

SREE VAAGESWARI EDUCATIONAL SOCIETY

VAAGESWARI COLLEGE OF ENGINEERING

(Affiliated to JNTUH, Hyderabad.)

(Approved by AICTE New Delhi & Recognised by the Govt. of Telangana State)

GREEN AUDIT

PRINCIPAL

Principal
Vaageswari College of Engineering
KARIMNAGAR

Beside L.M.D. Police Station, KARIMNAGAR - 505 527, Telangana State. Ph : 0878-2004242

E-mail: s4.principal@gmail.com, Website: www.vgsek.ac.in

Sustainable Living Inc

VAAGESWARI
COLLEGE OF ENGINEERING

Green Landscape Audit

1

Chiragam
Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

CONTENTS

- 03 Acknowledgment
- 05 Executive Summary
- 07 Green landscape
- 14 Conclusion

M. Biju
Principal
VagaiSwami College of Engineering
KARMAKA 502 527

Acknowledgment

Sustainable Living Inc

Hiran Prashanth

Environmental Sustainability Auditor

17 June 2022

Green Landscape Audit

The Sustainable Living Inc acknowledges with thanks the cooperation extended to our team for completing the study at Vaageswari College of Engineering (VGSE).

The interactions and deliberations with VGSE team were exemplary and the whole exercise was thoroughly a rewarding experience for us. We deeply appreciate the interest, enthusiasm, and commitment of VGSE team towards environmental sustainability.

We are sure that the recommendations presented in this report will be implemented and the VGSE team will further improve their environmental performance.

Kind regards,

Yours sincerely,
Hiran Prashanth

Hiran Prashanth
Environmental Sustainability Auditor
Sustainable Living In

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

About Auditor

Hiran Prashanth is a sustainability consultant based in London. He has over 14 years of experience in climate change and environmental sustainability. He was working with the Confederation of Indian Industry (CII) before moving to London to pursue a master's degree at King's College, London.

Hiran Prashanth was awarded the 'Best Sustainability Assessor' by the Honorable Minister for HRD, Mr. Prakash Javadekar. Hiran Prashanth is a CII certified carbon footprint expert and a resource efficiency expert. He has trained more than 1000 industry personnel across the world on climate change and sustainability. He is a guest a faculty at IIM Lucknow and SIBM, Pune. His credentials can be found on [Hiran Prashanth | LinkedIn](#). Sustainable Living Inc provides services on carbon footprint, energy audit, resource management and embodied carbon.

Executive Summary

The growth of countries across the world is leading to increased consumption of natural resources. There is an urgent need to establish environmental sustainability in every activity we do. In a modern economy, environmental sustainability will play a critical role in the very existence of an organization.

An educational institution is no different. Built environment, especially an educational institution, has a considerable footprint on the environment. Impact on the environment due to energy consumption, water usage and waste generation in an educational institute is prominent. Therefore, there is an imminent need to reduce the overall environmental footprint of the institution.

As an Institution of higher learning, Vaageswari College of Engineering (VGSE) firmly believes that there is an urgent need to address the environmental challenges and improve their environmental footprint.

True to its belief, VGSE maintains an excellent landscaping in its campus. The whole campus is lush green, and trees are seen everywhere around the campus. Sustainable Living Inc congratulates the VGSE team for their wonderful efforts to create a truly green campus.

Based on the data submitted by VGSE team, following improvement opportunities have been identified in the campus in terms of landscaping:

- Implement ecosystem restoration by development of theme gardens in unused areas of the campus
- Develop green corridors between existing areas in the campus
- Develop natural areas to encourage bird roosting and nesting in built-up areas
- Increase tree density and canopy cover in the built-up areas by planting more fruit yielding tree

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

- Conduct regular flora surveys for improving the existing data
- Develop strategies for regular monitoring & prevention of invasive plant species

By addressing the improvement opportunities, the campus would be able to achieve the following benefits:

- Identifying & implementation of proper measure for conservation of endangered floral species in the campus
- Reduce the microclimate temperature of the campus by 1-2 degrees which is quite significant
- As many of the species have the capability to absorb contaminants in the air and therefore this would lead to better air quality in the campus
- This can evolve as an excellent educational campus for spreading awareness on biodiversity and benefit the nation at large

Principal
Vaagdevi College of Engineering
KARIMNAGAR-505 527.

Introduction

Urbanisation and its effect on loss of biodiversity

Urbanization causes biodiversity to decline. As cities grow vital habitat is destroyed or fragmented into patches not big enough to support complex ecological communities. In the city, species may become endangered or even locally extinct as natural areas are swallowed up by the urban jungle.

Ironically, it is urban growth that is often responsible for the introduction of non-native species, either accidentally or deliberately, for food, pets or for aesthetic reasons.

Documentation of Flora

Knowledge on biodiversity of any geographical region is of paramount importance for sustainable management and conservation plans. The foremost task in the conservation process is to prepare an inventory of species. It is necessary to have full knowledge regarding the habit, habitat, distribution and phenology of various plants for their proper conservation.

The documentation of flora will help in identifying, documenting and promoting the conservation of native flora in India. This in turn will help in promoting native species for landscapes as they suit the growing interest in "low-maintenance" gardening and landscaping.

Many species are vigorous & hard and can survive winter, cold and summer heat. These species, once established, can flourish without irrigation or fertilization and are resistant to most pests & diseases.

Dr. B. S. Vaageswari
Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527

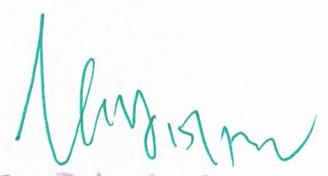
Need for Documentation of Flora

The knowledge building on significance and importance of various flora existing around us is the need of the hour. Loss of the biodiversity is likely to result in loss of various other taxonomic groups.

Serve as a ready reckoner:

Most of the campuses have huge landscape with diverse floral species. Nevertheless, the availability of information on these species is minimal. Hence, the documentation of the species would serve as an educational material on the details of species existing within the campus

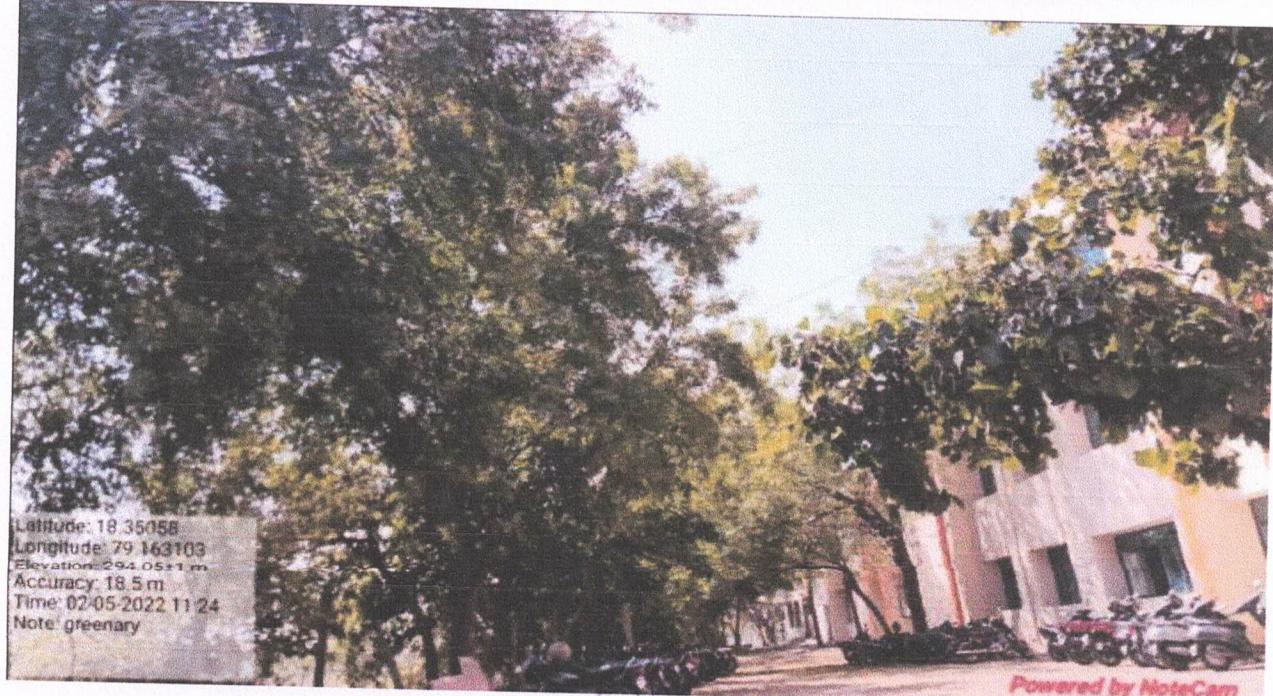
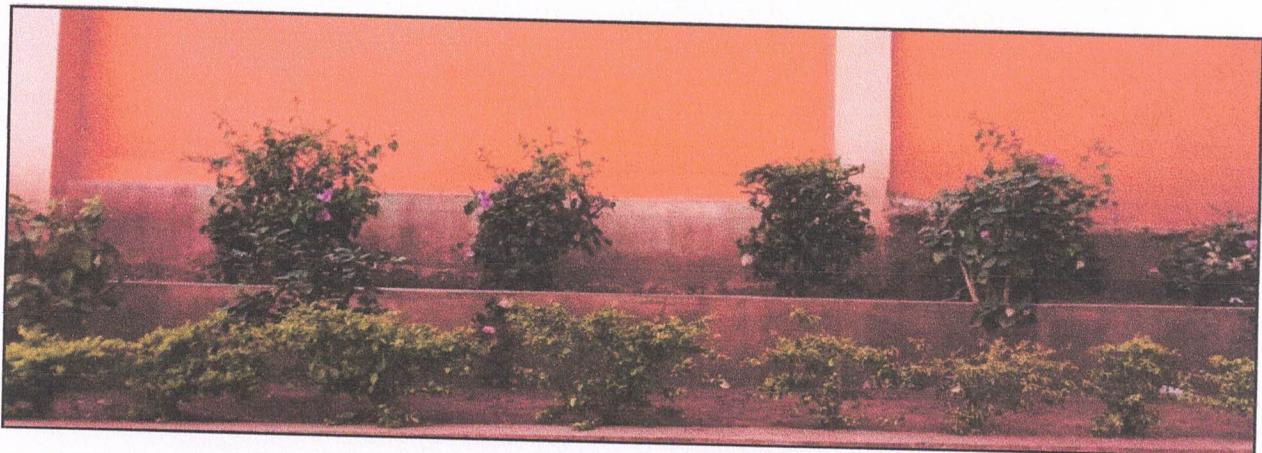
Public Visibility:


Despite having various Biodiversity initiatives in place within the campus most of the campuses lack the visibility of the measures taken in conservation. The study will create awareness & visibility of the campus on various conservation measures implemented to the occupants as well as to the visitors.

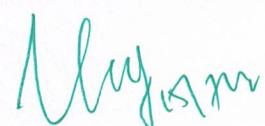
Also, the organization will gain visibility globally amongst its shareholders for the positive steps taken towards protecting biodiversity.

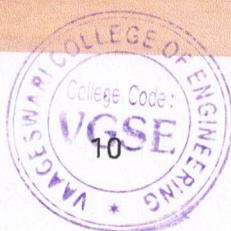
Conservation of species:

Due to urbanization most of the floral species are under tremendous pressure. The need of the hour is to conserve and protect these species. The study would help in identifying such species in the campus which need to be conserved.

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.


VGSE carbon sequestration through plantation


Carbon sequestration through plantation is one of the important steps towards achieving carbon neutrality. In carbon footprint calculation of VGSE, carbon sequestration through plantation is considered and due credit has been given.

