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FINITE AUTOMATA

After going through this chapter, you should be able to understand :

« Alphabets, Strings and Languages
« Mathematical Induction

« Finite Automata

« Equivalence of NFAand DFA

e« MNFAwth ¢ - moves

1.4 ALPHABETS, STRINGS & LANGUAGES
Alphabet
Analphabet, denoted by © .is a finite and nonempty set of symbols.

Example:

I. If y is an alphabet containing all the 26 characters used in English language, then
s is finite and nonempty set,and I = {a,b,¢ 000003}

2. X =1{0,1} isanalphabet.

3 ¥ ={1,2.3,.} isnotanalphabetbecauseitisinfinite.

4. 7 ={) isnotanalphabetbecause it isempty.

String
A string is a finite sequence of symbols from some alphabet.
Example :

"xyz " isastring over an alphabet T = {a, b, ¢,. .., £} . The empty string or null string is
denoted by e.
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Length of a string

The length of a string is the number of symbols in that string. If w is a string then its length
is denoted by | w|.

Example :

1. ws=abed , then length of w is | w|= 4
2. w=o010 isastring then|n|=3
3. e isthe empty string and has length zero.

The set of strings of length K (K = 1)

Let 3 beanalphabetand £ = {a, b} ,thenall strings of length X (K = 1) is denoted by y# .
X =(w:wisastring of length K, K = 1}

Example:

l. Z={ajb},then
£l = {a,b} .
22 ={aa,ab, ba,bb},
L* = {aaa,aab,aba,abb baa, bab,bba,bbb}
|£f]= 2 = 2' (Number of strings of length one),
| £%= 4 = 2? (Number of strings of length two), and
|£% = 8 = 2" (Number of strings of length three)
2. §=1{0,1,2} ,then §* = {00,01,02,11, 10,12,22,20,21} ,and | §?|= 9 = 3

Concatenation of strings

If w, and w, are two strings then concatenation of w, with w, is a string and it is denoted by
w,w; . In other words, we can say that w, is followed by w, and | w,w,| =] w;| + | w,].
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Prefix of a string

A string obtained by removing zero or more trailing symbols is called prefix. For example, ifa
String w = abc ,then a,ab ,abc are prefixesof w.

Suffix of a string

A string obtained by removing zero or more leading symbols is called suffix. For example, ifa
string w = abe ,then ¢, bc,abc aresuffixesof w.
Astring a isaproper prefix or suffix of astring w ifand only if a # w .

Substrings of a string

Asuhlgubmmadbyrmwﬁngapreﬁxmﬁamﬁxﬁmmingwisce]ledmbstringufw.Fm
example, ifastring w = abe then b isambsu-ingafW.Ev::rypreﬁxandmfﬁxufstring w is
a substring of w , but not every substring of w is a prefix or suffix of w . Forevery string w, both
w and e are prefixes, suffixes, and substrings of w.

Substring of w = w —(one prefix)—(one suffix).
Language

A Language L over x, is a subset of 5, i e, it is a collection of strings over the
alphabet 3,. ¢ ,and {€} are languages. The language ¢ is undefined as similar to infinity and
{€) is similar to an empty box i.e. a language without any string.

Example:

1. L,={01,0011,000111} is a language over alphabet {0,1}
2. L, ={e,0,00,000 ...} is a language over alphabet {0}

3. L, ={0"1"2" :n =1} isalanguage.
Kleene Closure of a Language

Let 7 bea language over some alphabet g _Then Kleene closure of  isdenoted by £ * and
itis also known as reflexive transitive closure, and defined as follows :
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L* = {Set of all words over L}
= {word of length zero, words of length one, words of length two, ...}

=UEH=~rulupu...
K=0

Example:

1. ¥ ={a,b} and alanguage ; over ¥ .Then
PP=PullulPu...
L= {g
L' ={a.b},
I* = {aa,ab,ba,bb} and soon.
So, L* = {e,a,b,aa ab ba bb..}
2. §=1{0}, then §* = {€,0,00,000 ,0000 ,00000 ...}

Positive Closure

If ¥ is an alphabet then positive closure of ¥ is denoted by v+ and defined as follows :

£t = £ - (&) = {Set of all words over T excluding empty string &)
Example :

if £ = {0} ,then £* = {0,00,000 ,0000 ,00000 ..}
1.2 MATHEMATICAL INDUCTION

Based on general observations specific truths can be identified by reasoning. This principle is
called mathematical induction. The proof by mathematical induction involves four steps.

Basis : Thisisthestarting point for an induction. Here, prove that the result is true forsomen=0or .
Induction Hypothesis : Here, assume that the result is true forn=k .
Induction step : Prove that the result is true for somen=k+ 1.

Proof of induction step : Actual proof.
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Mt

Example : Prove the following series by principle of induction 1+2+3+....4n="= 2

Solution :
Basis :
Letn=1

L.H.s=1mﬂkﬁ.s=@=l

So the result is true forn=1
Induction hypothesis :

By induction hypothesis we assume this result is true forn=k

_k(k+1)

fLe 1+2434. ..k >

Inductive step :

We have to prove that the result is true for 5 = & +1

Le 1+4243+4....... +k+k+£=w
Proof of induction step :
LHS 424 Itk K+ k41
2 E(k+1) Rl

={k+lj[§+i]

(k+1) (k+2)
= 2

_ (k1) {;HHLR.H.S
Hence the proof.
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1.3 FINITE AUTOMATA (FA)

A finite automata consists of a finite memory called input tape, a finite - nonempty set of states, an
input alphabet, aread - only head , a transition function which defines the change of configuration,
an initial state, and a finite - non empty set of final states.

A model of finite automata is shown in figure 1.1.

¥ $ |=— Input Tape

T'— Reading Head

Finite Control

FIGURE 1.1 : Model of Finite Automata

The input tape is divided into cells and each cell contains one symbol from the input alphabet.
The symbol 'y is used at the leftimost cell and the symbol '$' is used at the rightmost cell to

indicate the beginning and end of the input tape. The head reads one symbol on the input tape
and finite control controls the next configuration. The head can read either from left - to - right or
right - to -left one cell at a time. The head can't write and can't move backward. So, FA can't
remember its previous read symbols. This is the major limitation of FA.

Deterministic Finite Automata (DFA )

A deterministic finite automata M can be described by 5-tuple (Q, Z, §, q,. F) , where

1. Qis finite, nonempty set of states,

2. ¥ isaninput alphabet,

3. & istransition function whichmaps @ xZ — Q i.e. the head reads a symbol inits present
state and moves into next state.

4. g, =Q,knownas initial state

5. FcQ,knownassetoffinal states.
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Non - deterministic Finite Automata (NFA)

Anon - deterministic finite automata M can be described by 5 - tuple (Q, , 8, q,, F), where

2
3.

4.
3.

Q is finite, nonempty set of states,

¥ isaninput alphabet,

3 is transition function whichmaps Q » £ —» 2° i.e,, the head reads a symbol in its present
state and moves into the set of next state (s) . 29 is power setof Q,

q, «Q, known as initial state , and

F c Q, known as set of final states.

The difference between a DFA and a NFA is only in transition function. In DFA, transition
function maps on at most one state and in NFA transition function maps on at least one state for
a valid input symbol.

States of the FA

FA has following states :

1.
2.

Initial state : Initial state is an unique state ; from this state the processing starts.

Final states : These are special states in which if execution of input string is ended then
execution is known as successful otherwise unsuccessful.

Non - final states : All states except final states are known as non - final states.

Hang -states : These are the states, which are not included into (), and after reaching these
states FA sits in idle situation. These have no outgoing edge. These states are generally
denoted by ¢ . For example, consider a FA shown in figurel.2.

FIGURE 1.2 : Finite Automata

g, isthe initial state, q,, q, are final states, and ¢ is the hang state.
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Notations used for representing FA

We represent a FA by describing all the five - terms (Q, I, &, q,, F). By using diagram to

represent FA make things much clearer and readable. We use following notations for representing
the FA:

1. Theinitial state is represented by a state within a circle and an arrow entering into circle as
shown below :
(Initial state g, )

2. Final state is represented by final state within double circles :
|
( Final state g, )

3. Thehang state is represented by the symbol '¢' within a circle as follows :

®

4, Other states are represented by the state name within a circle.
5. Adirected edge with label shows the transition (or move). Suppose p is the present state
and q is the nex1 state on input - symbol 'a’, then this is represented by

6. A directed edge with more than one label shows the transitions (or moves). Suppose pisthe
present state and q is the next state on input - symbols 'a,' or 'a,' or...or 'a ' thenthisis
represented by (P)—asute Q)

Transition Functions
We have two types of transition functions depending on the number of arguments.

Transition Function
Direct Indirect
( Represented by §) ( Represented by 3°)
Direct transition Function (3)

When the input is 2 symbol, transition function is known as direct transition function.
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Example : 5(p,a) = q ( Where p is present state and q is the next state).
It is also known as one step transition.

Indirect transition function (')
When the input is a string, then transition function is known as indirect transition function.
Example : &'(p,w)=gq, where p is the present state and q is the next state after | w |

transitions. It is also known as one step or more than one step transition.
Properties of Transition Functions

1. Ifé(p,a)=q,then & (p, ax) = 5(q x) andif & (p, x) = q, then & (p, xa) =8'(q a)
2. Fortwostringsxandy; &(p,xy) =6(6(p,x),y),and 6'(p,xy) =6'(6'(p.x).y)
Example :1. ADFA M = ({45.9,,92.9 5, {01}, .9,.(9,)) isshowninfigurel.3.

FIGURE 1.3 : Deterministic finite automata

Where § is defined as follows :
0 I
- G a, 9.
9, 9, 9
9, q %
Q q; 9y

2. ANFA M 1 =f{?n:?n"?t+"?_fl'l{ﬂtl}tﬁlqul{QJ}} isshminﬁgmt].il

0.1

-
(D~ D——@

FIGURE 1.4 : Non - deterministic finite automata
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Transition function 5 is defined as follows :

0 1
-0y { 9. a} {a.}
Q, - {a.}
] = {a}
a, . {a}

Note : In first row of transition table, when present state is q, and input is'0', then there are
two next states q, ,and q,.

Acceptability of a string by DFA : LetaDFAM= (Q, %, & q,.F) and an input string
w e % *. The string w is accepted by M if and only if 5(q,, w) = q,, where g, eF .

When w is accepted by M, then the execution of string w ends in a final state and this execution
is known as successful otherwise unsuccessful .
Example : Considerthe DFA shown in figurel 5.

FIGURE 1.5 : Deterministic finite automata
Input strings are :
i) 01,
i) 011
Check the acceptability of each string.

Solution :
1. Letthe input string w, =01 . the transition sequence is as follows :

=) )——(»)
Execution ends in final state g, , hence string "01" is accepted.
2. Letinputstring w, = 011
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The transition sequence is as follows :

Srart [y 1 ¥ 1 ]

Execution ends in non - final state g, , hence string "011" is not accepted.

Acceptability of a string by NFA

LetaNFA M =(Q, £, 8. g,, F) andan input string w < £ *. The string w is accepted by Mif
and onlyif &(g,, w)={gq: g, € F,forsomei=0,1,.....,n}.
When w is accepted by M, then the execution of string w ends in some final state and the
execution is known as successful otherwise unsuccessful .
Example : Consider the NFA shown in figure1.6.
Check the acceptability of following strings : i) 011 i) 010 i) 011011

0,
8“

EIGURE 1.6 : Non - deterministic finite automata

Solution :

1. Transition sequence for the string "011" isas follows :

_ n'
|

One execution sequence ends in final state g, , hence string "011" is accepted.
2. Transition sequence for the string "010" is as follows :

Su.rtaﬂ |
. 1 .D

The execution ends in non - final states g,, ¢, and oneendsin ¢ , hence string "010" isnot accepted.
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3. Transition sequence for the string "011011" is as follows :

One execution ends in hang state ¢ , second ends in non - final state ¢, , and third ends in final
state ¢, hence string "011011" is accepted by third execution.

