satisfy one of the paths leading to a leaf with value true.
Goal &(Pathl vPath2 v = = =), where each Path is a conjunction of attribute-value tests required
to follow that path. A tree consists of just tests on attributes in the interior nodes, values of

attributes on the branches, and output values on the leaf nodes. For a wide variety of problems, the
decision tree format yields a nice, concise result. But some functions cannot be represented
concisely. We can evaluate the accuracy of a learning algorithm with a learning curve.
Choosing attribute tests
The greedy search used in decision tree learning is designed to approximately minimize the depth of the
final tree. The idea is to pick the attribute that goes as far as possible toward providing an exact
classification of the examples. A perfect attribute divides the examples into sets, each of which are all
positive or all negative and thus will be leaves of the tree.

Entropy is a measure of the uncertainty of a random variable; acquisition of information corresponds to
a reduction in entropy.

Entropy: H(V) = Z P(v) log, Plon) = — z P(vg)logy Plvg) .
k k

We can check that the entropy of a fair coin flip is indeed 1 bit:
H(Fair) =-(0.5log2 0.5 +0.510g2 0.5)=1.

Artificial Intelligence Page 120




The information gain from the attribute INFORMATION GAIN test on A is the expected reduction in
entropy:

Gain(A) = I}{p‘f—f”, — Remainder(A) .
d

Remainder(A) = Z Pk B(—PEk_)

p+n Pty ”
k=1

Pruning
In decision trees, a technique called decision tree pruning combats overfitting. Pruning works by
eliminating nodes that are not clearly relevant.

Issues in decision trees:
e Missing data
e Multivalued attributes
e Continuous and integer-valued input attributes
e Continuous-valued output attributes

LEARNING

A LOGICAL FORMULATION OF LEARNING

Current-best-hypothesis search

The idea behind current-best-hypothesis search is to maintain a single hypothesis, and to adjust it as
new examples arrive in order to maintain consistency.

The extension of the hypothesis must be increased to include new examples. This is called
generalization.

function CURRENT-BEST-LEARNING(examples, h) returns a hypothesis or fail

if examples is empty then

return h

e&FIRST(examples)

if e is consistent with h then

return CURRENT-BEST-LEARNING(REST(examples), h)

else if e is a false positive for h then

for each hin specializations of h consistent with examples seen so far do
h<CURRENT-BEST-LEARNING(REST(examples), h)

if h = fail then return h

else if e is a false negative for h then

for each hin generalizations of h consistent with examples seen so far do
h<CURRENT-BEST-LEARNING(REST(examples), h)

if h = fail then return h

return fail

The extension of the hypothesis must be decreased to exclude the example. This is called specialization.

Artificial Intelligence Page 121




Least-commitment search

Backtracking arises because the current-best-hypothesis approach has to choose a particular hypothesis
as its best guess even though it does not have enough data yet to be sure of the choice. What we can do
instead is to keep around all and only those hypotheses that are consistent with all the data so far. Each
new example will either have no effect or will get rid of some of the hypotheses.

One important property of this approach is that it is incremental: one never has to go back and
reexamine the old examples.

Boundary Set :

We also have an ordering on the hypothesis space, namely, generalization/specialization. This is a partial
ordering, which means that each boundary will not be a point but rather a set of hypotheses called a
boundary set.

The great thing is that we can represent the entire G-SET version space using just two boundary sets: a
most general boundary (the G-set) and a most S-SET specific boundary (the S-set). Everything in
between is guaranteed to be consistent with the examples.

The members Si and Gi of the S- and G-sets.

For each one, the new example may be a false positive or a false negative.

1. False positive for Si: This means Si is too general, but there are no consistent specializations of Si (by
definition), so we throw it out of the S-set.

2. False negative for Si: This means Si is too specific, so we replace it by all its immediate generalizations,
provided they are more specific than some member of G.

3. False positive for Gi: This means Gi is too general, so we replace it by all its immediate specializations,
provided they are more general than some member of S.

4. False negative for Gi: This means Gi is too specific, but there are no consistent generalizations of Gi
(by definition) so we throw it out of the G-set

EXPLANATION-BASED LEARNING

Explanation-based learning is a method for extracting general rules from individual observations.
Memoization

The technique of memoization has long been used in computer science to speed up programs by saving
the results of computation. The basic idea of memo functions is to accumulate a database of input—
output pairs; when the function is called, it first checks the database to see whether it can avoid solving
the problem from scratch.

Explanation-based learning takes this a good deal further, by creating general rules that cover an entire
class of cases.