No. of trees considered for carbon footprint calculation	:	150 trees
CO2 absorbed by a tree in one year	:	18 KG
Total CO2 sequestered	:	150 trees x 18 KG of CO2 / year
	:	2700 KGs of CO2

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527,

 [Handwritten signature of the Principal]

College Code :

VGSE

10

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

Plantation & Maintenance techniques

Selection of species

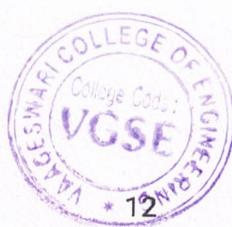
- Native species like *Azadirachta indica* (Neem), *Pongamia pinnata* (Pongam tree), *Cassia fistula* (Indian shower tree), *Butea monosperma* (Flame of the forest) and also fruit bearing species like *Mangifera indica* (Mango), *Manilkara sapota* (Chikoo), *Syzygium cumini* (Jamun Tree), *Psidium guajava* (Guava), *Annona squamosa* (Custard apple), *Punica granatum* (Pomegranate), *Phyllanthus emblica* (Indian Gooseberry), *Citrus sinensis* (Sweet lime) and *Citrus limon* (Lime) to be selected for plantation
- Saplings of 2-3 ft height to be considered for plantation in public areas
- Plantation can be taken up as avenues (roadside plantation) and green belts (thick plantation in one area)
- Fruit plantation can be taken up in protected areas, institutions with large areas. Special care to be taken in maintenance since these plants also generate revenue

Digging of pits

Pits to be dug about one month prior to the plantation date and it should be exposed to sunlight. This will help in killing of harmful disease-causing bacteria and virus.

1. In places of no availability of proper sunlight, dry trash to be filled in the pit and burnt.
2. Pit size should be normally 2ft^3 or 3ft^3 and in soils which are very hard 4ft^3 or above to be dug.
3. Further to the digging of pit, the bottom of the pit should be loosened up to 6-9 inches.
4. While digging, we can observe different soil profiles. Topsoil will be soft and contains enough nutrients for nourishing the plant. The topsoil should be deposited on one end and hard soil on the other end. While filling the pit with soil, the topsoil only should be used. The topsoil from the non-plantation area around the pit to be collected and mixed with manure and used for filling of the pit.

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.


Transportation

- Visit to the nurseries and enquire about plant species like availability, size, age and girth prior to the plantation. Also, the size of the packet in which the plant is existing to be enquired.
- Ensure that the material is available in the nursery and allotted to pick up
- The saplings to be watered one or two days prior to the movement of plants to plantation area.
- The plants to be procured at least 15 days prior to plantation.
 - The saplings to be watered as soon as they reach the plantation area and regularly thereafter.
 - They should be kept in shade, non-windy & protected areas.

The above said steps to be followed for movement of plants near to the pits within the plantation area. Enough water to be stored for watering the plants after plantation. Also, tools and manpower to be kept in place to ensure proper plantation of saplings. If the sapling is bushy with many branches, then the branches are to be trimmed before plantation.

Plantation

- The poly bag around the root ball to be carefully cut with a knife / sickle / scissors without disturbing the roots
- Rope and stakes are to be kept ready to support the plant after plantation.
- Regular watering to be done to the plants followed by mulching (loosening of top 3 – 4 inches of soil)
- Mulching will help in conservation of moisture, aeration of roots and control of weeds.
- Note: At least 5% of extra plants to be procured for timely gap filling and to ensure 100% survival. Care to be taken for these plants like other plants.

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

Recommendations for Enhancing Flora in Campus

1. Implement Ecosystem Restoration

- Develop naturalised areas in the Open Area segments
 - Wastelands in the campus can be converted to a Park
- 'Theme Gardens' can be developed in unused areas of the campus to increase proportion of natural area

2. Enhance Ecosystem Protection

- Protect and maintain the existing Open Area segments

3. Planting more fruit yielding trees

- Increase tree density and canopy cover in the built-up areas

4. Increase number of Native Plants in the Landscape area

- Increase native plants to boost native biodiversity

- Bees, butterflies and other insects

- Healthy native plant growth will help in easy identification of invasive alien species

5. Introduce more native species in Open Areas

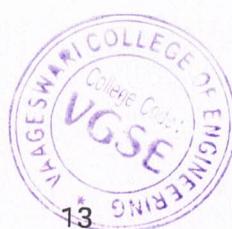
6. Preventing/ Decreasing Invasive Alien Species Spread

- Identify potential threatening species in advance and implement quarantine measures

- Mass Eradication techniques for larger spreads

- Commitment to complete eradication

- Manual Uprooting of small populations

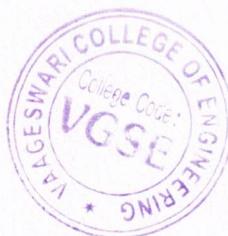

7. Develop natural areas to encourage bird roosting and nesting in built-up areas

8. Introduce features to attract birds in the built-up areas

- Bird feeders

- Water troughs/ Bird baths

- Nesting material



Principal
Vaageswari College of Engineering,
KARIMNAGAR-505-527.

9. Improve measures for rainwater harvesting in paved and un-paved areas

- Open fields, parks, pavement landscapes, etc.
- Develop outdoor parks in open areas

Conclusion

As seen in the carbon sequestration calculation, tree plantations lead to a tremendous reduction in net emissions of the campus. Therefore, VGSE needs to develop a roadmap to include tree plantation as a strategy to reduce overall carbon emissions of the campus.

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

SREE VAAGESWARI EDUCATIONAL SOCIETY

VAAGESWARI COLLEGE OF ENGINEERING

(Affiliated to JNTUH, Hyderabad.)

(Approved by AICTE New Delhi & Recognised by the Govt. of Telangana State)

ENERGY AUDIT

May (6/)
PRINCIPAL

Principal
Vaageswari College of Engineering
KARIMNAGAR

Sustainable Living Inc

VAAGESWARI
COLLEGE OF ENGINEERING

Carbon Footprint and Energy Audit

1

Principal

Vaageswari College of Engineering
KARIMNAGAR-505 527.

CONTENTS

- 03 Acknowledgment & About Auditor
- 05 Executive Summary
- 08 Carbon Footprint & Opportunities for Improvement
- 30 Conclusion

Principal
Jyoti Engineering College of Engineering
KARIMNAGAR-505 627.

Acknowledgment

Sustainable Living Inc

Hiran Prashanth

Environmental Sustainability Auditor

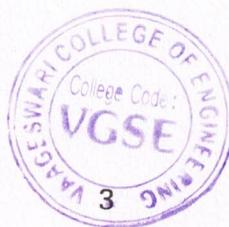
17 June 2022

Carbon footprint and Energy audit at Vaageswari College of Engineering

The Sustainable Living Inc acknowledges with thanks the cooperation extended to our team for completing the study at Vaageswari College of Engineering (VGSE).

The interactions and deliberations with VGSE team were exemplary and the whole exercise was thoroughly a rewarding experience for us. We deeply appreciate the interest, enthusiasm, and commitment of VGSE team towards environmental sustainability.

We are sure that the recommendations presented in this report will be implemented and the VGSE team will further improve their environmental performance.


Kind regards,

Yours sincerely,

Hiran Prashanth

Hiran Prashanth

Environmental Sustainability Auditor
Sustainable Living In

Meenakshi

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

About Auditor

Hiran Prashanth is a sustainability consultant based in London. He has over 14 years of experience in climate change and environmental sustainability. He was working with the Confederation of Indian Industry (CII) before moving to London to pursue a mid-career master's degree at King's College, London.

Hiran Prashanth was awarded the 'Best Sustainability Assessor' by the Honorable Minister for HRD, Mr. Prakash Javadekar. Hiran Prashanth is a CII certified carbon footprint expert and a resource efficiency expert. He has trained more than 1000 industry personnel across the world on climate change and sustainability. He is a guest a faculty at IIM Lucknow and SIBM, Pune. His credentials can be found on [Hiran Prashanth | LinkedIn](#). Sustainable Living Inc provides services on carbon footprint, energy audit, resource management and embodied carbon.

4

Principal
Vaamswari College of Engineering
KARIMNAGAR-505 527.

Executive Summary

The growth of countries across the world is leading to increased consumption of natural resources. There is an urgent need to establish environmental sustainability in every activity we do. In a modern economy, environmental sustainability will play a critical role in the very existence of an organization.

An educational institution is no different. Built environment, especially an educational institution, has a considerable footprint on the environment. Impact on the environment due to energy consumption, water usage and waste generation in an educational institute is prominent. Therefore, there is an imminent need to reduce the overall environmental footprint of the institution.

As an Institution of higher learning, Vaageswari College of Engineering (VGSE) firmly believes that there is an urgent need to address the environmental challenges and improve their environmental footprint.

True to its belief, VGSE has solar PV for generating clean energy for its campus. 5 KWp of solar panels has been installed in the campus. VGSE is also in the process of replacing conventional lamps with energy efficiency lamps. Sustainable Living Inc Team congratulates VGSE team for their efforts.

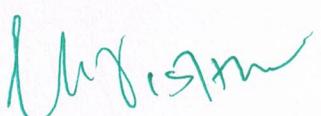
Keeping VGSE's work in energy efficiency, we recommend the following to be taken by the competent team at VGSE:

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

Work towards achieving carbon neutrality: INDC emphasizes creating an additional carbon sink of 2.5 to 3 billion tonnes of CO₂ equivalent through additional forest and tree cover by 2030. VGSE's net carbon emission for the year 2021-22 is **244 MT CO₂e**. VGSE should focus on energy efficiency, renewable energy, and carbon sequestration as tools that will enable them to offset the present carbon emissions and achieve carbon neutrality.

Installation of solar rooftop: Renewable energy plays a very important role in improving the environmental footprint of an organization. VGSE has already installed solar panels for generating clean energy for its campus. By increasing the share of renewable energy in VGSE's energy portfolio, the overall carbon footprint of the college can be reduced. Considering a minimum available rooftop area in campus building as 5400 sq. ft, a minimum of 50 kWp of solar PV can be installed. As an initial step, VGSE could look at installing 25 kWp of solar PV which can generate 40500 units per year. The renewable share will also reduce the 33 MT CO₂e. Achieving carbon neutrality should be one of the major objectives of VGSE.

Installation of biogas plant: In 2021-22, VGSE had used 3.99 MT of LPG. There is an opportunity to install a biogas plant to generate biogas from sewage water. Presently, sewage water is being let out to the drain without treatment. An opportunity exists to generate biogas from the untreated sewage water and use the generated biogas to substitute LPG used in the college. By generating biogas from sewage water, about 0.93 MT of LPG can be replaced which will result in carbon savings of 2.79 MT CO₂e.



Principal
Vaagdevi College of Engineering
KARIMNAGAR-505 527.

Improve energy efficiency of the college: It is recommended to adopt latest energy efficient technologies for reducing energy consumption in fans, lighting, and air conditioners. We recommend the following projects to be implemented at the earliest:

- Replace conventional 70W ceiling fans with energy efficient BLDC fans of 30W
- Replace conventional lights with energy efficient LED lamps
- Installation of Air conditioners energy savers
- Install solar water heater for the hostel

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

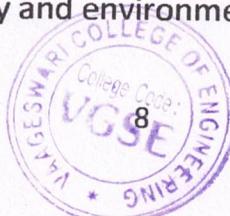
Carbon Footprint and Energy Audit

Vaageswari College of Engineering (VGSE) and Sustainable Living Inc are working together to identify opportunities for improvement in energy efficiency and carbon reduction. This report highlights all the potential proposals for improvement through the audit and analysis of the data provided by VGSE for lighting, air conditioning, ceiling fans, and biogas potential.

The report also details the carbon emissions from college operations. For carbon emissions, scope 1 and scope 2 emissions are calculated from the data submitted by VGSE. The report emphasizes the GHG emission reduction potential possible through a reduction in power consumption.

Submission of Documents

Carbon footprint and energy audit at VGSE was carried out with the help of data submitted by VGSE team. VGSE team was responsible for collecting all the necessary data and submitting the relevant documents to Sustainable Living Inc for the study.


Carbon Footprint and Energy Audit

Data submitted and collected was used to calculate the carbon footprint of the campus and assess energy consumption and finally provide necessary recommendations for environmental improvement.

Note

Carbon footprint and energy audit are based on the data provided by VGSE team and discussions the Sustainable Living Inc team had with VGSE team. The scope of the study does not include the exclusive verification of various regulatory requirements related to environmental sustainability.

Sustainable Living Inc has the right to recall the study if it finds (a) major violation in meeting the environmental regulatory requirements by the location and (b) occurrence of major accidents, leading to significant damage to ecology and environment.

Vaageswari College of Engineering
KARIMNAGAR-505 527.

OPPORTUNITIES FOR IMPROVEMENT

As a part of the overall environmental improvement study at VGSE, carbon footprint calculations were also carried out. The objective of calculating the carbon footprint of the campus is to find the present level of emissions from campus operation and what initiatives that the VGSE can take to offset the emissions. By offsetting the emissions, the college can become carbon neutral in the future by adopting energy efficient processes, increase in renewable energy share and tree plantation.