Difference between DFA and NFA
Striu]yq:mkingﬂwdiﬂ‘ummbﬁmmDFhmdNFMiesmﬂyhﬂndcﬁ:ﬁﬁunofa.Ushgﬂﬁs
difference some more points can be derived and can be written as shown

DFA NFA
1. The DFAis 5 - tuple or quintuple The NFA is same as DFA except in the
M =(Q,L,6,q,,F) where definition of §.Here, 5 is defined as follows :
Q is set of finite states §:0x(ZUe) tosubset of 70
¢ issetof input alphabets
5:0xZtw QO

g, isthe initial state
Fc Q issetof final states

2. There can be zero or one transition There can be zero, one or more transitions

from a state on an input symbol from a state on an input symbol

3. No =- transitions exist i.e., there & — transitions can exist i. e., without any input
should not be any transition or a there can be transition from one state to
transition if exist it should be on an another state.
input symbol

4, Difficult to construct Easy to construct
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Example 1 : Consider the FA shown in below figure. Check the acceptabiity of following strings:
{a) 0101 {b:l om (c) 001

FIGURE : Finite automata
Solution : (a) The transition sequence for input string 0111 is following :

v 0 1
e O e O g
Execution ends in final state A, hence string 0101 is accepted.
(b} The transition sequence for input string 0111 is as follows :

OO 00
S e G &
Execution ends in non-final state C, hence string 0111 is not accepted.

(c) The transition sequence for input string 001 is as follows :
(D=(B~)—®

Execution ends in non-final state D, hence string 001 is not accepted
Example 2: LetaDFA M =(Q,Z,8,q,.F) isshownin below figure.

FIGURE:DFA
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Check that string 33150 is recognized by above DFA ornot 7

Solution :

For string 33150 the transition sequence is as follows :

Since, transition ends in final state, g, , so string 33150 is recognized.

Example 3 : Consider below transition diagram and verify whether the following strings will be
accepted or not ? Explain.

= O
FIGURE : Given Transition Diagram

iy 0011 i) 010101 iii) 111100 iv) 1011101 .

Solution : Transition table for the given diagram is,

\ 0 1

= @) q, g,
q, g 9.

% 4, g,

g, 4 4,

TABLE : Transition Table for the given Transition Diagram
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i) 0011 ii) 010101
5(q4,0011)|-8(q,,011) 8(g,,010101) |-&(q,,10101)
| =6(gq,11) | =&(g,,0101)
| =8(g5,1) | -8(g5,101)
=) |=6(g,,01)
- 0011 is accepted. |=&(q,,0)
-4,
010101 is not accepted.
iii) 111100 iv) 1011101
5(qge, 111100) |~ 6(gq,,11100) 8(gy1011101) | -8(g4,011101 )
| = (gq,1100) | =8(g,,11101)
| ~&(g,,100) | =&(g,,1101)
| -&(g,,00) | -&(q,,101)
| -&(q,,0) | =d(g,,01)
| ~qq | =8(qq.1)
= 111100 is accepted. | ~gy

- 1011101 is not accepted.

Example 4 : Consider the NFA shown in below figure, Check the acceptability of following string

scanf( "%d", &num) ;

MNote : Letter stands for any symbol from {a b, ......... , Z }and digit stands for any digit
from{0, 1,2, ......9}.
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Solution : The transition sequence for givenstring :  scanf(" %d", & num ) ;

Since, execution of given string ends in final state g, , so the string is recognized.
Example 5 : Obtain a DFAto accept strings of a's and b's starting with the string ab .

Solution :

From the problem it is clear that the string should start with ab and so, the minimum string that can
be accepted by the machine is ab. To accept the string ab, we need three states and the machine
can be written as

where g, is the final or accepting state. In state g, , if the input symbol is b, the machine should
reject b ( note the string should start with a ) . So, in state g, , on input b, we enter into the
rejecting state g,. The machine for this can be of the form

O O @)

b

The machine will be in state g, , ifthe first input symbol is a. If thisa is followed by another a, the
string aa should be rejected by the machine . So, in state g, , if the input symbol is a, we reject
it and enter into ¢, which is the rejecting state. The machine for this can be of the form

—@®
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Whenever the string is not starting with ab, the machine will be in state g, which is the rejecting
state. So, in state g, , if the input string consists of a's and b's of any length, the entire string can

be rejected and can stay in state g, only. The resulting machine can be of the form

The machine will be in state g, , if the input string starts with ab. Afier the string ab, the string
containing any combination of a's and b's, can be accepted and so remain in state ¢, only. The
complete machine to accept the strings of a's and b's starting with the string ab is shown in below

figure. The state g, is called dead state or trap state or rejecting state.

FIGURE : Transition diagram to accept stringab (a +b J*

So, the DFA which accepts strings of a's and b's starting with the string ab is given

b}" M= {Q,E,ﬁ,qn,F}

where 0={q,, 4, 9,}: L={ab};
g, is the start state ; F={g,}
& is shown the transition table.
e
8 a b
T - [ i, i,
g @ dy 42
Z & %
v & q, q;

TABLE : Transition table for DFA shown in above figure
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To accept the string abab : This string is accepted by the machine and is evident from the
below figure.

a b a b
gy qy / \ d; / qs iy
[ accepting state |
FIGURE : To accept the string abab
Here, 5*(g,. abab) =g, whichis the final state. So, the string abab is accepted by the machine.

To reject the string aabb : The string is rejected by the machine and is evident from the
below figure .

a a b b
9q d, / \ E / LE qy
[ non - accepting state ]
FIGURE : Toreject the string aabb

Here, & * (g,,aabb )= q, whichisnotan accepting state. So, the string aabb is rejected by the
machine.

Example 6 : Draw a DFA to accept string of 0's and 1's ending with the string 011,
Solution :

The minimum string that can be accepted by the machine is 011. Tt requires four states with g, as
the start state and g, as the final state as shown below.

In state g, , suppose we input the string 1111 ..... 011. Since the string ends with 011, the entire
string has to be accepted by the machine, To accept the string 011 finally, the machine should be
in state g, . So, on any number of 1's the machine stays only in state g, and if the string ends with
011, the machine enters into the final state. The machine can be of the form
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If the machine is in any of the states 4» 4, and g, and if the current input symbol is 0 and if the
next input string is 11, the entire string should be accepted. This is because the string ends with
011. So, from all these states on the input symbol 0, there should be a transition to state g, so

that if we enter the string 11 we can reach the final state, Now the machine can take the form as
shown below,

Instate g, if the input symbol is 1, enter into state g, so that if the next input string is 011, we can

enter into the final state q,.So,theﬁm]madﬁmﬁhichmcptsastringﬂfﬂ‘sand]'seudingwiﬁ
the string 011 can take the following form.

FIGURE : transition diagram to accept ( 0+1) *011
So, the DFA which accepis strings of 0's and 1's ending with the string 011 is given by
M =(Q,E,5,9,,F) where

Q={q9 91 @2y G, )3 Z={0, 1};
g, is the start siate ; F ={g.};
& is shown using the transition table.
«— -
0 1
T = q 90
8 9 g, q.
t% 41 q, qy
+ i o

TABLE : Transition table for the machine shown in above figure
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To accept the string 0011 : This string is accepted by the machine and is evident from the below
figure . Here, 5%(g,,0011)= g, which is the final state. So, the string 0011 is accepted by the
machine.

AN SN RSN

FIGURE : To accept the string 0011

To reject the string 0101 : The string is rejected by the machine and is evident from the
below figure .

/u\/l\/n\/l\

FIGURE : To reject the string 0101

Here, & *(g,,0101)= g, which is not an accepting state. So, the string 0101 is rejected by the
machine.

Example 7 : Obtain a DFA to accept strings of a's and b's having a substring aa .

Solution :

The minimum string that can be accepted by the machine is aa. To accept exactly two symbols,
the DFA requires 3 states and the machine to accept the string aa can take the form

where g, is the start state and g, is the accepting state. In state g, , if the input symbol is b, stay

in g, so that when any number of b's ends with aa, the entire string is accepted. The machine for
this can be of the form
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be atransition to state g, so that if this b is followed by aa, the machine enters into state g, 50
that the entire string is accepted by the machine. The transition diagram for this can be of the form

The machine enters into state g, when the string hasa sub string aa. So, in this state even if we
input any number of a's and b's the entire string has to be accepted. So, the machine should stay
in g, . The final machine which accepts strings of a's and b's having a sub string aa is shown in
below figure

FIGURE :; transition diagram to accept (a+b)* aa(a+b)*

mmachiﬂﬂ M = {Q:E,EsgﬁrF} m

Q=!‘htqtt'ﬂ:}; L={ab}
g, isthestaristate; F= {q,}
& is shown using the transition table.

— L

& a b

T —a a4 4o

i 4 qs do

& & 4
{

TABLE : Transition table for the machine shown in above figure
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To accept the string baab : This string is accepted by the machine and is evident from the
below figure.

POV A VAN

FIGURE : To accept the string baab
Here, & * (g,.baab )= g, which is the final state. So, the string baab is accepted by the machine.
The string baba is rejected by the machine and is evident from the below figure.

A VAVAYAN

FIGURE : To reject the string baba

Here, & *(g,, baba) = g, which is not an accepting state. So, the string baba is rejected by the
machine.

Example 8 : Obtain a DFA to accept strings of a's and b's except those containing the
substring aab,

Solution :

Note : This can be solved in two ways. The first method is similar to the previous problemi. e,

draw a DFA to accept strings of a's and b's having a substring aab. Then change the final states

to non - final states and non final states to final states. The resulting machine will accept the

strings of a's and b's except those containing the sub - string aab.

Here, the second method is explained. The minimum string that can be rejected by the machine
is aab. To reject this string we need four states g,, ¢,.¢, and ¢,. Since the string aabhas to be

rejected, g, cannot be the final state and the rest of the states will be the final states as shown
below.
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The machine enters into g, if the string has a sub string aab. In this state if we input any number
ofa’sor/and b's, the entire string has to be rejected. So, stay in the state g, only. The machine

for this is shown below, l .
a,
@@ —>@> s,

Instate g, , if the input symbol is b, stay in g, so that if this bis followed by aab, the machine
enters into state ¢, so that the string is rejected. The machine for this is shown below.

In state g, . if the input symbol is b, enter into state g, » S0 that if this b ends with the string aab,
the entire string is rejected. The machine for this is shown below.

The machine will be in state ¢, if the string ends with aa. At this stage, if the input symbol isa,
again the string ends with aaand so stay in state g, only. The complete machine to accept strings
ofa's and b's except those containing the sub string aab is shown below,

FIGURE : DFA to accept the string except the sub string aab.

So, the DFA M =(Q,%,8,q,,F ) where
Q={‘Iuiq|-q:-41": E=[d,b}
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g, isthestartstate; F ={g.q;.92}

5 is shown using the transition table
— I
B a b
T *@ q qo
o 4 do
c‘?} @ dy dy
4 qy ds qs

TABLE : Transition table

Example 9 : Obtain a DFA to accept strings of a's and b's having exactly one a, atleastone a,
not more than three a's.

Solution :
To accept exactly one a : To accept exactly one a, we need two states g, and g, and make
g, as the final state. The machine to accept one a is shown below.