Basic EBL process works as follows:

1. Given an example, construct a proof that the goal predicate applies to the example using the available
background knowledge

2. In parallel, construct a generalized proof tree for the variabilized goal using the same inference steps
as in the original proof.

Artificial Intelligence Page 122




3. Construct a new rule whose left-hand side consists of the leaves of the proof tree and whose right-
hand side is the variabilized goal (after applying the necessary bindings from the generalized proof).

4. Drop any conditions from the left-hand side that are true regardless of the values of the variables in
the goal.

Three factors involved in the analysis of efficiency gains from EBL:

1. Adding large numbers of rules can slow down the reasoning process, because the inference
mechanism must still check those rules even in cases where they do not yield a solution. In other words,
it increases the branching factor in the search space.

2. To compensate for the slowdown in reasoning, the derived rules must offer significant increases in
speed for the cases that they do cover. These increases come about mainly because the derived rules
avoid dead ends that would otherwise be taken, but also because they shorten the proof itself.

3. Derived rules should be as general as possible, so that they apply to the largest possible set of cases.

LEARNING USING RELEVANCE INFORMATION

The learning algorithm is based on a straightforward attempt to find the simplest determination
consistent with the observations.

A determination P ' Q says that if any examples match on P, then they must also match on Q. A
determination is therefore consistent with a set of examples if every pair that matches on the predicates
on the left-hand side also matches on the goal predicate.

An algorithm for finding a minimal consistent determination

function MINIMAL-CONSISTENT-DET(E,A) returns a set of attributes
inputs: E, a set of examples

A, a set of attributes, of size n

fori=0tondo

for each subset Aiof A of size i do

if CONSISTENT-DET?(Ai,E) then return Ai
function CONSISTENT-DET?(A,E) returns a truth value

inputs: A, a set of attributes

E, a set of examples

local variables: H, a hash table

for each example e in E do

if some example in H has the same values as e for the attributes A

but a different classification then return false

store the class of e in H, indexed by the values for attributes A of the example e
return true

Artificial Intelligence Page 123




Given an algorithm for learning determinations, a learning agent has a way to construct a minimal
hypothesis within which to learn the target predicate. For example, we can combine MINIMAL-
CONSISTENT-DET with the DECISION-TREE-LEARNING algorithm.

This yields a relevance-based decision-tree learning algorithm RBDTL that first identifies a minimal set of
relevant attributes and then passes this set to the decision tree algorithm for learning.

INDUCTIVE LOGIC PROGRAMMING

Inductive logic programming (ILP) combines inductive methods with the power of first-order
representations, concentrating in particular on the representation of hypotheses as logic programs.
It has gained popularity for three reasons.

1. ILP offers a rigorous approach to the general knowledge-based inductive learning problem.

2. It offers complete algorithms for inducing general, first-order theories from examples, which can

therefore learn successfully in domains where attribute-based algorithms are hard to apply.

3. Inductive logic programming produces hypotheses that are (relatively) easy for humans to read
The object of an inductive learning program is to come up with a set of sentences for the Hypothesis
such that the entailment constraint is satisfied. Suppose, for the moment, that the agent has no
background knowledge: Background is empty. Then one possible solution we would need to make pairs
of people into objects.

Top-down inductive learning methods
The first approach to ILP works by starting with a very general rule and gradually specializing it so that it
fits the data.
This is essentially what happens in decision-tree learning, where a decision tree is gradually grown until
it is consistent with the observations.
To do ILP we use first-order literals instead of attributes, and the hypothesis is a set of clauses instead
of a decision tree.
Three kinds of literals

1. Literals using predicates

2. Equality and inequality literals

3. Arithmetic comparisons
Inductive learning with inverse deduction
The second major approach to ILP involves inverting the normal deductive proof process.
Inverse resolution is based INVERSE on the observation.
Recall that an ordinary resolution step takes two clauses C1 and C2 and resolves them to produce the
resolvent C.
An inverse resolution step takes a resolvent C and produces two clauses C1 and C2, such that C is the
result of resolving C1 and C2.
Alternatively, it may take a resolvent C and clause C1 and produce a clause C2 such that Cis the result of
resolving C1 and C2.

Artificial Intelligence Page 124




A number of approaches to taming the search implemented in ILP systems
1. Redundant choices can be eliminated
The proof strategy can be restricted
The representation language can be restricted
Inference can be done with model checking rather than theorem proving

AN S

Inference can be done with ground propositional clauses rather than in first-order
logic.

e

v T -ipal
Princip<d _ .
ege of Eng..ne(*-_ ng

i Coll
Vaageswari C AR.505 527

WARIMNA

DEPARTENT WISH YOU ALL THE BEST

Artificial Intelligence Page 125