Carbon footprint calculations:

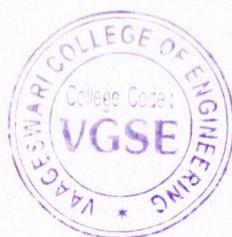
To help delineate direct and indirect emission sources, improve transparency, and provide utility for different types of organizations and different types of climate policies and business goals, three "scopes" (scope 1, scope 2, and scope 3) are defined for GHG accounting and reporting purposes.

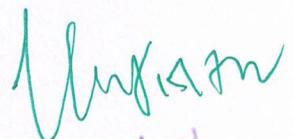
For calculating carbon footprint of the campus, Scope 1 & Scope 2 emissions are being considered. Since day scholars use college provided transportation and hostellers stay in campus, Scope 1 and Scope 2 are the highest contributor to overall emissions. For this reason, Scope 3 is not being calculated.

Scope 1: Direct GHG Emissions

Direct GHG emissions occur from sources that are owned or controlled by the company, for example, emissions from combustion in owned or controlled DG sets, canteen, vehicles, etc.; emissions from chemical production in owned or controlled process equipment. Direct CO₂ emissions from the combustion of biomass shall not be included in scope 1 but reported separately.

Principal
Vaagdevi College of Engineering
KARIMNAGAR-505 527.


VGSE Scope 1 emissions for 2021-22:


Sources of Scope 1 emissions in VGSE:

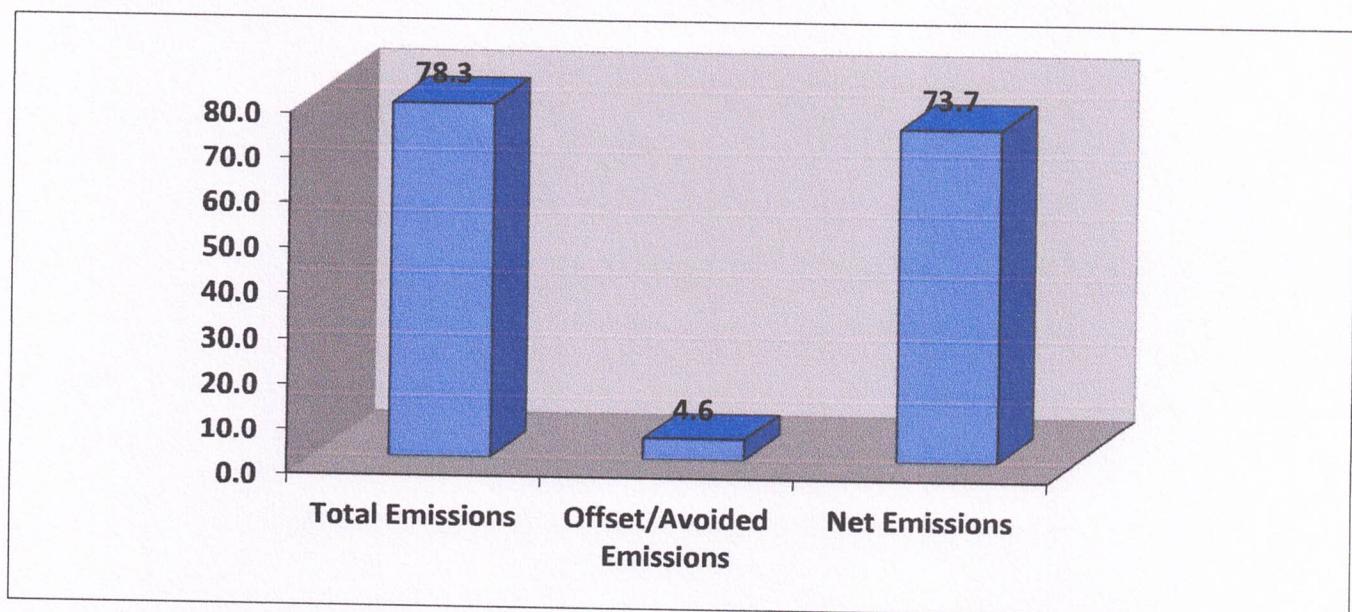
- 1) Natural used for canteen (NG converted to equivalent LPF value based on calorific value)
- 2) Diesel used for generator

S No	Fuel Type	Description	Activity Data	Units	CO2 eq. Emissions (tons)
1	LPG	Canteen	3.99	MT	11.89
2	Diesel	Transportation	55.00	KL	145.20
3	Diesel	Generator	5.00	KL	13.20

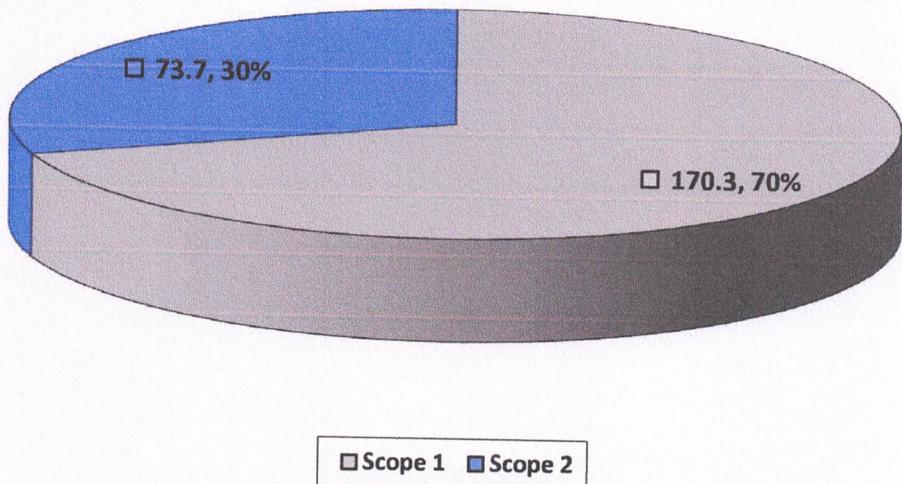
Total Scope 1 emissions of VGSE : 170.30 Tons (for year 2021-22)

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

Scope 2: Electricity Indirect GHG Emissions


Scope 2 accounts for GHG emissions from the generation of purchased electricity consumed by a company. Purchased electricity is defined as electricity that is purchased or otherwise brought into the organizational boundary of the company. Scope 2 emissions physically occur at the facility where electricity is generated.

VGSE Scope 2 emissions for 2021-22:


Electricity purchased from grid : 89,839

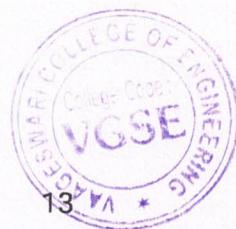
Solar energy produced : 5.625

Scope 2 Breakup

GHG Emission Summary of VGSE

Scope 1	170.30	MT CO2 eq.
Scope 2	73.70	MT CO2 eq.
Total	244.00	MT CO2 eq.

Principal
Vageswari College of Engineering
KARIMNAGAR-505 527.


Develop a roadmap to increase contribution of renewable energy in the overall energy consumption

To have a continued focus on increasing renewable energy utilization to 100% which will also lead to reduction in GHG emissions, it is suggested to develop a detailed roadmap on RE utilization. The road map should broadly feature the following aspects -

- Renewable energy potential of VGSE and the maximum offset that can be achieved at VGSE
- Percentage substitution with renewable energy that VGSE wants to achieve in a specified time frame
- Key tasks that needs to be executed to achieve the renewable energy target
- Specific financial break up for each of the projects highlighting the amount required, available and the utilization status as on date
- A regular review mechanism to ensure progress along the lines of the roadmap should be framed
- The roadmap should also highlight important milestones/key tasks, anticipated bottlenecks & proposed

Renewable energy roadmap should be used as a base to frame GHG emissions reduction target

It is suggested to use the developed renewable energy roadmap to correlate the GHG reduction that each of the renewable energy project will achieve. This approach will provide a base to set targets for reduction in GHG emissions. The action plan for renewable energy will shoulder the action plan for GHG emissions reduction and work towards achieving carbon neutrality.

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527-

Explore the option of other onsite and offsite renewable energy projects

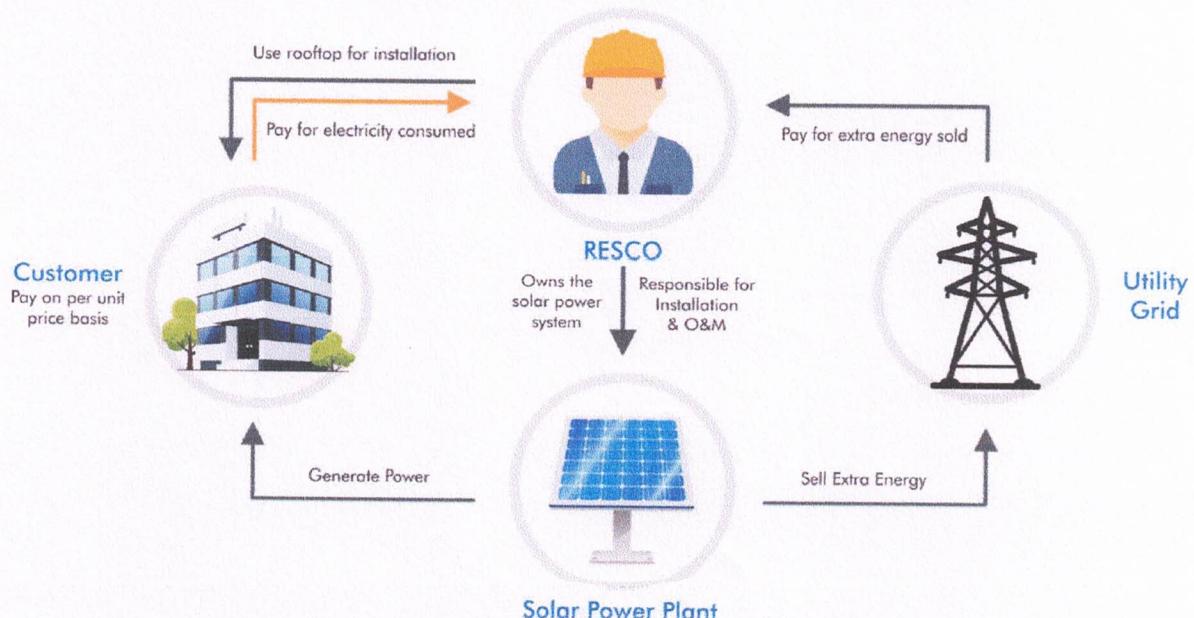
The renewable energy field has been witnessing many private investors due its increased market demand and attractive policies in many states. There are Renewable Energy Independent Power Producers (RE IPPs) who have installed RE based power plants like wind, small hydro and solar PV. GOC can consider having a long-term power purchase agreement with these RE IPPs in purchasing fixed quantity of power for a period of 5 to 10 years.

Evolve a system to monitor the implementation of various GHG mitigation opportunities

VGSE has an action plan to reduce its GHG emissions. VGSE should also evolve a system to monitor the implementation of various GHG mitigation opportunities. It is recommended to use a Gantt chart to mark out the action plan for the activities and track its implementation. Gantt chart will serve as an excellent way to instantly monitor and comprehend all different tasks in one place which would ease tracking of implementation.

Principal
Vageswari College of Engineering
KARIMNAGAR-505 527.

Install 25 kWp of Solar PV in VGSE campus


Renewable energy is one of the important steps to be taken up by the college to reduce their overall carbon footprint. Considering an availability of a minimum 5400 sq. feet of rooftop area, 50 kWp of solar PV can be installed. However, for this report calculation, only 25 kWp capacity is considered.

A renewable energy capacity of 25 kW of solar panel may be installed can generate **40,500** units of electricity per year. Additionally, 25 kWp of solar rooftop can offset **33 MT CO2e** per annum.