@@
In g, , on input symbol b, remain g, only so that any number of b's can end with one a. The
machine for this can be of the form
]P
(30—

In state ¢, , on input symbol b remain in g, and the machine can take the form

But, instate g, , ifthe input symbol is a, the string has to be rejected as the machine can have any
number of b's but exactly one a. So, the string has to be rejected and we enter into a trap state
g, - Once the machine enters into trap state, there is no way to come out of the state and the
string is rejected by the machine. The complete machine is shown in below figure.
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FIGURE : DFA to accept exactly one a

The machine M = (Q,E.5,q,.F) where

@={49,9.0:}) L={a,b)
g, is the start state; F ={q,}
& is shown below using the transition table .

«~ -
B a b
n 4, 4 Iy
g 9. 4
7 9, 92 4
+

TABLE : Transition table

The machine to acceptat leastone a : The minimum string that can be accepted by the
machine isa. For this, we need two states ¢, and g, where g, isthe final state. The machine for

this is shown below. (@@

In state g, , if the input symbol is b, remain in g, . Once the final state g, is reached, whether the
input symbol is a or b, the entire string has to be accepted. The machine to accept at least onea

is shown in below figure. b Na.b
(8)—g

FIGURE : DFA to atleat one a
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The machine M =(Q,%,8,q9,. F) where

O={g0.41} 3 L={a b)
g, isthe start state ; F={g,}
5 isshown using the transition table .

— I =
& a b
_}Qn T, G

q, dy

TABLE : Transition table

The machine to accept not more than three a's : The machine should accept not
more than three a's means

[t can accept zero a'si.e., noa's

It can accept one a

It can accept two a's

It can accept 3 a's

But, it can not accept more than three a's.

In this machine maximum of three a's can be accepted i. e., the machine can accept zero a's, one
a, two a's or three a's. So, we need maximum four states ¢,, g,, g, and g, where all these states
are final states and g, is the start state. The machine can take the form

In state g,, if the input symbol is a, the string has to be rejected and we enter into a trap state g, .
Ongce this trap state is reached, whether the input symbol is a or b, the entire string has to be
rejected and remain in state g, . Now, the machine can take the form as shown below.

ORI, SIC U )
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Instate g,, g,, g, and g,, if the input symbol is b, stay in their respective states and the final
transition diagram is shown in below figure,

FIGURE : DFA to accept not more than 3 a's
The DFA M =(Q,%,5,9,,F) where

Q={‘h:q|1 PR T ‘34}; L= {ﬂ'. b}
g, is the start state ; F={qy .99}
& is shown using the transition table .

— L

& a b
4 T
L 4
93 q2
i, q;
s d q,

TABLE : Transition table for DFA shown in above figure

Example 10 : Obtain a DFA to accept the language L= { awa | w e(a +b)*}.

Solution :

Here, w e(a + b) * indicates the string consisting of a's and b's of any length including the null
string. So, the language accepted by DFA is a string which starts with a, followed by a string of
a'sand b's ( possibly including < ) of any length and followed by one a.

If wis e (null string), the minimum string that can be accepted by the machine is aa and so, we
need three states g,,q, and ¢, toaccept the string, The machine can be of the form
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where g, is the start state and g, is the final state. In state g,, if the input symbol is b, the string
has to be rejected and so, we enter into a trap state g, . Once the machine enters into trap state,

whether the input is either a or b, the siring has to be rejected and the machine for this is shown
below .

In state g, ,if the input symbol is a, the string ends with a and so remain in g, .Instate g, ,ifthe

input symbol is b, enter into state g, so that after inputting the symbol a, the machine enters into
4, - The complete machine is shown in below figure.

FIGURE : DFA to accept awa

SD,thcnmthineM={Q,E,5,qn,F] 'I'ifhﬁfﬂ Q- {qMQHq]lq!} » E:[ﬂ*b}

g, isthe startstate | F = {g,}
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& is shown using the transition table .

- E

5 a b
=+ g, 4 qs
4, UF 9
@ L'E] qy
q3 qs 93

TABLE : Transition table for DFA shown in above figure

Example 11 : Obtain a DFA to accept even number of a's, odd number of a's .

Solution :

The machine to accept even number of a's is shown in figure ( a ) and odd number of a's is shown
in figure( b), &

@<

Figure : (a) Figure : (b)

Example 12 : Obtain a DFA to accept strings of a's and b's having even number of a's and b's.

Solution :
The machine to accept even number of a's and b's is shown in figure 1,

FIGURE 1 : DFA to accept even no. of a's and b's
Note : In the DFA shown in figure 1, instead of making g, as the final state, make 4, asthe final

state. The DFA to accept even number of a's and odd number of b's is obtained and is shown in
figure 2.
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FIGURE 2 : DFA to accept even no. of a's and odd number of b's

Note : In the DFA shown in figure 1, instead of making g, as the final state, make g, asthe final
state. The DFA to accept odd number of a's and even number of b's is obtained and is shown in

figure 3.

a
FIGURE 3 : DFA to accept odd no. of a's and even number of b's

Note : In the DFA shown in figure 1, instead of making ¢, as the final state, make g, as the final
state, The DFA to accept odd number of a's and odd number of b's is obtained and is shown in

figure 4.

FIGURE 4 : DFA to accept odd no. of a's and odd number of b's
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Example 13 : Design a DFA, M that accepts the language L(M) = { w|we {a, b}"} andw
does not contain 3 consecutive b's.

Solution :
We first consider a language L (M) = { w|we {a, b}"} and wcontain 3 consecutive b's.

Then DFA for L, is,

FIGURE : (A)
Now we can get language L(M) by converting non - final states to final states and final states to
non - final states.

FIGURE : (B)
FIGURE : Construction of DFA from the language L = { wiwe{a, b}'}

Example 14 : Design DFAwhich accepts language L = { 0, 000, 00000, ... } over{0}.

Solution : L= { 0,000, 00000, ..... } over { 0 } means L accepts the strings of odd number
of 0’s, Sothe DFAforLis,

FIGURE : DFA for the given language L.
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Example 15 : Obtain an NFA to accept the following language L = { wiw eabab” or aba"
where n =0 }
Solution : The machine to accept gpqh Where n =0 is shown below :

The machine to accept gp,~ where n = 0 is shown below :

The machine to accept either gpgp" or ghg Where n 2 0 isshown below :

Example 16 : Design NFA to accept strings with a's and b's such that the string end with ‘ag’.
Solution :

Method - | : The simple FAwhich accepts a string with'aa’ is
—O)—(——O®
Now there can be a situation where in

l Anything ‘ a | a
eitheraorb p—
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Hence we can design a required NFA as

It can be denoted by,

M =(1{4; a, Q:}! 8, {‘i’n}1 {q:}]
We can test some strings for above drawn NFA.

Consider
8(g.aaa) - 8(q,, aa)
- &(q, a)
| =6 (g3.€)

i. e. we reach to final state.
8 (g,, aaa) & (qy, aa)
t- 'ﬁ {gnl a}

| = 8(q,,€)
i.e. we are not in final state,

Thus there are two possibilities by which we move with string 'aaa’ in above given NFA.

Method - Il

Start with two consecutive a's initially. It requires three states g,, g, and g, respectively. Consider

q, asthe initial state
Assign g, as final state so that it accepts two consecutive a's

O Oam O
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Design such a way if any number of b's preceeds first a it should be in the same state i.e., in the
state g, . b

RGN

Design such a way if a's preceed by first a it should move from g, to g, onlyi.e., it will be in
the state. 2

After the second a, b comes it has to move from g, to g,.
a,b
A a

S

Any number of a's followed by second a then it will be in the same state g, .

a,b a
SNt
The transition table is
i a b
do {900 a0} To
il d; §
q, qs g

Test for the strings which ends with two consecutive a's.

String baa : String baa :

6(gq.baa) | -8(gq.aa) 6(qq,baa) | -d(qo.aa)
|=d(q,.a) | ~d(qq.a)
|=6(q,.€) |=6(q,.€)
|=g,€F |=q & F

NFAand two possibilities for the same input also shown.
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String aab :

d(gq.aab) | -d(qy,ab)
|=d(g,.b)
| -d(g,,€)
|-g¢ F

Ifthe string is not ending with two consecutive a's it will not be aceepted.

String aaa:

d(gg.aaa)  |-8(gq,aa)
|-d(g,,a)
|_§{QI=E}
|-g,eF

Example 17 : Design an NFA to accept a language of all strings with double 'a' followed by
double 'b'.

Solution : First design an NFA with three states g,, ¢,, ¢, and in which g, isthe initial state to
accept the string with two a's.

In second step we have to add another two states for the following two b's as shown below.
Those states are ¢, and g,

Inthe third step we assign g, as final state.
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It can accept any number of a's or b's before first two successive a's. In the same way afier the
two successive b's also it can accept any number of a's or b's.

The NFA is defined as below :

M=(0, X8, g, F)

where Q=149 7199 } 5 L={a.b}
F ={ g, } and the transition table is given below :

a b
- g, { 909 ) 9o
a gs ¢
q ¢ qs
g, ¢ 4.
@) gy 4s
Consider the string aaa bb :

8(g,. aaa bb) |- 8(g,,aa bb)

|- 8(q,,a bb)

|- 8(g,, bb)

|- 8(g,, b)

- 8(q.. €)

- g, e F

aaa bb € L{ M)

Example 18 : Design an NFA to accept strings with 0's and 1's such that string contains two
consecutive 0's or two consecutive 1's.

Solution : First we design NFA to accept two consecutive 0's . This
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Next we can have any number of 0's and 1's before and afier two consecutive zeros. i.e.,

0.1 0.l

then similarly NFA for accepting two consecutive 1's is
0,1 0.1

Combining above two designs

Transition table is
5 0 1
-4, {90,411 { g0}
4 a; ¢
g B
'8 ¢ 44
q, d.
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Checking 10100 string with NFA.

Observing above graph there are three completed paths for the string 10100, They are

?ol‘i'uu'?nlquiqnﬂ s
%'90°49"'4"4%"q
Q'nlqn?'?nlqnqqlnql

In all these three couple paths one path is ending with final state ( g, or g, ). So, the string 10100
is accepted (It contains two consecutive 0's ).

Now considering another stimg 1010, then graph becomes
D
NN N A
Lt % B 9
* x x

There are two completed paths. But no path is ending with final state ( g, or g, ). So, the string
1010 is not accepted (because it does n't contain two consecutive ('s or 1's).

1.3 EQUIVALENCE OF NFA AND DFA

Aswe have discussed in comparison of NFA and DFA that the power of NFA and DFA is equal.
[t means that if a NFA M, accepts language L, then some DFA M, also accepts it and

vice - versa.

In this section, we will discuss about the equivalence of NFA and DFA. It is obvious that all DFA
are NFA from NFA definition. We will see this in the following theorem.
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Theorem 1.3 .1 : All DFA are NFA.
Proof : While discussing the proof, we will concentrate on two things :

1. How to construct the target NFA? And
2. The acceptability should be same for both.

Step 1 : Construction of the target NFA from given DFA

Let M=(Q, X, 8,4,, F) bethe given DFAand M, =(Q,, I, 8,, 5, F;) be the target NFA,
then
1. O, = O ( States of DFA are same for NFA),
2. ¥ issame for both,
3. 8, =8, it means, whatever transition function given for DFAM is same for the target
NFA M,.

We also see that
For DFAM : Transition function is defined as 0¥ — @,and

ForNFA M, : Transition function is defined as @, x£—» 2

So, (@xEZ— @) (Q,xZ—+2%) or 0c2®
4. s=g, ( Same siarting point or initial state )
5. F=F ( Same terminating points or final states )

Step 2 : The acceptability of DFAand NFA : Let w be an input string and accepted by DFA

Mand wel' if and only if &' (g,, W) =q,,q, € F ( § is indirect transition function )

Forequivalent NFA M,

8, (s, w) =8'(qw) =94, €F
(By construction definition 8, =38, s =g,, F, = F and &, isindirect transition function for NFA).
Thus, NFA M, also accepts w.
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—_

It means, L(M,) < L(M) (1
Now, let w is accepted by NFA Af, if and only if &', (s, w)= &', (¢,,w)=4,. 4, €F, and by
construction definition 3, = 5, s=g,, F,= F and &', isindirect transition function for NFA.

So, for DFA M 8'(g,, w) =q,.q, € F ( §' is indirect transition function )

Thus, DFA M also accepts w.
Hence , M(L) < L(M,) (2)
Therefore, all DFA are NFA. (From(1)and (2))

Example : LetaDFA M =((, £, &, g,, F) as shown in below figure . Find an equivalent NFA.

FIGURE:DFA

Solution :

lﬂtaqlﬁvalthFA MI ={QI’E’JI’Q"F]} Whﬁm Qi ={qﬂ sd@y:42 !q3$ql;12={ﬂjb} »
F =1{4g,. q.}, 8, isdefined below.

a b
=+ iy g q;
a4 s o
q: = 4
q, 4,
@ g .




FINITE AUTOMATA 1.4

Theorem 1.3.2 : If there is a NFA M, then there exists equivalence DFA M, that has
equal string recognizing power.
Proof : While discussing the proof, we will concentrate on two things :

1. How to construct the equivalent DFA 7 And
2. The acceptability should be same for both.

Step 1 : Construction of the equivalent DFA M, from given NFA M

In NFA, zero, one or more next states are possible ona particular input. When we have more
than one next state then we group all next states into one as [ g,, ¢,, ¢, ] and we call it one next

state for equivalent DFA.

Let M =(0, £, 8, q,,F) bethe given NFAand M, =(Q, L, 8,,5,F) be the equivalent DFA,

then

0 <2 (¢ is the power set of the set Q.),

¥ issame for both,

s=[g,] is initial state for M,,

F, ¢ 2¢ such that each member of F| has at least one final state from F.
8, is constructed as follows :

Let w=a e L and

If for given NFA M : 8(g,, @) ={ @,s 93 wrreeeeenq, } s then
Forequivalent DFA M, : 8,([g,} @) =1 4;; Gz» -ovvenenedl ]

h 4 o=

And

If for NFA M : 8({g,, @y et v@y }+a)= ()2 @35 s 4, } » then
Forequivalent DFA M, : 8,4,y Ga» o G 1, @) =[910 @3 s G ]

Note: [g,, 4.y .- 4, ] denotes a single state for equivalent DFA.
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Step 2 : The acceptability of DFA and NFA

We use the mathematical induction method to prove that L(M) < L(M,) and L(M,) < L(M)
for all input strings w e £°.

Case1 :Let |w| =0, it means, w=€ (Null string)
Let wis accepted by NFAM if and only if
8(gs.€)= . ,and g, € F ( Starting state is final state).
So, the initial state of DFA will be the final state, hence w=¢ is accepted by DFAalso.

Case 2 : Let |w|=1and w=aeX is accepted by NFA M, then for NFA
M :8(gy, @)= {q1s 422 Ga }» 804 (g, ¢1y.0.0q, } has at least one final state, then by
constructive proof of equivalent DFA. M,

8,(1g)» @) =y G3s-rr» 4o 1 @A [4,,y,0ns g, ] hasatleastone final state, 50 [g,, g5, 4, ]
is a final state for equivalent DFA M, .

Therefore, the equivalent DFA M, also accepts w=a.

Case 3: Suppose | w|=nand w =a,4a,...4, is accepted by both M and M, and
FOrNFA M : 8'(gg,ay@2.@y ) = {107 srsm } » @A
Fﬂrﬂqmmnfﬁ M1: EI| = ([QH!! Gy Ay e aﬁ) =[q1! q:i el | "i'.]

Cased:let|w|=n+landw=yb

Where |y =n, y = a,a,..a, and y,beX’ is accepted by NFAM If and only if
For NFA M:8' (@ys @@yee @y )= 8 ({q)sGsreer Gutr B) = (G100 G s
({g,+@s,--+ 9,,} hasat least one final state from the set F').
By constructive proof of equivalent DFA M,
8, (9o} ,@.rer @,5)= 8, ([413Gs0reers 4u b B) =[0150100 )]
(4,:42+4,] contains one final state from F, thus it is a final state for equivalent DFA M, .
Therefore, M, also accepts the string w=yb.
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(&', &, are indirect transition functions for NFAM and DFA M, respectively.)

It has been proved that if NFA M accepts w then DFA A, also accepts w for any arbitrary
string w.
Thus, L(M,) c L(M). (1)

Similarly, we can prove that if equivalent DFA M, accepts any string w e £°, then NFA also
accepts it.

Thus, M(L) < L(M,). @)
Hence, the statement of Theorem 1.3.2 is true. ( From (1) and (2))

Example 1 : Consider a NFA shown in below figure. Find equivalent DFA.

FIGURE : Non - deterministic finite Automata

Solution : Let given NFA M=(0Q. % 8, ¢, F) and equivalent DFA
M,=(0,,5,5 lq)F), where ©Q =1{9,.9,.9;.9,}LZ={a,b}, s is starting state,
F={gq,},and 5 is defined as follows :

q, b
- 44 {9001} {g0}
q ” {a,}
qs - {q,}

&, isdefined as follows : .i
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1. Keep the firstrow of NFA as it is with square bracket as follows :
| a b

ann o ] [qn]

['?n-]

2. Now, we have two states : [g,}[gs.q,]. We select the one next state that is not a present
state till now and define the transition for it. We have only one next state [g,.g, ], whichis not
a present state .

| a b
—lgs] [9e+4:1] (4,1
(g5.e1] (90411 [90:42:]

Since, &1([90,4: la)=[8(gy.a) &(q, wa)l=[{a, -Q';'l'*-"*] =gy ] s and
8,90, 1:8)=18 (g0.,b) 08 (a1 b))=[14}192}1=140,92 1)

3. Now [g,.4,] is the next selected state, because [q,.4is defined already

a b
] (q0.a1] ]
[20,6:] [90-t1] (904421
(904221 (90,911 (90491

4. Now, the state [4,,9,] is the next selected state.

a b
] [90,41] (9]
(90,21 [%.2:] [90:921
[90:3:] [90:41) (90451
(90451 (9011 [g.)

5. 'Now, we have no new choice of the next state to be considered as present state, Thisis the
completion of transition table. We have

0,=(q0 1196,@, 190921109 1} (All selected states in transition ),
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and F,={[¢4.q 1} (Only one final siate )

FIGURE : Transition Diagram of equivalent DFA

We see one thing here that not all states of 7@ are selected for transition. We have selected those
states, which are reachable from the initial state only and other remaining states of 2¢ are neglected.

So, finally we conclude that only those states of 2¢ are considered in transitions, which are

reachable from the initial state.

Example 2 : Construct equivalent DFA for NFAM = ({p,q,r, s}, {0, 1}, §.p{q, s}), where

5 is given below .

0 1
p {a.s} {q}
@ {r} {g.r}

r {s} {a.r}
® - {p}

Solution : Letequivalent DFAis M, and M, =(Q, £, 8, [p]. F)

Construction of Transition table for equivalent DFA

0 1
-] [g. 5] [q]

[4] [r] [g.7]
(g, 5] [r] [p.q.7]
[r] [s] [4.r]
[g.r] [r.s] lg.r]
(o, q.7] lg,r, 51 [q.r]
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(s o [p]
[r, 5] [s] (2. q.7]
lg.r, 5] [r,s] (P, q.r]

Q={[p), [a), [r), [s], [as], [r 8], [a, 8], [psgsr )i [Qots] s
£ = {0,1},[p]isthe starting state,
andF={[ql,[s). [q.7].[rs).[q.s).[p.q.7).[ g, 8]

Example 3 : Find a DFAequivalent to NFA M = ({g0.q,.4:}.{0,1}, 5,gs.44}) . where §is defined

as follows .
PS NS
0 1
-4, {9..9,} {g. }
q, g, ) {g, }
- {9.. 9, }
Solution : Let M'=(Q, I, §, [g,], F) betheequivalent DFA, where L= {a, b} ,and [g,] is
the initial state.
Transition table :
NS
PS 0 1
] g )] [q.]
[qi] ¢' [qn'r ‘i':]
(7.0 ] 195, 9] A
(9., g.] (g.] A

0 ={lg0).1921.{94.9: 119,91} and F={[g.}.[q..9.]}

Transition diagram :

FIGURE : Equivalent DFA
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Example 4 : A NFA which accepts set of strings over { 0, 1 } such that some two zero's are
separated by a string over { 0, 1 } whose length is 4n (n=0) is shown in below figure . Construct

equivalent DFA.

FIGURE:NFA

Solution: Letequivalent DFA M = (Q,X,5,[g, ), F). constructing transition table for given

NFA:
(NS)
(PS) 0 I
—* g, { q, } =
q, | 4.9, } {q}
4; { qy } {lih }
q, {a } {aq}
9. { & } { &y }
- -
Censtructing transition table for equivalent DFA :
(NS)
(PS) 0 1
—Hgl [ dy ] ]
[qll [ qjigj ] [?;}
[4,] [q,] [q,]
[q.] [4.] [q.]
lg.] [4,] (4]
Tg..a.D [,] [4,]
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Where, Q=quuL[th],[?:]I=h]J¢I-]JG:H;]},HDJH%I 18 sta.rting state, F={g,.9:]}, and
transition function is defined above.

Transition diagram :

FIGURE : Equivalent DFA
1.5 NFAWITH = - MOVES

1.5.1 Finite automata With . - Transitions

This is same as NFA except we are using a special input symbol called epsilon (). Using this
symbol path we can jump to one state to other state without reading any input symbol.

This also analytically indicated as 5 - tuple notation.
N =(0L,8,9:.F)
@ -» setof states in design
£ —» input alphabet
g, — initial state
F —» final states (Q)
5 —» mapping function indicates Qx (Zu{e}) »2¢

Example : Draw a transition diagram of NFAwhich include transitions on the empty input ¢ and
accepts a language consisting of any number a's followed by any number of b's and which in turn
followed by any number of ¢'s.
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Solution : It requires three states ¢, ¢, and ¢, and they accept any number of a's, b'sand ¢'s
respectively. Assign g, as final state.
a b c

368

To reach from g, to ¢, and ¢, to ¢, no input will be given i. e., they treat ¢ as their input and do
the transition.

586

Normally these &'s donot appear explicitly in the string.
The transition function for the NFA is shown below

a b c €
-4, (g0} 0 ¢ {a,}
4, P ta.} ¢ 9}
o o g;} 6

For example consider the string @ =ab ¢

String @ =ab ¢ ( i. ., string inactual formis a € b &c i. e, included along with epsilons).
6(g,, abe) |~ 8(gs., be)
- 8(g,. €be)
- &(g,, be)
- 8(g,, €c)
|- 8(g;, ©) g, €F

The path is shown below :
A At S T A
witharcs labeled a, £, 8, €, ¢
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Extension of Transition Function From 5 to j

The extended transition function § maps Qx £° to 2. Itis important to compute the set of
states reachable from a given state ¢, using e transitions only for constructing §.

The ¢ - closure (g,) is used to denote the set of all vertices g, such that there is a path from
g, to q, labeled e.

Consider the problem ‘@'@"

Here & - closure {qu} L {Qu!qlt‘h-q! !

S{anﬁl = e-closure = {45,9::9::9, }

& - closure (q) is used to denote the set of all states s such that there is a path from q to s for
string  , includes edges labeled <.

Note : The transition on e doesnotallow the NFA to accept Non - regular sets.

Definition : The extended transition function § is defined as follows :

0 ﬁ[q, €) = & - closure(q)

() For o in 5* and x in £,8(g,0x)=¢ -closure (), where s={ s| for some rin
E(q,mp €5 (r,x)} 8 canbeextended § by extension to set of states.