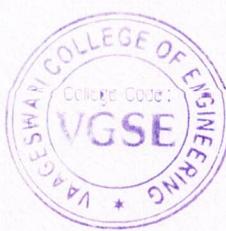
RESCO model for solar rooftop installation:

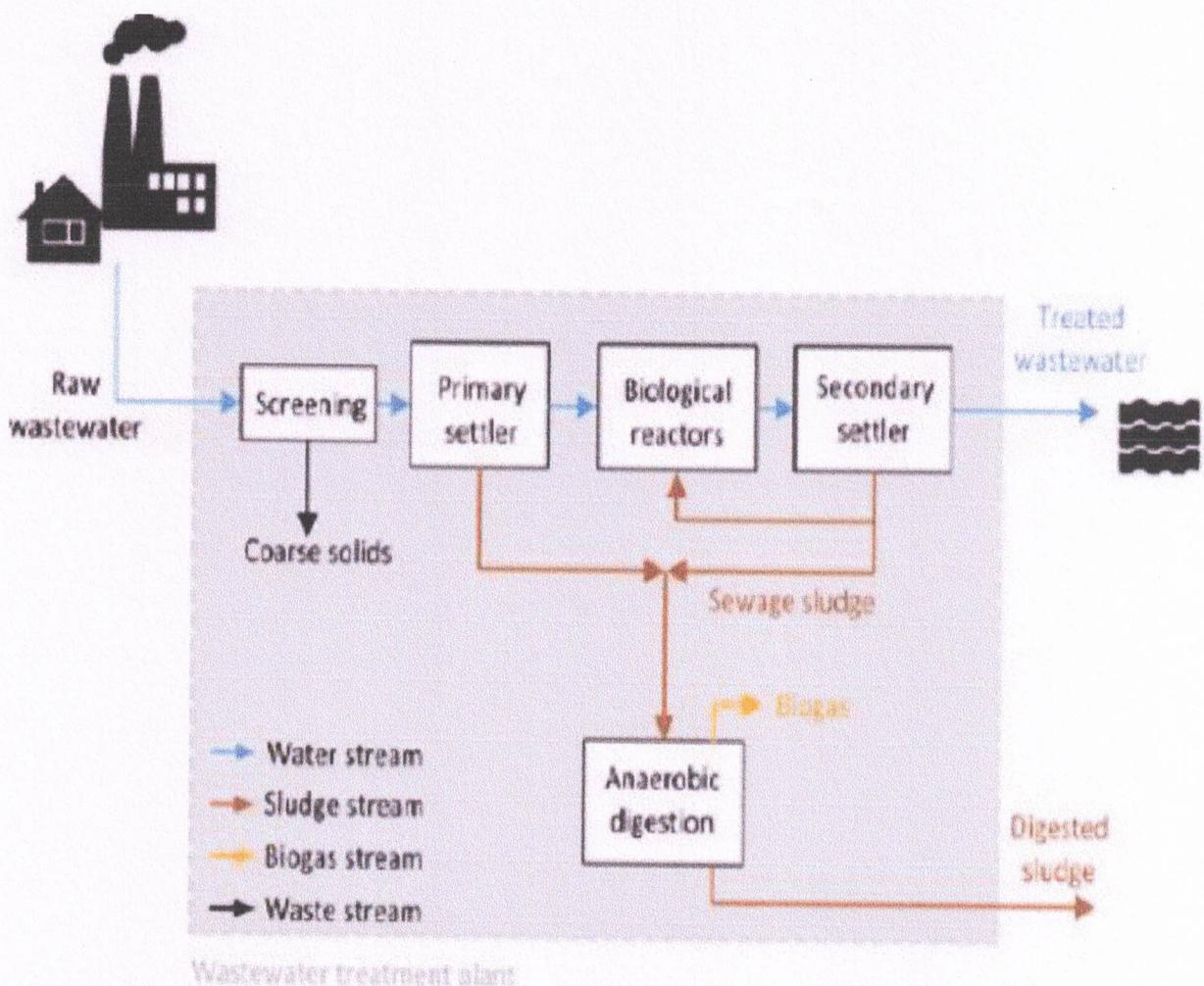
A Renewable Energy Service Company (RESCO) is an ESCO Energy service company which provides energy to the consumers from renewable energy sources. RESCO or BOOT model is about pay as you consume the electricity.

- Solar Power Plant is owned by the RESCO or Energy Company
- Customer must sign a Power purchase Agreement (PPA) with actual investor at mutually agreed tariff and tenure
- Customer only pays for electricity consumed
- RESCO developer is responsible for its annual operations & maintenance (O&M)
- The RESCO gets the benefit by selling the surplus power generated to the DISCOM

Source: www.bluebirdsolar.com

Install biogas plant at VGSE campus


Presently, sewage water is being let out to the drain without treatment. An opportunity exists to generate biogas from the untreated sewage water and use the generated biogas to substitute LPG used in the college.


VGSE had used 3.99 MT of LPG. By generating biogas from sewage water, about 0.93 MT of LPG can be replaced which will result in carbon savings of 2.79 MT CO₂e.

Biogas Production Potential of Wastewater

The sewage water is a useful waster as 1% of it in any quantity is a sludge which when subjected to anaerobic digestion will produce biogas. Wastewater is the effluent from household, commercial establishments and institutions, hospitals, industries and so on. Sewage water source contains large amount of organic material which can be efficiently recovered in as sludge which and when subjected to anaerobic digestion, the sludge produces methane gas (biogas).

Biogas is a mixture of gases containing 50-75% Methane, and 25-50%Carbon dioxide while 0-10% Nitrogen, 0-3% Hydrogen disulphide and 0-2% Hydrogen may be present as impurities which is produced by anaerobic digestion of organic material i.e. a sequential enzymatic breakdown of biodegradable organic material (Biomass) in the absence of oxygen. The process is usually carried out in a digester tank known as biodigester. Biogas is an important energy source used as cooking gas, to generate electricity, etc. thus producing biogas from wastewater is an efficient and sustainable waste management and renewable energy technique. One of the major environmental problems of the world today is waste management and wastewater constitutes a huge environmental problem to the society thus the need for wastewater treatment to recover and also recycle the recovered water for usage.

The physical process: this is the mechanical treatment of the water that involves removal of debris from the raw wastewater right from the point it enters the plant. The screening and primary settling of debris. Wastewater enters the treatment plant through the inlet chamber from where it is channeled to the coarse screen that removes solid waste.

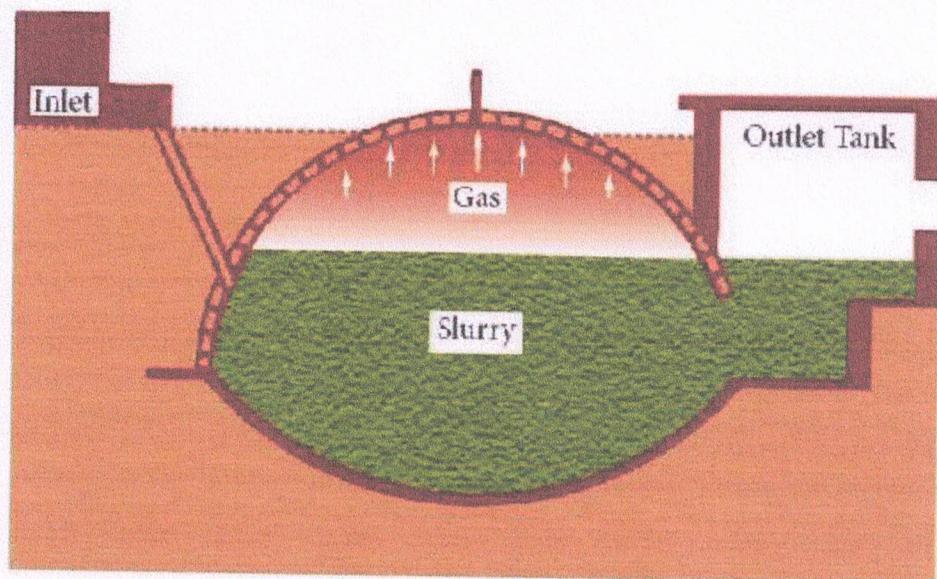
The biological process: this involve the biotreatment of the sewage in the bioreactors. It is the heart of the treatment plant where a biological process takes place. The bioreactors of a treatment plant are usually large tanks consisting of several mammoth rotors and submersible mixers. While the rotor introduces atmospheric oxygen into the sewage, the submersible mixers keep the biomass in suspension thus several reactions takes place in the bioreactors.

 Principal
 Vaidikswari College of Engineering
 KARIMNAGAR-505 527.

From the bioreactor, the sewage enters the sedimentation tank. Here the biological process ends and sludge is separated from water such that the clean water is passed to the disinfection tank for disinfection and onward discharge for use while the sludge is removed by the returned activation sludge (RAS) pump that removes and sends part to the anaerobic digestion chamber while some are return to the anaerobic bioreactor for reactivation.

Production of biogas is an anaerobic digestion whereby microorganisms break down biodegradable material in the absence of oxygen to produce methane/carbon dioxide used to generate electricity and heat. Sludge from the treatment plant (primary and activated sludge) is the main feedstock (biodegradable organic matter) in the biogas production plant of a wastewater treatment plant and the biogas production process involves series of steps. The combine sludge resulting from primary and secondary water treatment is gathered, sieved and thickened to a dry solids content of up to 7% before entering the digesters. Optionally, the sludge can be pretreated by disintegration technologies with the aim to improve the gas yield. In the anaerobic digestion process, the sludge is pumped into the anaerobic continuously stirred tank reactors where digestion takes place.

In the process, microorganisms break down part of the organic matter that is contained in the sludge and produce biogas, which is composed of methane, carbon dioxide and trace gases. The raw biogas produced is dried and hydrogen sulphide and other trace substances removed and burned in burners after treatment. The digested sludge is dewatered, and the water reintroduce into the treatment plant while the remaining undigested matter used for organic fertilizer.



A handwritten signature in blue ink, appearing to read "Mr. V. V. Venkateswara".

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

Calculations:

Sewage water available per day	: 5 KL (Least value considered for calculation)
Sludge in 10KL of sewage water	: 1% (100 kg)
From 6kg of organic waste	: 1 kg of biogas can be produced
Therefore, from 50 kg	: 8.33 kg of biogas can be produced
Kg of biogas	: 0.45kg of LPG
Per day equivalent LPG production	: 3.25 kg per day
Annual LPG production for 250 days	: 937.50 kg
Annual emission reduction potential	: 2.79 T CO ₂

Mr. Raju
Principal
Vaidgeswari College of Engineering
KARIMNAGAR-505 527.

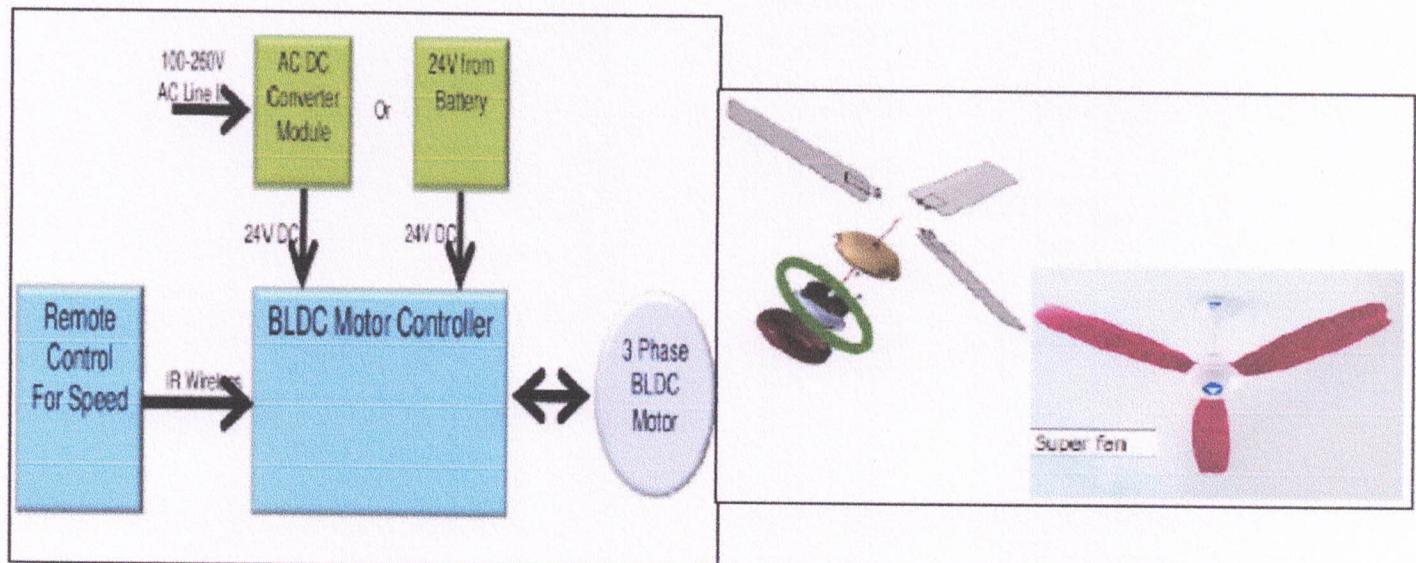
ENERGY EFFICIENCY

Annual energy consumption of VGSE campus is 89,839 units. There are major blocks in the campus which consumes energy for their operation. Major energy consumers are:

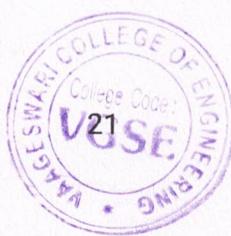
1. Fans
2. Lighting
3. Air conditioners
4. Water heaters for hostel

Replace Conventional Ceiling Fans with Energy Efficient BLDC Fans

During the Energy Audit at VGSE, a detailed study was carried out to identify the potential for replacing the existing ceiling fans with BLDC super fans. There are 1620 fans operating in VGSE campus.


Instead of conventional ceiling fans, latest technology BLDC fans which consume only 30W can be installed in the newly constructed building. A brushless DC (BLDC) motor is a synchronous electric motor powered by direct-current (DC) electricity and having an electronic commutation system, rather than a mechanical commutator and brushes. A BLDC motor has an external armature called the stator, and an internal armature called the rotor.

The rotor can usually be a permanent magnet. Typical BLDC motor-based ceiling fan has much better efficiency and excellent constant RPM control as it operates out of fixed DC voltage. The proposed BLDC motor and the control electronics operate out of 24V DC through an SMPS having input AC which can vary from 90V to 270V. The operational block diagram of a BLDC motor is as follows:



Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

Calculations:

With the replacement of existing ceiling fans with Super Fans the energy consumption is likely to reduce by 55% per fixture. Considering 100 fans being replaced with super-efficient BLDC fans, 3.50 kW can be saved. Considering the average operating hours to be 2000 and unit cost as Rs. 7.50, the calculations are as follows:

Total no. of fans in college	: 780
Energy consumption per fan	: 70 W
Total energy consumption of fans	: $70W \times 100 \text{ fans}$
	: 7 kW
Super-efficient BLDC fans energy consumption	: 30 W
Savings from 70W to 30 W	: 55%
Total savings in fans energy consumption	: 55% of 7kW
	: 3.5 kW
Savings per year	: $3.5 \text{ kW} \times 2000 \text{ hrs} \times \text{Rs. 7.50 / unit}$
	: Rs. 0.75 Lakhs
Investment	: Rs. 2,50,000
	: 52 months
Annual emission reduction potential	: 6.00 T CO ₂

 Principal
 Vaageswari College of Engineering
 KARIMNAGAR-505 527.

Replace Conventional Lamps with LED Lamps

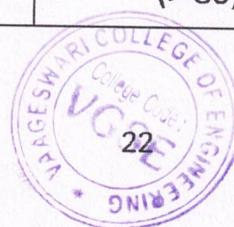
As per the data submitted, the total number of all the lighting fixtures installed are 850 tube lights. VGSE has already taken an excellent step of replacing conventional lamps to LED lamps. We congratulate the team for the excellent step.

Under failure replacement policy, at least 100 lamps can be changed in the first year.

Types of fixtures	36 W Tube
No of fixtures	100
No of hours in Operation	2000

The campus should be keen in harnessing the day lighting available thereby reducing the use of artificial lighting.

Based on the occupancy, monitoring should be ensured to reduce excessive consumption of energy.


Major savings in energy through lighting fixtures can be achieved by replacing all the above existing fixtures with LED's meeting the required LUX levels. The LED's being less energy consuming while maintaining the equivalent lux is the more sustainable option. The replacement of lighting fixtures should be done as per failure replacement policy i.e. change the old fixture with LED when it fails

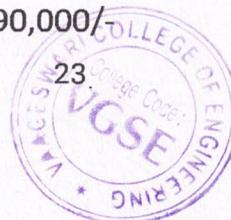
Advantages of LED

- Lower energy consumption: The energy consumption of LEDs is low when compared to the other conventional sources for the same amount of Lumen output.

Performance comparison of different type lights

Type of Lamp	Lumen/Watt	CRI	Life hours
HPSV lamps	90-120	Bad (22-25)	15,000-20,000
Metal Halide lamps	65-00	Good (65-90)	18,000
LED lamps	100-150	Very Good (> 80)	10,000 – 12,000

Principal
Vageswari College of Engineering
KARIMNAGAR-505 527


- **High S/P ratio:** LEDs have higher scotopic/photopic ratio (S/P ratio). The eye has two primary light sensing cells called rods and cones – cones function in day light and process visual information whereas rods function in night light. The cone dominated vision is called photopic and the rod dominated vision is called scotopic. The S/P ratio indicates the measure of light that excites rods compared to the light that excites cones. In office environments, illumination is more effective if the S/P ratio is high as it is under scotopic region. LEDs hence are ideally suited for these applications as they have a high S/P ratio.
- **Longer life-time:** LEDs have longer life time of around 1,00,000 hours. This is equivalent to 11 years of continuous operation or 22 years of 50% operation.
- **Faster switching:** LED lights reach its brightness instantly upon switching and can frequently be switched on/off without reducing the operational life expectancy.
- **Greater durability and reliability:** As LEDs are solid-state devices and uses semi-conductor material; they are sturdier than conventional sources that use filaments or glass. LEDs can also withstand shock, extreme temperatures and vibration as they don't have fragile materials as components.
- **Good Colour Rendering Index (CRI):** The color rendering index, i.e., measure of a light sources' ability to show objects as perceived under sunlight is high for LEDs. The CRI of natural sunlight is 100 and LEDs offer CRI of 80 and above.
- LED offers more focused light and reduced glare. Moreover, it does not contain pollutants like mercury. LED technology is highly compatible for solar lighting as low-voltage power supply is enough for LED illumination.

Calculations are as follows:

Existing Lighting Fixtures	36 W Tube
Existing power consumption (kW)	3.60 kW (100 lamps)
Proposed LED Wattage (W)	15
LED power consumption (kW)	1.50 kW
Energy saving (kW)	2.00 kW
Operating hours	2000

Annual monetary savings : Rs 38,250/-

Investment needed : Rs 90,000/-

 Bageshwari College of Engineering
 KARIMNAGAR-505 527.

Payback period : 2.50 Years

Annual Emission reduction potential : 4.18 MT of CO2

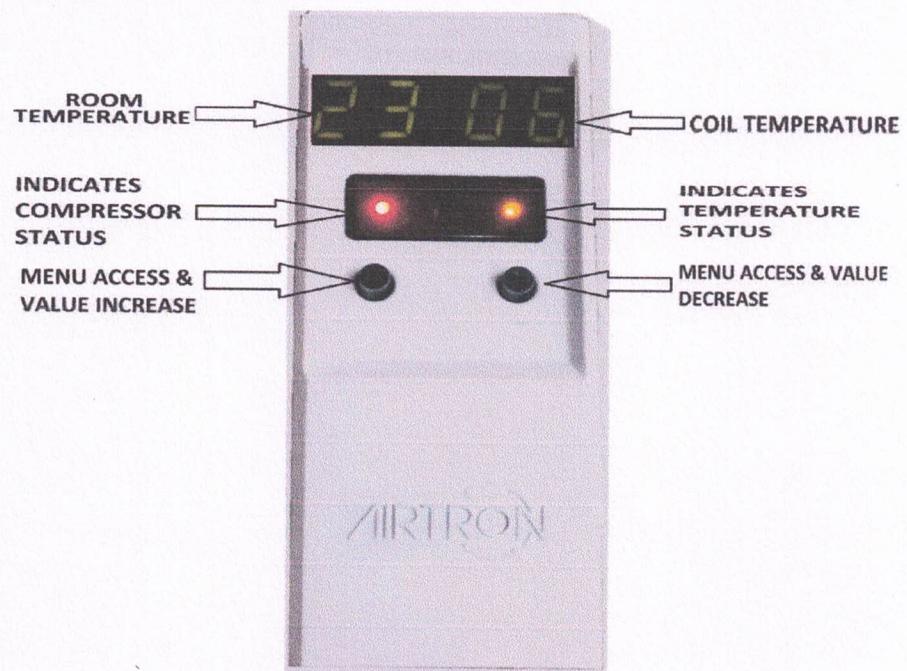
Install Air conditioners energy saver for spilt air conditioners:

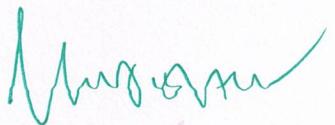
Present status: As per the data obtained from VGSE team, the campus has majorly 1.5 TR units installed. There are 38 spilt air conditioners installed and operate 6 hours a day.

Recommendation:

We recommend installing "Airtron", an energy saver that can be installed at every individual unit of AC. The Airtron is the world's most advanced AC SAVER, with all the controls of a Precision AC. The Airtron's dual sensors reference the Room and Coil & Ambient Temp, and uses complex, multiple algorithms in a "closed -loop circuit" to reduce the Compressor Run-Time, to ensure the high savings while maintaining and displaying the Set temperature accurately. The Airtron is Programmable for geographical location and climate and adapts automatically to changes in season and ambient conditions.

This unique device has been developed on Patent-Published technology and approved by leading MNC'S, PSU'S and Govt. Departments. The Airtron is validated by EESL (Energy Efficiency Services Ltd.), Ministry of Power, Government of India, for 44% savings. The Airtron has been validated on all AC's- Inverters, 5 Star, Splits, Multi-Splits, Packages, ducts, Windows, Cassettes from 1.0 - 20.0 TR, LG Ltd, Videocon Ltd, Tata Communications, L&T, Nestle, Ashok Leyland etc. The AIRTRON comes with a Remote for setting the Room Temperature, and in a Non-Flammable Polycarbonate Enclosure, with SMPS Power Supply, to tolerate wide Voltage and Current fluctuations, Surges, Spikes and Sags.


In our case, Airtron installation can reduce the energy consumption of each fixture by 15% on a conservative basis. For a total energy consumption, for air conditioners, as 20 units per hour, 3 units per hour can be saved. It is recommended to install Airtron energy saver in a phase wise manner preferably in the batches of 10 units.



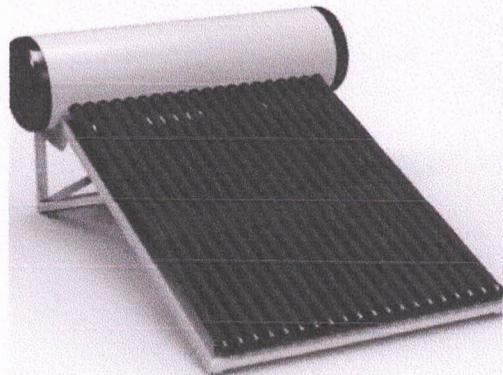
Principal
Vageswari College of Engineering
KARIMNAGAR-505 527.

Saving Calculation: Considering the operating hours to be 2000 and unit cost as Rs 7.50/-.

- Monetary annual savings : Rs 45,000/-
- Total investment : Rs 80,000/-
- Payback period : 22 months (2 years)
- Annual emission reduction potential : 4.92 MT CO₂

Principal
Vaidyeshwari College of Engineering
KARIMNAGAR-505 527.

Install solar water heater for hostel hot water requirements


Heaters are being used for the hot water requirements of the hostel. VGSE uses water heaters with a capacity of 25 liters per heater. Electrical heaters are one of the highest energy consumers in the hostel with each heater consuming 800W of energy.

Replacing the electrical heaters with solar water heaters is the best solution for eliminating the power consumption of the heaters.

The following explanation of solar water heaters is taken from www.bijlibachao.com.

A solar water heater is a system that utilizes solar energy (or the energy from sunlight) to heat water. It has a system that is installed on a terrace or open space where it can get sunlight and the energy from the sun is then used to heat water and store it in an insulated tank. The system is not connected to electricity supply and thus does not have an on-off switch, but it uses the sunlight throughout the day to heat the water and store it in the storage tank. Most of the solar water heater on a sunny day can provide heater water at about $68^\circ \pm 5^\circ \text{ C}$ temperature. Water from the storage tank can then be used for any application as desired. One can feed this heated water to the electric geyser so that when sunlight is not enough, it uses electric energy to heat the water to the desired set temperature. This is also called Hybrid Water Heater.