Gi) 8 (R, x)= U, 8(4.%) and

(iv) 3 {R.m]=;;fk5(q~{ﬂ}.

Note : § (g, a) isnotnecessarily equalto 3 (¢, a).

Example : The following NFAwith ¢ transitions accepts input strings with (2's and b's) single a
or a followed by any number of b's.
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The NFA accepts strings a, ab, abbb etc. by using < path between ¢, and g, we can move
from g, stateto g, without reading any input symbol. To accept ab first we are moving from ¢,
to ¢, reading a and we can jump to ¢, state without reading any symbol there we accept band
we are ending with final state so it is accepted.

Equivalence of NFA with - Transitions and NFA without - Transitions

Theorem :Ifthe language L is accepted by an NFAwith - transitions, then the language I,
is accepted by an NFAwithout e - transitions,

Proof : Consider an NFA 'N' with ¢ - transitions where N =(0, Z, &, q,. F)
Constructan NFA N, without ¢ — transitions N, =(Q,, E, §,, q,, F)

where @, =Q and
F = Fulgq,} if e-closure(q,)contains a stateof F
1 F otherwise

and 8, (g,a) is & (4,a) forginQandain 3.

Consider a non - empty string o . To show by induction |®| that § (¢,, ) = 5 (g,,)
For @ =e. the above statement is not true. Because
8,(q0.€)=1{qs} .

while :'f{q.,,e}:e —closure (qq)
Basis :
Start induction with string length one .
i. €. |a@|=1

Then w is a symbol a, and &,(¢,.8)=5(g,,a) by definitionof ,.
Induction : oo | > 1
Let ® = xy forsymbolain ¥ .
Tl.m JI{Q{I:I}']="FI(‘51{QE:JI}T.}'}
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By inductive hypothesis

8, (g,. x) = E(Qu- x)
Let 5.{%-:}"‘3
We have to show that 6,(.:.}#5{%.-0‘)

But 8,(s8.y)= 4 8,(q.y)= = 5(q.y)
ges ges
then §=8 (q4.%)
i & -
J{gd’] ‘-‘E{QD 1"'}
E X

By rule (Rule: For o €X' and x e X, § (g, ox) = - closure(s),
where s = { s| forsome rin § (¢, @) , 5 € &(r,x)} inthedefinitionof §).
Thus 8, (gr ¥¥) =8 (9., %))

To complete the proof we shall show that & (g,, w) containa state of ' if and only if 3 (g,, x)
contain a state of F. For this two cases arises.

Case | : If © = &, this statement is true from the definition of F,.

i. €. E.{fj'u, E) = tQD}
= g€ F')

Whenever § (g, €) is e closure (g,) , contains a state in F ( possibly is g, ).

Casell : If ® # e then W = xy for some symbol y.
If § (g,, @) contains astate of F, => 8, (g,, ) contains some state in '
Conversely, if §,(g,.®)<F, other than QQQE‘{QQ@}EF -
If &(g,.@)eq; and g, & F ,then
5[?.:1- W)= &= closure (‘ﬁ {S[qumw}ﬁl}}ﬁ
The state in ¢ - closure ( g,)and in Fmustbein §(4,, ©)-
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Calculation of « -closure :
€ - closure of state ( =-closure (q)) defined as it is a set of all vertices p such that thereis a
path fromq top labelled ¢ ( including itself).

Example :
Consider the NFA with « - moves

BB

e closure (g)= {g,,9,, ;. 9, }
e— closure (g,)=1{ g,, 4., ¢, }
- closure (g,)= { g,, g, }

e— closure (g,)=1{g, }

Procedure to convert NFA with - moves to NFA without - moves

Let N = (Q, £, 8,q,, F)isaNFAwith ¢ movesthenthere exists N'=(0,e,5 ,4,.F") without
& moves

1. Firstfind & - closure of all states in the design.

2. Calculate extended transition function using following conversion formulae.
®  8(g, x)= e~ closure (3(3 (g. &), x)
@  &(g,e)=e — closure(q)

3. Fisasetofall states whose e closure contains a final state in F.

Example 1 : Convert following NFAwith ¢ moves to NFAwithout = moves.

Solution : Transition table for given NFA s

] a b =
4, 4, b ¢
q d] # ds

@ ¢' q; [
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(i) Finding e closure :
e~ closure (g,) = {g,}
E=- Cl-ﬂsm (q;] = {'?ls ’?1!

e closure (g,) = {¢,}

(i) Extended Transition function :

5 a b
> q, {9,421} b
] {q,}
L] {g:}
8 (qy, @) =€ —closure (5 (8(q,.€).a))

= e—closure (8 ( e —closure (g,) , a))
= e—closure (5 (q,, a))

= e—closure (g,)

={44:1

8 (q,, B) =& —closure (5(6(qo.€),b))
=&~ closure(d( e- closure (q,), b))
=&~ closure(d (q,, b))
=&~ closure(§)

=¢

5 (q,,a) =~ closure(8(5 (g,, €), @)
=g~ closure(d ( - closwre(q,), a))
=~ closure(d ((g,, q,), @)
=e - closure(d (g,, a) wilg,, a))
=~ closure ()

=9
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(iv)

8 (¢, b) = e~ closure (5 (8 (g,. €), b))
= €— closure (& ( &~ closure(g,), b))
= e~ closure (8 ((g,, 9,), b))
= &~— closure (8 (g,,b) U b (g,,b))
= €= closwre (gq,)
= {4}

8(ga)  =e-clasure (3(8(g,, €), a)
= €= closure (8(€-closure(q,), a))
=€ =closure (8(g,,a))
= €— closure (§)
=9
8 (g,, b) = e~ closure (8 (8 (g,. ©), b))
= - closure (8 (e—closure (g,), b))
= e~ closure (6 (q,, b))
= e~ closure (g,)
=1{4q,)

Final states are g, ¢, , because
€ - closure (g,) contains final state
&~ closure (g,) contains final state

NFAwithout = movesis
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Example 2 : Convert the following NFAwith = — moves into equivalent NFAwithout & - moves.

Solution : Tmnsitioniableis

0 1 e

=4, 4o b 4,
q L' o
9 q, 4, é
qy d, dy ¢

(i) Finding =- closure :

e - closure (¢) is a set of states having paths on epsilon symbol from state g.

€~ closure ':'?u}: {q.r‘h :‘
e—closwre (g,)= { g, }

e~ closure (g,) = {q, }
e closure (g,) = {q, }

(ii) Extended Transition function :
5 (gq: D) = €~ closure (& (ﬁ (g, €),0))

€ - clasure (6 ( € —closure (g,). 0})
&— closure (5 ((g,, 9, 0))

=& —closure(5(q,,0)\ 6(g,,0))

]
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={gs.4:) V{g:}
={qy41+43)

€= closure (¢,,9,)

€~ closure (g,) ' e- closure (g,)

8(qp, 1) =e—closure (8(3(g,,€), 1))
=e~closure (8( e —closure (g,), 1))
=&—closure (6 ((4,: 4,). 1))
= & ~closure(5(g,,1) \W(q,.))) =€ ~closure(¢\.q,)

=g—closure (gq,)
={q,}

Continuing like this the table is generalised as follows.
0

{#m?nﬂ:} qi
@ i

i, i
q, q,

(iii) Final states are g,,g, , because

e~ closure (g,) = {g,.9,}

e-closure (g,) =g,

(iv) NFA without ¢ movesis:

q;
q,
q,

it contains final stale
is also final state
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Example 3 : Find an equivalent NFA without ¢ transitions for NFAwith e - transitions

shown in below figure.

FIGURE : NFAwith =— transitions

Solution : The transition table is ,
Inputs
States 0 | 2
-4, {g.} b ¢
g, o {a.} b
i ] {q.}

TABLE : Transition Table for the NFAin above figure.

Gl\"E‘DNFPt M= {{ Grsifa l]';}‘ {ﬂ'r 1-2* E},. 5:?&: {Q: }} .
Now NFA without - moves.

M=(0, £, 8, ¢,, F")
() Finding e - closure:
e~closure (4,)= { 4s: §1» 91}
e ~closure (g,)= {4, s}
e—closure (9,)= { g}

(ii) Extended Transition function :
8 (g5, 0) e —closure (8 (5(g,, €),0))

e ~closure (8 { 5» 4, 4,1, 0)
=¢ —closure(8(go, 00 8(g,,0) 8(q,,0))



FINITE AUTOMATA 1.59

= e-closure ( {q,} VéU$)
= e-closure (q, )
“ {089}
S(g_,]} = E-ciosura[ﬁ{s{q,,i}, 1))
= e-closure (8( {§,.9,,4,}., 1))
= e—closwre [8(g,,1) U 8( g,,1) U(g,, 1)]
= e~closure ($ U g, U$)

= e-closure ( q,)

={4.9:}
Similarly for other transitions gives, transition table § (g, )
Inputs
States 0 1 2
— (95,9, 9.} (9 4,} {q)
¢ (g,.4.) {9:)
(9. ¢ ¢ {9:}

TABLE : Modified Transition Table for the NFA in above figure

(i) F' contains g,,q,.q, because ¢- closure (g,), e- closure (g,) and e - closure (g,)
contains g, .

) M'=(0.%,5,q,, F') NFAwithout ¢ transitionsis,

FIGURE : NFAwithout - transitions
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Example 4 : For the following NFAwith < — moves convert it into an NFA without e - moves.

FIGURE :NFAwith ¢- moves

Solution :

Let given NFA with < moves be,

M‘_'{Q- E-‘ Er'g'u! 'F}
0={,2,3,4,5,6,7.8} ; L={a, b}
qu=l‘; F={LT,E}

Finding e closure:

First we need to find < — closure of all states of M.
S{q.ejze —closure(q)

8(1,€)=e ~closure(1)={1,2, 3,6}

8(2,€)== ~closure(2)=(23,6}

8(3.€)= ~closure(3)={3)

5(4,€)=€ —closure(4)={4,5)

5(5.2)=e —closure(5)={5}

5(6,€)== —closure(6)={6)

8(7,€)= —closure(T)={2,3,6.7}

b(8.c)=c —closure(8)=(23, 6,8}
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(1) Extended Transition function:

§(l,a)

=& —closure (8(5(1€).a))
= €- closure (8({1,2,3, 6}, a))

= e—closwre ({4, 8})
={2,4,5, 6, 8}

§(1,0) == —closwre(5(5(1,6),5))

= - closure (5({1,2,3,6}, ))

= € closure (§)

= {9}

5(2.a)  ==-—closure(8(5(2€).a))

=1{2,4,5.6,8)

5(2.6) == —closure(S(5(2,)0))

={¢}

5(3,a) =€ —closure(5(3(3.£),4))
=(4,5}

5(3,b) = ~closure(5(5(3.,£),a))
=)

8(4,a) = e —closure (5(5(4.€).a))
={¢}

3(4,b) = e ~closure (5(5(4,).b))
5[’1}

8(5,a) = & —closure (5(5(5,6),a))
={#)

8(5,6) = € ~closure (5(5(5,),b))
=(7)

5(6,a) = = —closure (5(5(6,€).a))
={8}
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5(6.,6) = e ~closure (5(5(6,€),0))
={¢}

§(7.a) = € ~closure (5(5(7,€),a))
={4,8}

5(1.6) = e ~closure (5(5(7,€)0))
={$)

5(8,a) = e —closure (5(5(8.).0))
={8)

5(8.b) = & —closure (5(5(8,£)h))
={#

Final states of M includes all states whose e — closure contains a final state of M.
F={1 7.8}

Transition table is,

a
(2,4,5,6,8)
{2,4,5,6,8}
{45}
o
o
{8}
{48}
{8}

- e 6 — — 8 5 & |F
T

@@mmnuu@

FIGURE : Transition Table for the NFA in above figure.
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Transition diagram of NFA without ¢ - transitions is,

FIGURE :NFA without - transitions
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REVIEW QUESTIO

Q1. Explain difference between DFA and NFA.
Answer :
For Answer refer to Page No : 1.12.
Q2. Consider the FA shown in below figure. Check the acceptability of following strings:
(a) 0101 (b) 0111 (c) 001

FIGURE : Finite automata
Answer 2
For Answer refer to example - 1 , Page No : 1,13,

Q3.LetaDFA M =(0,%,5,9,.F) isshown in below figure.