Solar Water Heaters Types and Benefits

Flat Plate Collectors (FPC) System

Evacuated Tube Collectors (ETC) System

Long lasting as they are metallic. But are expensive

Fragile but cheaper.

Can work in colder regions with sub zero temperature but will need an anti freeze solution.

Very good for colder regions where the temperature is sub zero.

In places with salty water a heat exchanger is required with FPC system.

Require regular cleaning where the water is salty.

Benefits of a 100 lts Solar Water Heater in India.

	Northern Region	Eastern Region	Southern Region	Western Region
Expected no. of days of use of hot water per year	200 days	200 days	300 days	250 days
Expected yearly electricity saving on full use of solar hot water (units of electricity)	1000	1000	1500	1250

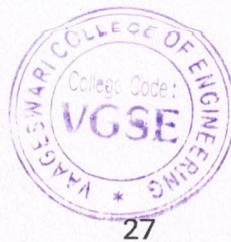
For this report, a 100-liter capacity solar water heater is considered. A 100-liter, EPC solar water require requires 20 square feet of space. The energy saving from the system is calculated a follow:

Heat required (kcal) = M (Mass of water) \times C_p (Specific heat of water) \times ΔT (Difference in starting temperature and desired temperature)

kW saving = M (Mass of water) \times C_p (Specific heat of water) \times ΔT (Difference in starting temperature and desired temperature) $\times 0.0012$ (conversion from kcal to kW)

$$= 100 \text{ kg} \times 1 \times (50 \text{ Deg C} - 25 \text{ Deg C}) \times 0.0012$$

$$= 3 \text{ kW}$$


Therefore, for heating 100 litres of water, the energy saving would be 3 kW.

Cost of 500-liter EPC solar water will be Rs. 60,000.

For a 500-litre solar water heater the energy saving will be 15 kW.

Cost saving for 250 days of operation will be Rs. 28,000.

Pay back will be in 25 months.

Principal
Vageswari College of Engineering
KARIMNAGAR-505 527.

Conclusion

VGSE has initiated few energy efficiency activities in their campus. While Sustainable Living Inc appreciates the plant team for their efforts, we would like to emphasize that opportunity exists further reduce the energy consumption. Installation of renewable energy is to be given major focus. RESCO model can be adopted to install renewable energy without upfront capital investment. We in Sustainable Living Inc are sure that all the recommendations mentioned in the report will be implemented by VGSE team and the overall environmental performance of the campus will be improved.

Principal
Sri Yeswari College of Engineering
KARIMNAGAR-505 527.

List of Vendors

Equipment	Supplier Name	Contact Person	Mail Address	Contact Number
AC Energy Saver	Gloabtel Convergence Ltd	Mr Chirag Morakhia	chirag@gloabtel.com	9324176440
AC Energy Saver	Magnatron International	Mr Kishore Mansata	indiaenergysaver@gmail.com	9748727966
BLDC Ceiling Fans	Atomberg Technologies Pvt Ltd	Ms Roshni Noronha	roshninoronha@atomberg.com	9987366655
BLDC Ceiling Fans	Versa Drives	Mr Sathish	sathish@versadrives.com	94885 94382
LED	Havells India Ltd	Mr. Sunil Sikka	sunil.sikka@havells.com	0120-4771000
LED	Kwality Photonics Pvt. Ltd.	Mr. K. Vijay Kumar Gupta	kwality@kwalityindia.com	+ 91 40 2712 3555
LED	OSRAM Lighting Pvt. Ltd.	Mr Nitin Saxena	N.saxena@osram.com	+91 124 626 1300
LED	Reckon Green Innovations Pvt Ltd	Mr Krishna Ravi	krishna@reckongreen.com	9985333559


SREE VAAGESWARI EDUCATIONAL SOCIETY

VAAGESWARI COLLEGE OF ENGINEERING

(Affiliated to JNTUH, Hyderabad.)

(Approved by AICTE New Delhi & Recognised by the Govt. of Telangana State)

ENVIRONMENT AUDIT

PRINCIPAL

Principal
Vaageswari College of Engineering
KARIMNAGAR.

Sustainable Living Inc

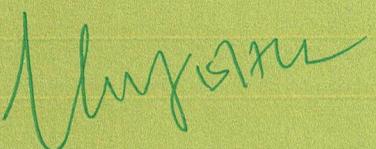
VAAGESHWARI
COLLEGE OF ENGINEERING

Environmental Audit (Water and Waste Management)

1

Manjula

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.


03 Acknowledgment

05 Executive Summary

11 Water and Waste Management

25 Conclusion

Signature of the Principal in blue ink.

Principal
Jagannath College of Engineering
KARIMNAGAR-505 527.

Acknowledgment

Sustainable Living Inc

Hiran Prashanth

Environmental Sustainability Auditor

17 June 2022

Environmental Audit (Water and Waste Management)

The Sustainable Living Inc acknowledges with thanks the cooperation extended to our team for completing the study at Vaageswari College of Engineering (VGSE).

The interactions and deliberations with VGSE team were exemplary and the whole exercise was thoroughly a rewarding experience for us. We deeply appreciate the interest, enthusiasm, and commitment of VGSE team towards environmental sustainability.

We are sure that the recommendations presented in this report will be implemented and the VGSE team will further improve their environmental performance.

Kind regards,

Yours sincerely,

Hiran Prashanth

Hiran Prashanth

Environmental Sustainability Auditor
Sustainable Living In

Hirajith
Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

About Auditor

Hiran Prashanth is a sustainability consultant based in London. He has over 14 years of experience in climate change and environmental sustainability. He was working with the Confederation of Indian Industry (CII) before moving to London to pursue a master's degree at King's College, London.

Hiran Prashanth was awarded the 'Best Sustainability Assessor' by the Honorable Minister for HRD, Mr. Prakash Javadekar. Hiran Prashanth is a CII certified carbon footprint expert and a resource efficiency expert. He has trained more than 1000 industry personnel across the world on climate change and sustainability. He is a guest faculty at IIM Lucknow and SIBM, Pune. His credentials can be found on [Hiran Prashanth | LinkedIn](#). Sustainable Living Inc provides services on carbon footprint, energy audit, resource management and embodied carbon.

Principal
Vaagdevi College of Engineering
KARIMNAGAR-505 527.

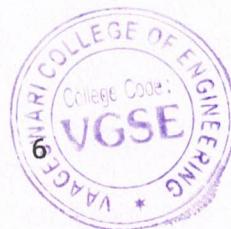
Executive Summary

The growth of countries across the world is leading to increased consumption of natural resources. There is an urgent need to establish environmental sustainability in every activity we do. In a modern economy, environmental sustainability will play a critical role in the very existence of an organization.

An educational institution is no different. Built environment, especially an educational institution, has a considerable footprint on the environment. Impact on the environment due to energy consumption, water usage and waste generation in an educational institute is prominent. Therefore, there is an imminent need to reduce the overall environmental footprint of the institution.

As an Institution of higher learning, Vaageswari College of Engineering (VGSE) firmly believes that there is an urgent need to address the environmental challenges and improve their environmental footprint.

True to its belief, VGSE has implemented rainwater harvesting in the campus. Continuing with rainwater harvesting, the college can also investigate the following recommendations:


- **Attain water positive status:** VGSE should focus on capturing the harvested rainwater to substitute freshwater consumption, work on sustainable groundwater beyond the fence and create a framework towards attaining water positive status over a period. Presently, VGSE is consuming nearly 60 KL of fresh water per day. Since metering is not available, the water consumption is calculated rather than measure value.

Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

The first step is to increase the water conservation activities in the campus to reduce water consumption at source. The next step is to increase the rainwater harvesting capacity to completely offset the freshwater requirements of the plant. VGSE can also explore adopting lakes, desilting of ponds and restoration of water bodies in localities surrounding the campus. Water getting harvested in those structures can offset the freshwater consumption of the college.

- **Install water efficient fixtures:** The best way to conserve water is at the source. Therefore, VGSE will have to install water efficient fixtures to reduce water consumption. Some of the water efficient fixtures are:
 - Waterless urinals
 - Electronic taps (e-taps)
 - Electronic flush urinals (e-flush)
 - Foam taps
 - Spring loaded push taps
 - Low flush cistern
- **Install sewage treatment plant / rootzone treatment:** VGSE uses more than 75 KL of fresh water per day. Considering that 5 KL (least value) of water is being let to drain without treatment, good opportunity exists to reduce freshwater consumption by treating the sewage water and using the recycled water for gardening and flushing application. Install biogas plant and phytoremediation in series to recycle water and reduce freshwater consumption.
- **Install water flow meters:** Water flow meters are vital in understating the water consumption patterns of the campus. Presently, the water consumption is calculated rather than being measured. Water flow meters gives an accurate status if water consumption in the campus and from the water consumption values, the roadmap for water conservation activities can be prepared.

Principal

Vaidika Ganeswari College of Engineering
KARIMNAGAR-505 527.

- **Segregate waste at source:** VGSE has provided bins for waste collection. VGSE must embark on awareness creation methods to increase the effectiveness of collection and provide more bins for proper waste segregation.
- **Maintenance of waste management yard:** The waste management yard is to be maintained just like raw materials storage room. Waste is nothing but a resource in wrong place. Therefore, by maintaining the waste management yard, quality of wastes can be maintained.

Mr. A. M.
Principal
Vaageswari College of Engineering
KARIMNAGAR-505 527.

Environmental Audit

VGSE and Sustainable Living Inc are working together to identify opportunities for improvement in water management, and waste management. This report highlights all the potential proposals for improvement through the audit and analysis of the data provided by VGSE for water consumption and waste management. The report details the process conducted for the analysis such as on ground surveys performed for listing the type of water consumers with consumption per year, types of waste generated and disposal mechanisms.

Submission of Documents

Environmental audit at VGSE was carried out with the help data submitted by VGSE team. VGSE team was responsible for collecting all the necessary data and submitting the relevant documents to Sustainable Living Inc for the study.

Preliminary Study

After the receipt of documents, a desktop review of the data for quality check, followed by preliminary study was carried out by Sustainable Living Inc. In case of discrepancy/inadequacy/non-clarity of data, Sustainable Living Inc team got in touch with the VGSE team for clarification/additional information.

Environmental Audit

Data submitted and collected during the visit was used to assess the water and waste management practices of the campus and finally provide necessary recommendation for environmental improvement.

Principal
Vaidik Agnivesh College of Engineering
KARIMNAGAR-505 527.

Note

Environmental audit is based on the data provided by VGSE team. The scope of the study does not include the exclusive verification of various regulatory requirements related to environmental sustainability.

Sustainable Living Inc has the right to recall the study, if it finds (a) major violation in meeting the environmental regulatory requirements by the location and (b) occurrence of major accidents, leading to significant damage to ecology and environment.

A handwritten signature in blue ink, which appears to read 'Mr. A. M.' or 'Mr. A. M. A.'.

Principal
Vageswari College of Engineering
KARIMNAGAR-505 527.

Water Conservation

To achieve a water positive status by continuous reduction of freshwater consumption should be the ultimate focus of VGSE. Increased and focused attention should be given to attain water sustainability in future by inculcating the discipline of water conservation.

Fresh water consumption of VGSE : 75 KL per day (KLD)

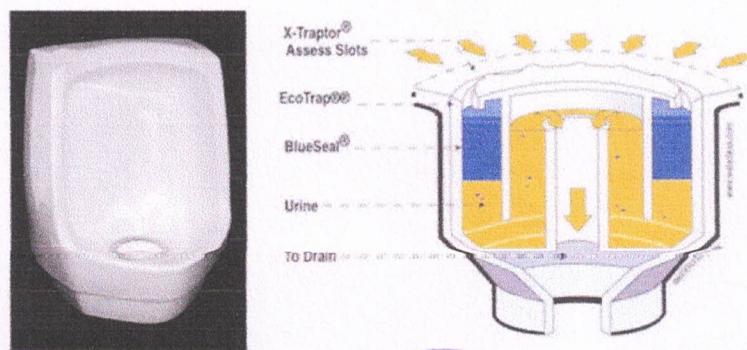
Rainwater harvesting : carried out for roof area

According to the report, 'Water in India: Situation & Prospects', India is the largest consumer of groundwater in the world with an estimated usage of 230 km³ per year. Approximately 60 per cent of the demand from agriculture and irrigation, and about 80 per cent of the domestic water demand, is met through groundwater. As per the Department of Drinking Water and Sanitation nearly 90 per cent of the rural water supply is from groundwater sources. This has led to an increased pressure on aquifers and the resulting hydrological imbalance.

10

Principal
Vaigieswari College of Engineering
KARIMNAGAR-505 527.

Recommendations for water conservation:

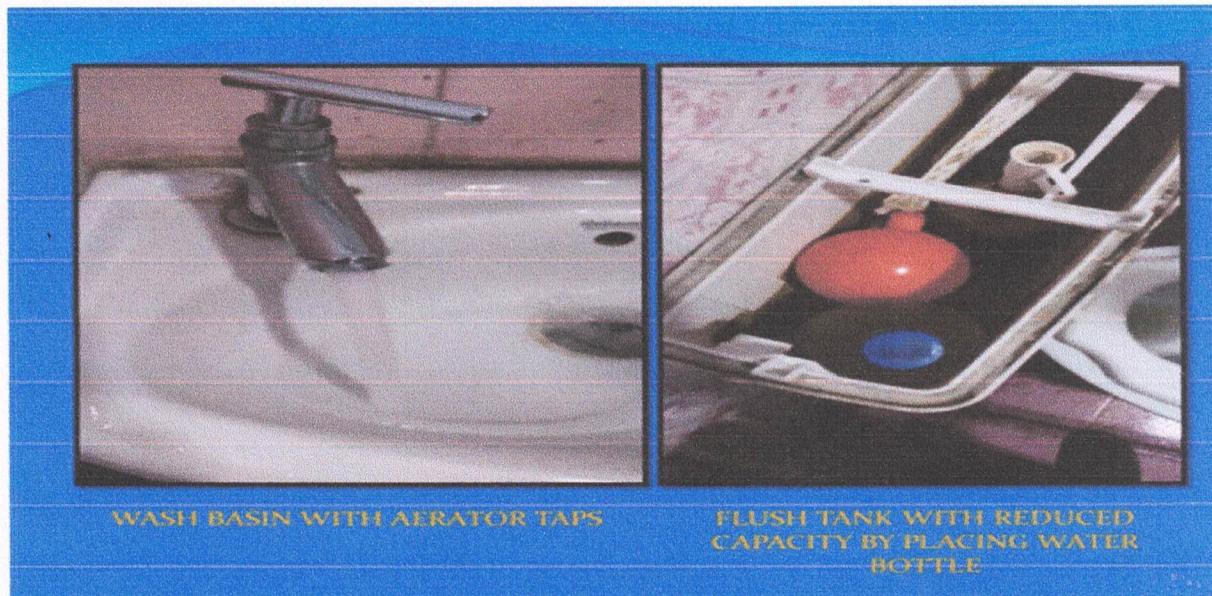

1) Waterless urinals: Waterless urinals look like regular urinals without a pipe for water intake. Men use them normally, but the urinals don't flush. Instead, they drain by gravity. Their outflow pipes connect to a building's conventional plumbing system. In other words, unlike a composting toilet, which leaves you to deal with your waste, these urinals send the urine to a water treatment plant.

- a. Urine flows into the drain insert of the EcoTrap.
- b. Inside of the EcoTrap the urine moves through a floating layer of proprietary immiscible BlueSeal liquid, which creates a barrier, preventing sewer gases and urine odors from entering the restroom area.
- c. The urine below the BlueSeal barrier overspills into the central tube and travels down into the drain line.

Waterless Urinal

Waterless Urinal

Umesh Vaishnavi
Principal
Vageswari College of Engineering
KARIMNAGAR-505 527.


d. Approximately 1500 sanitary uses are possible with just 3 ounces of BlueSeal. When the BlueSeal liquid is gone, it is simply replenished. This only takes about 20 seconds to perform and the EcoTrap is not touched.

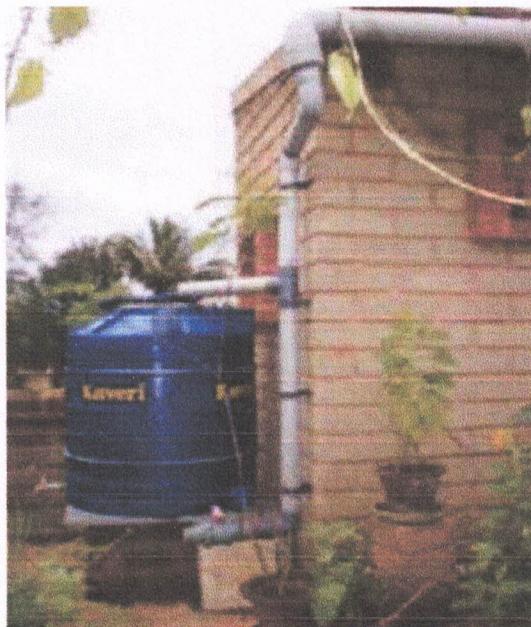
e. Urine sediments are retained within the EcoTrap. Replacement is easy and need only be done 2 to 4 times per year depending on traffic to the urinal. As tool called the X-Traptor must be used to remove the EcoTrap. The use of the special tool helps to minimize vandalism. The entire process of replacement only takes 3 to 4 minutes.

f. Waterless urinals are available for women. Indian manufacturers are supplying waterless urinals technology. Ekameco is one such company providing solution for women waterless urinals. You may visit www.ekameco.com and mail info@ekameco.com for more details on waterless urinals for women.

2) Volume reduction in flush tanks: One simple method is to add a one-liter equivalent water bottle in the flush tank thereby reducing its consumption majorly. One-liter savings in the tank will help save approximately by 20% and doesn't require any investment.

3) Rainwater harvesting: Water harvesting or more precisely rainwater harvesting is the technique of collection and storage of rainwater at surface or in subsurface aquifer, before it is lost as surface run off. In artificial recharge, the ground water reservoirs are recharged at a rate higher than natural conditions of replenishment.

According to a report by the Central Groundwater Board published in 2007, the selection of a suitable technique for artificial recharge of ground water depends on various factors. They include:


- a) Quantum of non-committed surface runoff available
- b) Rainfall pattern
- c) Land use and vegetation
- c) Topography and terrain profile
- d) Soil type and soil depth
- e) Thickness of weathered / granular zones
- f) Hydrological and hydrogeological characteristics

g) Socio-economic conditions and infrastructural facilities available

h) Environmental and ecological impacts of artificial recharge scheme proposed

Rainwater Harvesting Techniques in Urban Area

In urban areas rainwater is available from roof tops of buildings, paved and unpaved areas. This water could be stored and used to replace freshwater as well as used for recharging the aquifer.

4) Display water balance/conservation status at entrance of all blocks for overall involvement of all students & staff

It is suggested to display specific water consumption numbers in terms of domestic use at the entrance of each blocks to create awareness among all students and stakeholders visiting the facility. This daily/continuous awareness creation will ultimately help in reduction of water consumption by students.

Water Saving Gadgets

It is suggested to display specific water consumption numbers in terms of domestic use at the entrance of each blocks to create awareness among all students and stakeholders visiting the facility. This

Electronic Taps (e-taps)

The latest trend in industries is to install electronic taps (e-taps). The advantages of using e-taps are as mentioned below:

- Unlike conventional taps, there is no twisting or turning in e-taps. They have a sensor, which cuts off water supply completely when not in use. This helps in saving up to 70% water during hand wash.
- E-taps enable hands free operation. No fear of cross contamination or contact with germs. E-taps score very high on hygiene. It is the most ideal choice for multipurpose and multi-user washrooms.
- E-taps can work efficiently up to raw water TDS of 1,800 ppm.
- The touch free electronic taps, available in AC and DC models consume minimal power only. The AC model has an efficient battery back-up, while the DC model runs on just 4 alkaline batteries.

Operation of Electronic Taps

This has been successfully implemented in several hotels & restaurants. Of late, several industries have also started implementing this proposal. Thus, there is a good potential to optimize the freshwater consumption by replacing the existing taps with e-taps.

Principal

Vaageswari College of Engineering
KARIMNAGAR-505 527.

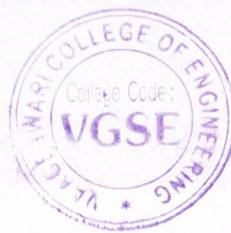
Electronic flush (e-flush) urinals

The latest trend in industries is to install e-flush urinals. The advantages of using e-flush urinals are as mentioned below:

- E-flush urinals are fitted with a sensor, which senses the usage and flush with water for few seconds after use. This helps in saving 70% water during urinal flush.
- E-flush urinals enable hands-free operation and score very high on hygiene. It is the most ideal choice for multipurpose and multi-user washrooms.
- E-flush urinals can work efficiently up to raw water TDS of 1,800 ppm.
- The touch free e-flush urinals available in AC and DC models consume minimal power only. The AC model has an efficient battery back-up, while the DC model runs on just 4 alkaline batteries.

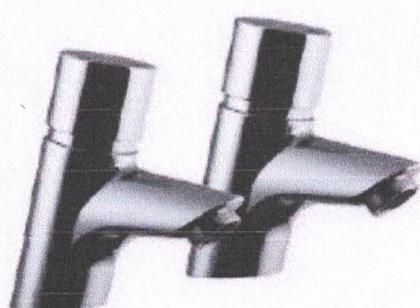


Photographs: Electronic flush urinals


Hand wash

Foam taps

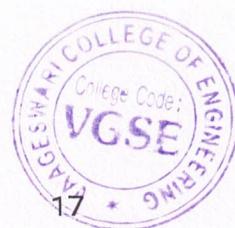
Conventional taps are used in the hand wash areas which results in wastage of large quantities of fresh water. Foam taps are a better fit in these high consumption areas. They consume 25-30% less water than conventional taps.


Photographs: Foam taps

Dr. M. Jayaram
Vaageswari College of Engineering (VGSE)
KARIMNAGAR-506 527.

Spring loaded Push taps

Spring loaded push type tap is an alternate device for minimizing hand wash water. The spring-loaded push taps operate with the simple mechanism of pressing the knob for water. The knob is automatically released back to close position in 5-7 seconds. This saves about 30-40% of water compared to the conventional taps.


Photographs: Spring loaded push taps

Low flush cistern

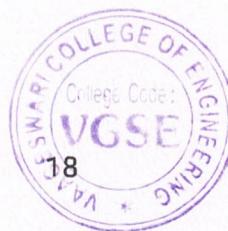
The latest model closets are water efficient and operate in dual mode, with a single flush releasing 2 litres of water and the dual flush releasing 4 litres per flush. This results in excellent water savings.

Photographs: Low flush cisterns

17
VAGESWARI COLLEGE OF ENGINEERING
College Code:
VGSE
Vaageswari College of Engineering
KARIMNAGAR-506 007
Aided by Government of Telangana
Approved by AICTE, New Delhi