FIGURE:DFA
Check that string 33150 is recognized by above DFA ornot ?

Answer

For Answer refer to example - 2, Page No : 1.13.
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Q4. Consider below transition diagram and verify whether the following strings will be

accepted or not ? Explain.

start O.
Dﬂ'

FIGURE : Given Transition Diagram

i) 0011 i) 010101 iiiy 111100 iv) 1011101 .
Answer :

For Answer refer to example - 3 , Page No : 1.14.

Q5. Consider the NFA shown in below figure. Check the acceptability of following string

scanf( "%d", &num) ;

Note : Letter stands for any symbol from {a, b, ......... , z } and digit stands for any digit
from {0, 1, 2, ....coce. 9}.
Answer :

For Answer refer to example - 4 , Page No: 1.15
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()6. Obtain a DFA to accept sirings of a's and b's starting with the string ab .
Answer :
For Answer refer to example - 5, Page No : 1.16.
7. Draw a DFA to accept string of 0's and 1's ending with the string 011.
Answer :
For Answer refer to example - 6 , Page No : 1.18.
Q8. Obtain a2 DFA to accept strings of a's and b's having a substring aa .
Answer :
For Answer refer to example - 7, Page No : 1.20.
9. Obtain a DFA to accept strings of a's and b's except those containing the substring aab.
Answer ;
For Answer refer to example - 8 , Page No : 1.22.
Q10. Obtain a DFA to accept strings of a's and b's having exactly one a, atleastone a,
not more than three a's.
Answer :
For Answer refer to example - 9, Page No : 1.24.
Q11. Obtain a DFA to accept the language L= { awa |w e(a +b)*}.
Answer :
For Answer refer to example - 10 , Page No : 1.27.
(Q12. Obtain a DFA to accept even number of a's, odd number of a's .
Answer :
For Answer refer to example - 11, Page No : 1.29.
Q13. Obtain a DFA to accept strings of a's and b's having even number of a's and b's.
Answer :

For Answer refer to example - 12 , Page No : 1.29.
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Q14. Design a DFA, M that accepts the language L(M)={wlwe{a, b}'} andw
does not contain 3 consecutive b's.
Answer :

For Answer refer to example - 13 , Page No : 131,

Q15. Design DFA which accepts language L = { 0, 000, 00000, ..... } over{0}.
Answer :
For Answer refer to example - 14, Page No : 1.31,

Q16. Obtain an NFA to accept the following language L = { w|w e abab" or aba” where n >0 }
Answer :

For Answer refer to example - 15 , Page No : 1.32.
Q17. Design NFA to accept strings with a's and b's such that the string end with 'aa’,
Answer :

For Answer refer to example - 16, Page No : 1.32,
Q18. Design an NFAto accept a language of all strings with double 'a’ followed by double ‘b’
Answer ;

For Answer refer to example - 17, Page No : 1.35.

Q19. Design an NFA to accept strings with 0's and 1's such that string contains two
consecutive 0's or two consecutive 1's,
Answer :
For Answer refer to example - 18 , Page No : 1.36.

Q20. Consider a NFA shown in below figure. Find equivalent DFA.

FIGURE : Non - deterministic finite Automata
Answer :

For Answer refer to example - | , Page No : 1.43.
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Q21. construct equivalent DFAfor NFAM = ({p, g, r, s} {0.1}, 5.pdq

s} ), where
& is given below .
| o 1
p {a,s) {9}
O A 1
r 5 qr
- {p}

Answer ;

For Answer refer to example - 2 | Page No : ] 45.

Q22. Find a DFA equivalent to NFA M =({90,919: 1,001}, 5,9,,{¢,}) , where 5is defined

as follows .
PS NS
0 1
—+d, {‘?w*h H 19: }
g, 14. } {a, }
- {‘?ql T, }
Answer ;

For Answer refer to example - 3 | Page No : 1.46.

Q23. ANFAwhich accepts set of strings over { 0, 1} such that some two zero's are separated by

astring over {0, 1 } whose length is 4 (n=0) is shown in below figure . Construct equivalent
DFA.

FIGURE:NFA

Answer »
For Answer refer to example - 4 . Page No : 1.47.
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Q24. Convert following NFAwith < moves to NFAwithout & moves.
[ ] - ﬁ
Answer @

For Answer refer to example - 1 , Page No : 1.53.
Q25. Convert the following NFAwith & - moves into equivalent NFAwithout €~ moves.

0.1
Answer :
For Answer refer to example - 2 , Page No : 1.56.

Q26. Find an equivalent NFAwithout « - transitions for NFAwith « _ transitions
shown in below figure.

FIGURE : NFA with «— transitions

Answer :
For Answer refer to example - 3 , Page No : 1.58.
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Q27. For the following NFAwith < — moves convert it into an NFA without €— moves,

FIGURE :NFAwith - moves

For Answer refer to example - 4 , Page No : 1.60,
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[|_ OBJECTIVE TYPE QUESTIONS J
1. Whichofthe following is there is an FA?

(a) State Transition (b) Input

(c) State d) All of the above.

2. The basic limitations of Finite state machine is that
(a) it sometimes recognizes non regular language
(b) it sometimes does not recognizes regular language.
(c) it can't remember arbitrary large information
(d) all of the above.

3. Givenadfa 4=(5,%,5,8,F) , A acceptsaword we &' iff

(8) (s, w)doesn't € F, Where s# $0 (b) B(s.w)e F, Where 55,
(c) 8(s,w)doesn't € F, Where 5= 5 (d) 8(s,w)e F, Where 5= 5p
4.  dfacanrecognize
(a) Only regular language (b) Only unambiguous grammar
() Only CFG (d) Any grammar
5. dfahas:
(a) Unique path(for a set of inputs) to the final state
(b) Single final state
(c) More than one initial states (d) All of the above.
6.  The language generated by a deterministic finite automata is,
(a) Informal language. (b) Context sensitive language
(c) Context free language (d) Regular Language
7. Itisgiven that 8(¢,x) = (¢, y), then (g, xz) = 8(q, yz) for All strings zin:
(a) ~x (b) g+ (©) £ ) y*

8.  Find the false statement for finite automata,
(a) if o(g,y)=5(q,x)then 5(q,xz) = (g, yz). (b) 8(¢q,€)=q

(e) (g, xw) =8(q, wx) (d) 8(g,xw)=8((g.x),w)
9. Consider the FA for a switch with ON/OFF facilities. The automata can be designed with
minimum no of states 7

(a)4 (b)3 (c)2 (d) 1
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10.

11.

12,

13.

14,

15.

16.

Application of finite automata cannot be found in:

(a) String matching (b) Lexical analyzers

() Spelling checkers (d) Storage purpose

Find the false statement : An instantaneous description, of the finite~state automation is a
singleton ugv, where:

(a) the configuration is said to be a final configuration if v =€ and q is the initial state.,

(b) the configuration is said to be an initial configuration if ¥ =< and gis the initial state
(¢)uvisastring in 5*

(d)qisastate in §

as: mnmmlmmmhthﬂmywinLhnﬂmgthmhmanydﬁmﬁinnguﬂ

(a) exactly (n+1) states, (b) .atmost (n+1) states

(c) atleast (n +1) states (d) exactly n states

Find the faise statement for finite automata,

(@) if 3(g,»)=35(g,x) then &(q,xz) = 8(g, yz)

(b) (g, €)=¢

(c) 8(g,xw) =B(g, wx)

(d) 8(q.xw) = 8(delta(g, x), w)

H,inadfa, 8(g;,x) =gy and 8(gy,y) = g, then 8(gy,xy) is

(a) some state g, (b) g () g1 (d) None of the above.

For a deterministic finite automata, A =(5,L,8,49, F); 8, the transition function is defined
s

@) 5:5x5 5 5* (b)5:5x5>x
(€) §:5xE5 % I:d}a:.nzu{e}-—;g
The rules for nfa state that ,.......

(a) every state of a nfa may have ZEr0, One, or many exiting transition arrow for each
symbol in the alphabet,plus".

(b) every state ofa nfa may have zero, one, many exiting transition arrow for each symbol
in the alphabet,

(c) every state of a nfa must always have exactly one exiting transition arrow for each
symbol in the alphabet,

(d) every state of a nfa must always have at most one exiting transition arrow for each
symbol in alphabet,
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17.

18.

19.

20.

21.

22,

The rules for dfa state that ........

(2) every state of a dfa must always have exactly one exiting transition arrow for each
symbol in the alphabet.

(b) every state of dfa must always have at most one exiting transition arrow for each
symbol in the alphabet.

(c) every state of a dfa may have zero, one, or many exiting transition arrow for each
symbol in the alphabet,plus”.

(d) every state of a dfa may have zero, one, or many exiting transition arrow for each
symbol in the alphabet.

A nfa computes by reading in an input symbol from a string, and splits into multiple copies
of itself, one for each possible transition. If the next input symbol doesn't appear on any of
the arrows existing for the current state of a copy of the machine, that copy dics. A nfa
accepts an input string when all the input symbols have been read and .......

(a) any one of the alive copies of the machine are in an accept state.

(b) all copies of the machine that died were in a reject state

(¢) any one copy of the machine that died was in a reject state.

(d) all of the alive copies of the machine are in an accept state
Consider the following two finite state machine in Figure.

(a) The first finite state machine accepts nothing

(b) Both are equivalent —0 ) ©

(c) The second finite state machine accepts e-only

(d) none of the above.

For text searching applications which of them is used:

(a) npda (b) pda (c) dfa (d)nfa
If'S is the number of states in ndfa then equivalent dfa can have maximum of
(a) 2# _y states (b) ¢ states (c) S-1 states (d) S states

How many of 00, 01001, 10010, 000, 0000 are accepted by the following nfa :

(a)5 (b)4 (©1 (d)2
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23.

24,

25,

26.

For a non-deterministic finite accepter, M =(8.Z%,8,gq.F):8 , the transition function is
defined as:

(8) 5:85x(Exfe}) —» 25 b)) s:5x% 5 §

(€) 5:5%5 525 (d) None of these,

Find the true statement,

(8) There is nothing like non-determinism in finite-state automata.
(b) It depends from case to case.

(¢) Non-determinism does not add to the recognition power of finite-state automata,

(d) Non-determinism adds to the recognition power of finite-state automata,

Given an arbitrary non-deterministic finite automation(nfa) with N states, the maximum
number of states is an equivalent minimized dfa is at least

(a) n (b) ¥ () o¥ (d) N2
M={{m1tf:1qa}.{ﬂ.ﬂ,§,q,.{ﬁ}}isanmﬂﬂumhiﬂicﬁﬁtemummﬁm,mmddhisgivm
by 8(q1.00={a2.93}  8(ay.))={q)
8a2,0) = {g1,92) (g2 = {¢}
8(93,0) = {g2}, 8(g3.1) = {91.95)
Anwﬁvahndfaisgimbyﬂﬁahonmfﬁ:hﬂmﬁng:
(a) 0 I (b) 0 1
Eu_ q {1] qo q fo
q 72 92 i d2 72
qz2 q0 33 q2 3 q0
q3 @2 43 U] 1 a2
(c) 0 1 (d) 0 1
do L o0 40 q 0
i 42 q2 4 2 2
42 | 40 i 92 93 4o
43 93 42 a3 q3 a2
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27. The recognizable property of dfa and ndfa

(a) Must be same (b) May be different
(c) Must be different (d) None of the above.
[ ANSWER KEY =l

1(d) 2() 3(d) 4(a) S(a) 6(d) 7(b) 8(c) 9(c) 10(d)

“ 11(a) 12(c) 13(c) 14(b)15(c) 16(a) 17(a) 18(a) 19(d) 20(d)
21(b) 22(d) 23(a) 24(c)25(c)26(c) 27(a)




2.

FINITE STATE MACHINES

h -

After going through this chapter, you should be able to understand :

Finite State Machines

Moore & Mealy Machines

Equivalence of Moore & Mealy Machines
Equivalence of two FSMs

Minimization of FSM

2.1 FINITE STATE MACHINES (FSMs)
A finite state machine is similar to finite automata having additional capability of outputs.

A model of finite state machine is shown in below figure,

Cutput

L LT TTTs] PITTITI8]
Input tape Output tape

FIGURE : Model of FSM

2.1.1 Description of FSM
A finite state machine is represented by 6 - tuple (Q.Z,A,6,4,9,) , where
L. Qis finite and non - empty set of states,

2. ¢ isinput alphabet,
3. A isoutputalphabet,
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4. § istransition finction which maps present state and input symbol on to the next state or
OxL—0,

% is the output function, and

¢, e 1 the initial state .

O Lh

2.1.2 Representation of FSM

We represent 4 finite state machine in two ways ; one is by transition table, and another is by
transition diagram . In transition diagram , edges are labeled with Input / output.

Suppose , in tansition table the entry is defined by a function F, so for input ¢, and state g,
Flg,.a.) = {(dq,, a) , Mg,, a)) (where § is ransition function, , is ouiput function.)

Example 1 : Consider a finite state machine, which changes 1's into 0's and O's into 1's
{ 1's complement ) as shown in below figure |

Transition diagram :

o1

10

FIGURE : Firite state machine

Transition table :

0 1
Present Next State (NS) | Output Next State (NS) Output
State{PS)

q g 1 q 0
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Example 2 : Consider the finite state machine shown in below figure, which outputsa the 2's
complemnent of input binary number reading from least significant it (LSB).

B f

FIGURE : Finite State machine
Suppose, input is 10100, What i3 tha output 7

Solution : The finite state machine reads the input from right side (LSB).

Transition sequence for input 10100 :

Inputs
(D))
Outputs .,
So, the output is (4] 100,

2.2 MOORE MACHINE

If the outpur of finite state machine is dependent on present stafe only, then this model of
finite stale machine is known as Moore machine,

A Mocre machine is represented by 6-tuple (0. £.A,4, 4,9,), Where

¢ is finile and non-empty set of states,

T isinput alphabet,

A isoutput alphabet,

5 is transition fimetion which maps present state and input symbeol on to the next state or
gxi g0,

A 1s the output function which maps Q0 —» A, (Present state —» Output}, and

gy & O, is the initial state .

dun L b e

Ov Lk

I Z (1), g (r) are outoyt and present state respectively at time £ then
Z(t) = k(g ().

r p ; o I
i Formput ¢ (null string), Z {7} = & (initial sl:ata”
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Example 1: Consider the Moore machine shown in below figure.Construct the transition
table. What is the output for input 010107

Outpyt = 1

FIGURE: Moore machine
Solution ; Transition iable is as follows :

Inpuits
0 1
Present | Next State Next State Output
State (PS) | State (NS) State (NS)
q. q, 7 0
q, 4, s 0
% 4, 4, 0
4, 4, q, 1

Transition sequence for string 01010

I O I O N R O Oam O,

So, the output is ljﬂ[}[!{l
Note : Since. the output of Moore machine does not depend on input. So, the first output
symbol isadditional from the initial state without reading the input i.¢., null input and output length
is one greater than the input length, but not included in the above owput,
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Example 2 : Design a Moore machine, which culputs residue mod 3 for each binary input string
treated as a binary integer.

Solution ! Let Moote machine M = (Q,I. A, 8, ), g,), where £ = {0.1}
A = {0, 1,2} {outputs after mod 3), .
Let three states {g,. 9. ¢, } are there and
State g, outputs 0,
State g, outputs 1, and
State ¢, outputs 2.
Ifinput is binary string X, then

X is followed by a 0 is equivalent o twice of X

K is followed by a 1 is equivalent to fwice of X plus 1.
X0 = (2% X),, (indecimal system). and
X1=(2*%X), +1 (indecimal system)
¥Xmod3=rfor r=00r1 or2, then
Ximod3=2%rmod3 (For input )
=Qor2orl

For transition :

Gr ¥ §orenoy forr=0,1,2
X1imod 3=(2 %7+ 1)med 3 (Forinputl)
=102

For transition :

g, = Q-{I"ul‘i-t,"l'ﬂbd-? forr= ﬂ,l,l
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gy

Transition diagram :

QP
D@D OEPOD

qf}r:ﬂ Ullln’_p._-:l OI‘IP‘—E

Exampile 3 : Design a Mocre machine which reads input from (0+1+2)* and outputs residue mod
5 of the input. Input is considerad at base 3 and it is ireated as femary integer,

Solution :

Let Moore machine Af = (0, £. A, 8, A, ¢, } produces output residue mod 5 for each input
string written in base 3.

L ={0,,2LA=1{012234t

Let five states {g. a,., 4, 43, ;) are there and

State g, outputs 1},

State g, outputs 1,

Stale g, outputs 2,

State g, outputs 3, and

State ¢, outputs 4.

Hinput is binary stving p, then

W is followed by a () is equivalent to thrice of w7,

m is foliowed by a 1 is equivalent to thrice of j plus 1,
7 1s followed by a 2 is equivalent to thrice of  plus 2.

Or
W0=(3*W ) (indecimal system),
t=(3%W ) +1 (indecimal system),
W2={3%F Yy + 2 (indecimal system)
I pmod 5 =5, forr={01234} (inthe order of the elements), then
Womad 5=3*%rmod 5 (Forinput()
= {03,142} {Inthe order of elements)
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For transition :
0, Q3,0 for r =1{01,2.3,4} (inthe order of the elements)
Flmod 5=¢3*r+1)mod 5 (forinputl)
= {1,4,2,0,3} (Inthe order of clements)

For transition :
G O e iiymod = fOr r = (0,1,2,3.4) (inthe order of the elemenis)
W2mod 5=(3*r+2)mod 5 (forinput2)
={2,03,14} (Intheorderof elements)

For transition :
0, = Qeriaimas for 7 = {0.1,2,3,4} (inthe order of the elements)
Transition table

Enputs

o 0 1 .

Ps NS NS NS Onatput
gy o 4 g 0

UH i if3 iy i 1

3 g & g i3 2

&q [ dy gy & 3

i
4y % a0 4 4 4

2.3 MEALY MACHINE

If the putpet of finite state machine is dependent on present slate and present input, then

this model of finite state machine is known as Mealy machine.

A Mealy machine is described by 6 -tuple (0. 2,A8.4.4,) .
where
I. ¢ is finite and non-empty set of states,

2. ¥ isinputalphabet,
3. A isoutputalphabet,
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4. § isransition function which maps present state and input symbol on to the next state or
Q w E i Q?
3, 1s the outpul function which maps OxEZ — A( (Present state, present input symbol) —
Output ), and
6. g, (,istheinitial state .
If Z{r), g{r), and x (i) arcoutput, present state, and present input respectively at time ¢ ,
Then, Z (1) = & (g (1), x(2))

L

Forimput ¢ (oull string), Z (1} = &

Exampie 1: Consider the Mealy machine shown in below figure. Constroct the transition table
and find the cutput for input 01010

01

FIGURE : Mealy Machine

Solution ; Transition tuble is constructed below:,

Inputs
0 1 o
P3s NS Crtprat NS Qutput
P A P T
5 5 0 3, 1
5 5, i 5, 0
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Transition sequence for input 01010

(S0, the putputis 11111.)
(Mote ; The output Jength is equal to the input length).

Example 2 : Construct a Mealy machins which reads input from {0, 1} &nd ouiputs EVEN or
GDD according to total number of 1's even orodd.

Solution :

We consider two staies g, . which outputs EVEN and g, which outputs ODD.
Suppose, a =(0 4 1)° has even number of 1's, thenall also has even mumber of 1's.

Suppose, b (0 + 1) has oddnumberof I's thenbl also has odd number of 1's.
Transition diagram :

0 EVEN

FIGURE : Mealy Machine

Example 3 : Design a Meaiy machine which reads the input from {0+1)* and produces the
fallowing oLrputs.

{i) if input ends in 107, output is A,

(i} If input ends 110, the cutputis B, and

{iii) For other inputs, output is C.

Solution : Suppose, Mealy machine & = (2, L, A. 5, X, o) Which reads the inputs from
{0 + 1) *, starting from the least significant bit {LSB).



2.10 : FORMAL LANGUAGES ANDAUTOMATATHEORY

Consider three LSBs of Input
000 ()
00l (X0
0L ()
011 (X))
100 (X)

.. 101
LA 10
RIS
Transition diagram :

- t‘:-mh.ﬁf‘af‘}ﬁﬁ-‘g

FIGLURE : Moore Machine

24 EQUIVALENCE OF MOORE AND MEALY MACHINES

We can construct equivalent Mealy machine for a Moore machine and vice-versa. Let A, and
M, be equivalent Moore and Mealy machines respectively. The two outputs 7, (w) end T, (w)
are produced by the machines A4, and M, respectively for input string w . Then the length of

I (w) is one greater than the length of Z (w), L.e.

FACHESPALIRS
The additional length is due to the output prodticed by initial state of Moore machine. Let output

symbol x is the additional output produced by the initial state of Moore machine, then
T (w) = x T, (w) .
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Tt means that if we neglect the one initial output produced by the initial state of Moore machine,
thenoutputs produced by both machines are equivalent. The additional outpur is produced by
the initial state of (forinput ) Moore machine without reading the input.

Conversion of Moore Machine to Mealy Machine
Theorem :If 4, = (Q.%,A,6,4,5,) is aMoore machine then there exists s Mealy machine
M, equivalentio M;.
Proof : We will discuss proof in two steps.
Step 1 : Construction of equivalent Mealy machine Af,,and
Step 2 : Cutputs produced by both machines are equivalent.
Step 1{Construction of equivalent Mealy machine M, )
Let M, =(0,5,A, 8, 4",q,) whereall terms 0, %, A, 4, ¢, are same as for Moore machine and
3.7 isdefined as following :
Aig,ay= hidfg.anforallgeQand 4 e 3

The first output produced by initial state of Moore machine is neglected and transition
seguences remain unchanged,
Step 2 : If x is the output symbol produced by initial state of Moore machine 3/, and
T; (w), T,(w) are outputs produced by Moore machine A4, and equivalent Mealy machine A,
respectively forinput string w, then

Tilw) = xTy(w)
Or Output of Moore machine = x| | Qutput of Mealy machine
(The notation | | represents concatenation) .

Ifwe delete the output symbol x from 7, (w) and supposeitis 1) (w) whichis equivalent to

the output of Mealy machine. So we have,
5 (w) = Bw)
Hence, Moore machine A/, and Mealy machine A, areequivalent.

Example 1 : Construct a Mealy machine equivalentto Moore machine A, given in following
transition table.