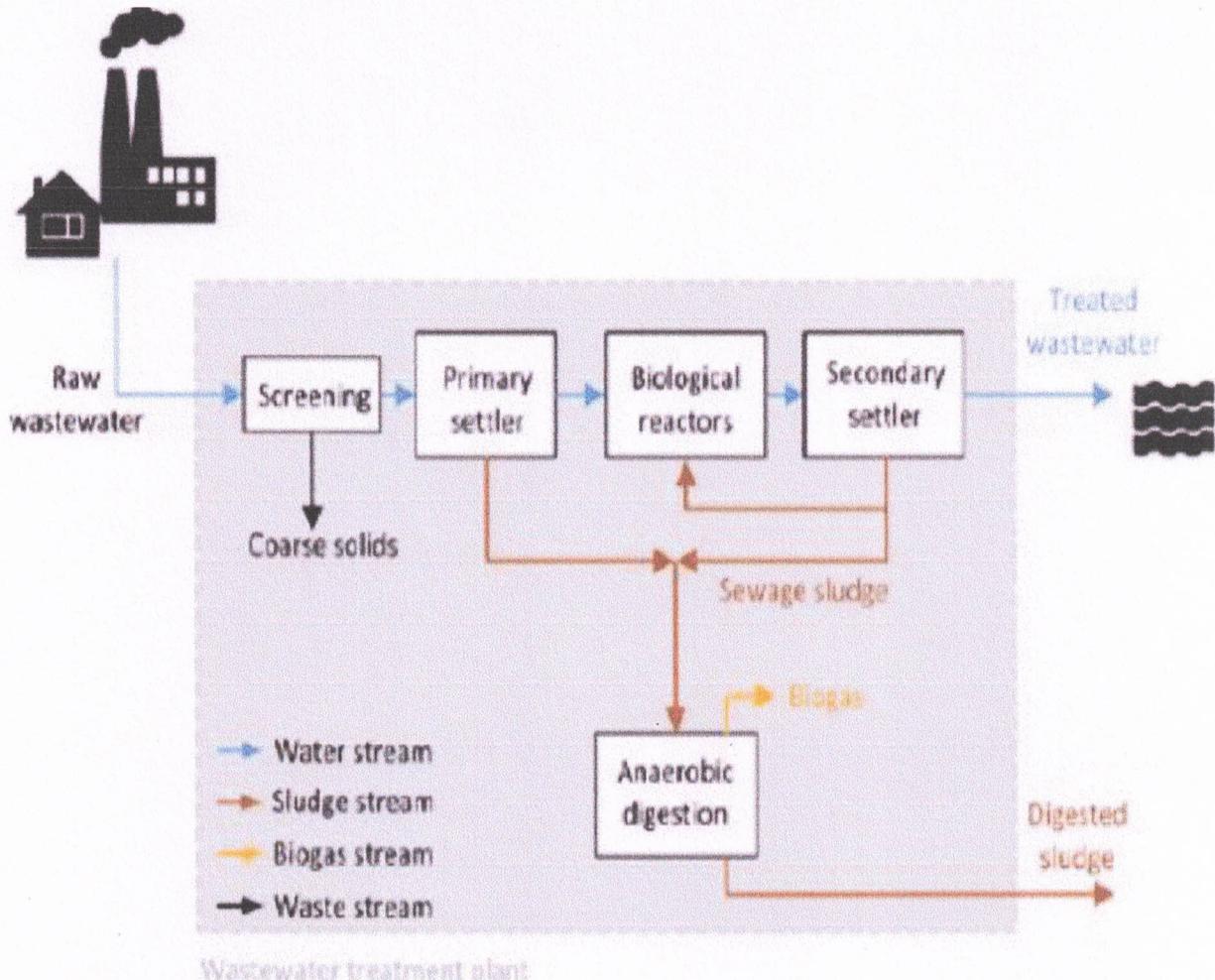
Install sewage treatment plant – Rootzone treatment:

VGSE uses more than 60 KL of fresh water per day. Considering 5 KL of water is being let to drain without treatment, good opportunity exists to reduce freshwater consumption by treating the sewage water and using the recycled water for gardening and flushing application. Install biogas plant and phytoremediation in series to recycle water and reduce freshwater consumption.


VGSE has already installed a biogas plant for generating biogas from canteen waste. Presently, sewage water is being let out to the drain without treatment. An opportunity exists to generate biogas from the untreated sewage water and use the generated biogas to substitute LPG used in the college.

In 2021-22, VGSE had used 3.99 MT of LPG. By generating biogas from sewage water, about 0.9 MT of LPG can be replaced which will result in carbon savings of 2.49 MT CO₂e.

Biogas Production Potential of Wastewater


The sewage water is a useful waster as 1% of it in any quantity is a sludge which when subjected to anaerobic digestion will produce biogas. Wastewater is the effluent from household, commercial establishments and institutions, hospitals, industries and so on. Sewage water source contains large amount of organic material which can be efficiently recovered in as sludge which and when subjected to anaerobic digestion, the sludge produces methane gas (biogas).

Biogas is a mixture of gases containing 50-75% Methane, and 25-50%Carbon dioxide while 0-10% Nitrogen, 0-3% Hydrogen disulphide and 0-2% Hydrogen may be present as impurities which is produced by anaerobic digestion of organic material i.e. a sequential enzymatic breakdown of biodegradable organic material (Biomass) in the absence of oxygen. The process is usually carried out in a digester tank known as biodigester. Biogas is an important energy source used as cooking gas, to generate electricity, etc. thus producing biogas from wastewater is an efficient and

Mr. A. A. M.
Principal
Vageswari College of Engineering
KARIMNAGAR-506 527.

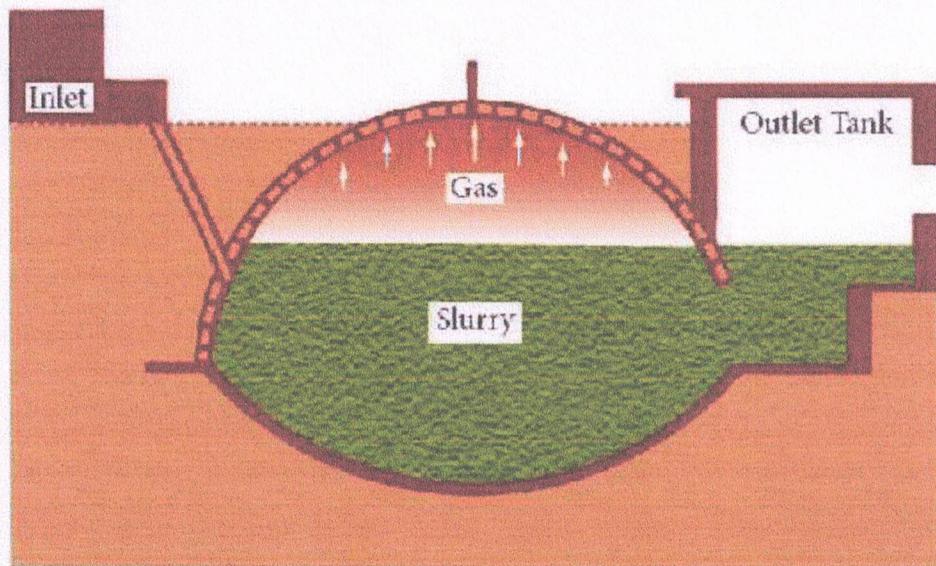
sustainable waste management and renewable energy technique. One of the major environmental problems of the world today is waste management and wastewater constitutes a huge environmental problem to the society thus the need for wastewater treatment to recover and also recycle the recovered water for usage.

The physical process: this is the mechanical treatment of the water that involves removal of debris from the raw wastewater right from the point it enters the plant. The screening and primary settling of debris. Wastewater enters the treatment plant through the inlet chamber from where it is channeled to the coarse screen that removes solid waste.



 Principal
 Vaageswari College of Engineering
 KARIMNAGAR-505 527.

The biological process: this involve the biotreatment of the sewage in the bioreactors. It is the heart of the treatment plant where a biological process takes place. The bioreactors of a treatment plant are usually large tanks consisting of several mammoth rotors and submersible mixers. While the rotor introduces atmospheric oxygen into the sewage, the submersible mixers keep the biomass in suspension thus several reactions takes place in the bioreactors.


From the bioreactor, the sewage enters the sedimentation tank. Here the biological process ends and sludge is separated from water such that the clean water is passed to the disinfection tank for disinfection and onward discharge for use while the sludge is removed by the returned activation sludge (RAS) pump that removes and sends part to the anaerobic digestion chamber while some are return to the anaerobic bioreactor for reactivation.

Production of biogas is an anaerobic digestion whereby microorganisms break down biodegradable material in the absence of oxygen to produce methane/carbon dioxide used to generate electricity and heat. Sludge from the treatment plant (primary and activated sludge) is the main feedstock (biodegradable organic matter) in the biogas production plant of a wastewater treatment plant and the biogas production process involves series of steps. The combine sludge resulting from primary and secondary water treatment is gathered, sieved and thickened to a dry solids content of up to 7% before entering the digesters. Optionally, the sludge can be pretreated by disintegration technologies with the aim to improve the gas yield. In the anaerobic digestion process, the sludge is pumped into the anaerobic continuously stirred tank reactors where digestion takes place.

Principal
Vaidika Ganeswari College of Engineering
KARIMNAGAR-505 527.

In the process, microorganisms break down part of the organic matter that is contained in the sludge and produce biogas, which is composed of methane, carbon dioxide and trace gases. The raw biogas produced is dried and hydrogen sulphide and other trace substances removed and burned in burners after treatment. The digested sludge is dewatered, and the water reintroduced into the treatment plant while the remaining undigested matter used for organic fertilizer.

Rootzone treatment:

'Root Zone' is a scientific term used to cover all the biological activity among different types of microbes, the roots of plants, water soil and the sun. It consists of planted filter-beds containing gravel, sand and soil. The RZWT system utilises nature's way of biologically processing domestic & industrial effluents. This effective technology called Decentralised Wastewater Systems (DEWATS) was developed in 1970s in Germany and has been successfully implemented in different countries mainly in Europe and America.

Umesh
Principal
Vigneshwari College of Engineering
KARIMNAGAR-505 527.

The root zone wastewater treatment system makes use of biological and physical-treatment processes to remove pollutants from wastewater. Due to its natural process, there is no need to add any input such as chemicals, mechanical pumps or external energy. This reduces both the maintenance and energy costs.

- To accomplish this, the root zone wastewater treatment undertakes the following steps:
- Pre-treatment done in a Settler – a device that separates the liquid from the solid First treatment takes place in a Anaerobic Baffled Reactor – a device with several identical chambers through which the effluent moves from top to bottom.
- Second treatment happens in an Anaerobic Filter – a device filled with a filter material (cinder), through which the effluent moves from top to bottom.
- Third treatment takes place in a Planted Gravel Filter – a structure filled with gravel material and planted with water-resistant reed plants, which provide oxygen to the passing effluent.


The Root Zone Wastewater Treatment system takes into account the natural slope of the ground, so that water flows from one device to another without any external energy input such as motor pump. Once the reed plants create an established stand, usually after the first growing season, the reed bed requires little or no maintenance. The plant foliage will soon blend naturally into the landscape, ever changing with the seasons and creating a pleasing sight as well!

Unjirw
Principal
Vishwari College of Engineering
KARIMNAGAR-505 527.

Install water flow meter:

Water flow meters are vital in understating the water consumption patterns of the campus. Presently, the water consumption is calculated rather than being measured. Water flow meters gives an accurate status if water consumption in the campus and from the water consumption values, the roadmap for water conservation activities can be prepared.

Water Meters would have many advantages:

- Encourage water conservation – important given strain on water resources
- Encourage allocatively efficient distribution. People would consume to where the marginal cost = marginal utility
- In long term lower overall water consumption would reduce leading to even lower water bills.

Principal
Sageswari College of Engineering
KARIMNAGAR-505 527.

Waste Management

India has drawn world's attention with its high paced urbanization and industrialization. Over the last decade, India has emerged as the fastest growing country with rapid economic growth. A renewed focus on sustainable growth and development is imperative as India strives to maintain its high GDP growth rate in its pursuit of achieving developed country status by the year 2022. However, the flip side of higher economic growth has resulted in increased consumption of the natural resources, increased waste generation and hence ecological degradation.

Present status: VGSE has initiated waste management activities inside its facility. Separate bins have been provided for different types of wastes. Waste bins are provided throughout the campus and students are being urged to use the bins effectively.

Recommendation: The waste management yard must be maintained in a similar fashion as that of a raw material storage room. Therefore, a total revamp of the waste storage yard is to be carried out. By doing so, the quality of the materials stored in the yard will not deteriorate and can be used a raw material for a subsequent process.

Enhance awareness creation, training and capacity building

VGSE should focus on implementing sustainable waste management practices. VGSE should regularly interact with Pollution Control Board and TSDF operators to enhance knowledge on waste management. The team should also take efforts to communicate the waste management and other policies and activities to all students in the college.

Achieve zero liquid discharge status

VGSE may install a STP to treat and recycle water. The treated water from STP can be used to substitute freshwater by utilizing the treated water in both high end and low-end applications.

Principal
Durgswari College of Engineering
KARIMNAGAR-505-527-

Conclusion

Environmental sustainability is a continuous process and there is always a scope for improvement. VG has displayed itself as an advocate of environmental sustainability by getting environmental audit carried out. The organization has implemented several initiatives and measures to enhance efficiency and optimize resource intensity. The journey ahead in the path towards environmental excellence has immense scope for improvement as brought out by this report.

VGSE needs to focus and work on areas efficiency levels needs to be enhanced. For example: waste management. The observations and suggestions put forth by the report would help the facility improving its environmental performance and pave way for ecologically sustainable growth.

This report may be taken as a guide and roadmap for achieving higher performance rating environmental stewardship. As one of the pioneers and leaders VGSE shoulder the task of further 'learning – teaching – learning' to improve, excel, and continue the innovative efforts for success of their students and associates.

Aug 97

Principal

Principal
SIESWARI College of Engineering
KARIMNAGAR-505 527...