2.12 FORMAL LANGUAGES AND AUTOMATA THEQRY

Inputs
0¥ gy 1
Present Next State MNext State
State (PS) (NS} (NS) Output
o 4 gy i -
4 43 ' 2 0
gl gg q] ]
43 2 s I
H

Solution : Leteguivalent Mealy machine & , = (0,246 .4"9,)
where

D = {g5:4,:92:83}

5= {0,

A = {0,1}

4! isdefined as following :

For state g,:4'(g,.0) = 4(g,.0)) =4 () =0
Aggl)= A{8(gq.1) = higy) =1

Forstate ¢, + &' (4. 0) = A (8 (. 00 = Mgy} = 1
Rg,1) = A0 (g1} = Algd=1

Forstate g, : A {g,, 1) = A (8(¢.. 0D = Lg) = 1
Mgy D) = 2@ (q:. 1) = Mig) = O

Forstate ¢,:4"(g3.,0) = A(8(g3.0)) = Alg,) =1

Mg, 1) = LB {g5, 1)) = Mgy} = 1
Transition table :

o

Inpixts
L 1] 1
P8 N§ Outpui |, NS Qutput
SR 0 g 1
I 7 1 0 P
iz gz 1 i 0
7 g 1 4 1




FINITE STATE MACHINES 2.13

Transition diagram :

FIGURE : Mealy Machine

Example 2 : Constructa Mealy machine equivalent o Moore machine 4¢ ( =(0.2,48,6.4.4,)
described in following transition table.

Inputs
| | S |
Present Next State Next State
bt&ifl{PS} iNS) (NS} " Cutput

g gy ) 0

i 1 G"; ‘32 l
| 5] 9z g1 0

v - K] Gy 1 0

Solution : et equivalent Mealy machine M, =(0.Z,AF 4" 3,) . where

1‘ Q = {i.i'&!'?uql ﬂl’].}

2. T={0]}
3, A= {01}
4. n'isdefined as following :

For state 7¢:A (g 0) = A8(gy,0)) = A(g;) =10
Aqe,1) = Ad(g,.10) = A{g,) =1
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Forstate &, :%' {g,0) = L (B (g, 00 = &(q) = |
Mg 1) = AB g, 1)) = r(g) =0

Forstate g, 1 (43.0) = A (8(g. 00 = hig) = 0
A gy 1) = A(B(g, 10 = Aig) = 0

Forstate ¢, 1 A" (g:,0) = A3 (g5, 00 = A (gz) =

Af[iha}] = A{d(g..1) = ’1{40} =0
5 ‘Transition is same for both machines, and
6. g, isthe initial state.

Transition table : i
Trputs
L ﬂ - — 1 N i
PS NS Ouwput | NS Output
i, d 0 q 1
dy ) ! g2 k Y
L if4 0 i3 0
4 s 0 4 0
Lo | A

Conversion of Mealy Machine to Moore Machine
Theorem : If M, =(Q.%.A,8,4,q,) isaMealy machine then thers exists a Moore machine
M, equivalentto ;.
Proof ;: We will discuss proof'in two steps,
Step 1 : Construction of equivalent Moore machine M, , and
Step 2 : Outputs produced by both machines are equivalent.
Step 1 : Construction of equivalent Moore machine M,
We define the set of states as ordered pair over ¢ and 4 . There is alsoachange in transition
function and output function,
Let equivalent Moore machine M , = (0'.X,A,6.4%.4,").
where
. gc@xA is the set of states formed with ordered pair over ¢ and A,
2. ¥ remnains unchanged,
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0l

A remains unchanged.
4. x isdefined as follows :
8" {fg. bl.a) = [&(g,a). L{g, a}]. where 3 and 3, sare fransition function and output
function of Mealy machine.
5. 3 istheouipat function of equivalent Meore machine which is dependent on present stave
only and defined as follows :
A ([g.B]) = b
6. g, istheinitial stateand defined as [g,,4,], whete g, is the initial state of Mealy machine and
#, is any arbitrary symbeol selected from output alphabet A .
Step 2 : Outputs of Mealy and Moore Machines
Suppose, Mealy machine M, enters states g,.4;. ¢5,...¢, o0 input g, oy, as,....q, and
produces cutputs b, by, by, ... b, then M, entersthe states {gq, &1, (g1, 51 [g2 ). ..o [0 5]
and produces outputs b, &, A, ... b, asdiscussed in Step 1. Hence, outputs produced by both
machines arve equivalent.
Therefore, Mealy machine M, and Moore machine M, are equivalent.

Example 1 : Consider the Mealy machine shown in below figure. Construct an equivalent
Moare machine.

FIGURE : Mealy Machine
Solution : Let M, =(0ZAS.ig,) is a pgiven Mealy machine and
M, ={0"5,A.6"4",9,") betheequivalent Moore machine,
where
L Q' c{lge.2}190. #1147 {40 ) (g, 1) {9 ¥ (Since, 0 = O x A)
2. Z=Y
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3. A= {myh
"= [ge. ¥], where g, is the initial state and ¥ is the output symbol of Mealy machine,
5. & isdefinedas following :

For initial state{q,, »] :

ETE ‘F‘{B:}.]-ﬂ} = [ﬁ{qﬁsﬁ}*l{qﬂ ﬂ]] b EJ?:,?I]

8 gq, 11 =16(g4: A4 301 = 42, 2]
For state {g,.n] :

& ({g,. 71, 0) = [5 (g:- O, & (g, W} = gy, ¥]

8 g1.n113 = [Bgi1) (g1 DI=la2 7]
For state |g,, #] :

E’ [[Qg-, ﬂ}:- ﬂ} s {ﬁ ('?11 [’)1 "'*"'("r'h? ﬂ}} = [g'llﬂl

E' (.{{!"J L] ’?J: -t} = [h l:l.qz: 1] " ?" {Q‘;# 1]} = E.q;]i 'I"-f
For state [g,, ¥} ¢

8' (g ¥ O = [8 (g0, 0. A (. O = [45, ¥]

3 (lgy. 1. 1) = [8 (g 1 A (g, DT = Lz,
For stale {g,, ]

8’ ([Q‘;r v 0 = [E ('-Tl# ), 8 {q'.i 0] = {gy.5]

8 ({92, 1. D) = [8(gz. DM (42, D] = [42, 7]

(Note : We have considered only those states, which are reachable from initial state)

6. 7 isdefined as follows :
Algayl=¥
A g, nl=n
A igy.nj=n
Mgyl =y
Mgyl =y
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Transition diagram :

FIGURE : Moore machine

Example 2 : Construct a Moore maching equivaient to Mealy machine M, ={(Q,ZAF,4,9;)
described in following fransition table

Inpruts
[} 1 ......................
PS NS Output NS Output
s q, # o, £y
i, & g, =
g, & 4, a3

Solution :

Lei M, = (Q2,2.A,6,2.9,) is given Mealy machineand M, = (0'.2.,4".6",4",q,') bethe

equivalent Moore machine, where

Lo @ cige.2 )9y 7 b a5 M. 22 ). 192, 511 [g. 2,1} (Since, @' ¢ O x A)

2 Zi=40 1}

3 Aisdfraay)

4. Letstarting state g,'={g,,7] where g, isthe initial state and 2, is the output symbol of
Mealy machine,
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5. & isdefined as follows

For initial state [g;, 2, 15140, 7 L0) = [6(24.00,4(q¢ 0N =[41.%]
3'(1gq.2, 1) =18yt 1 Ag0 )] =142, 2]

(Note : Both states [g,,z,) and [¢,,2,] arereachable from initial state.)

For state [g,,2z, 18 (1¢,.2, 1,0} = [§(g,,054{4,,.00 =g, %]
5'([ g2, 11 = [8(g, 10 A(g, )] = g5, 7]

Forstate [g,.2, 16 ([ 92,510} = [§(g:.004(q,.0)] = fa:.2]
51 g0 = [6(g; (a2 101 = (9273

(Note : Both states {g,,z,] and [g,,7,] are reachable states.)

For state [g,.2, 16 ([ 4,2, 1.0) = [6(g:,004(g,,0)] =[g1.7;]
§ gy 2, By = [8{g 10 A(g, 1)) = fg:.271]

For state [g,.2, 18 '({g+,2,1.0} = [6(g,.004(q,.0)] =[g;,%]

& r{[ Fasiy b= [‘?{‘E 2 R )rj'(gﬂ J = {‘f-h s By ]
(Note : We have considered only those states, which are reachable from initial state.)
6. 3 isdefinedasfollows

Algnzl=5
ilgy.zl= 5
Algs.nl=13
Alg.2y]= 2,
Algz,.2,]= 5,
Transition Table

= Trputs
0 1
BS NS NS Quiput
{d0.3] (g2} fd:. 2] 2,
[41:3] Tgi221 [92:5] &
{g:-2] | lgnal [g2, 2,1 7
ool | lapml | len) | |
! {fﬂs:zli [q,.5] ] [92,22] %3 _JI
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2.5 EQUIVALENCE OF FSNis

Fwo finite machines are said to be equivalent ifand only if every input sequence yields identical
QUEPUL SeqUence.

Example :
Considerthe FSM M, shown in figure (a)and FSM 44, shown in fipure (b).

Figure (b)

Are these two FSMs equivalent 7
Solution :
We check this. Consider the input strings and corresponding outputs as given following :

Input string Qutput by A, Cutput by M,
(1) 01 oo 00

(2) 010 001 001
(330101 (i1 0011
(4) 1000 0111 0111
(5) 10001 B1111 g1111

MNow, we corne to this conclusion that for each input sequence, outputs produced by both machines
are identical. So, these machines are equivalent. In other words, both machines do the same

task. But, A, hastwo states and Af, has four states. So, some states of A1, are doing the same
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task i. e., producing identical outputs on certain input. Such states are known as equivalent states
and require extra resources when implemented.
Thus, our geal is to find the simplest and equivalent FSM with minimum number of states.

2,51 FSMMinimization

We minimize a FSM using the following method, which finds the equivalent states, and merges
these into one state and finally construct the equivalent FSM by minimizing the number of states.

Method : Initially we assume that all pairs (g,,4,) over states are non - equivalent statcs
Step 1 : Construct the iransition table.

Step 2 : Repeat for each pair of non - equivalent states {(g,,¢;)
{a) Do g, and g, produce same output ?
(b) Do g, and g, reach the same states foreachinput a €27
(c) If answers of (a) and (b} are YES, then g, and g, are equivalent states and
merge these two states into one state [g,,q, ] and replace the all occurrences of
g, and g, by [g,.9,] and mark these equivalent siates,

Step 3 : Check the all - present siates, if any redundancy is found, remove that.
Step 4 : Exil.

Example 1 : Consider the following transition table for FSM. Construct minimurm state FSM.

| | Inputs
i . 0 o i |
Present Mext State } Next State
State(PS) (NS) (NS) Output
e gs q 0
4, q. q, 1
g, ds s 1
g, 1, &y 1
.
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Solution :

Pairs formed over {90.4:492.q,) are {E"c:‘fl)s@as‘?z]s(@nagm}e(gﬁsfb_}: (g3 b (g2.45) -

Consider the pair (g,,9,) :

Algy )= 0
Alg;)=1
Hence, ¢, and 4, are nof equivalent.

Consider the pair (5,4, :
Algy)=0
Algz)=1
Hence, g, and g, are not equivalent

Consider the pair (g,.q.) :
Al )=0
Alg, =1
Henee, g, and g, are not equivalent

Conslider the palr (g,.9,) :
Alg,)=1
Afgy)=1
Outputs are identical .
Now, consider the transition :
8(q;,0)=q,, d{q,.1)= g4
S{g1,0)=qy, F(q2.1)=q;

So, transitions from g, and g, are noton the same state for 0 input.

Hence, g, and g, are not equivalent
Consider the pair (4,.4.) :
Algy)=1
Algs)=1
Outputs are identical .
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———— i —

- e i — .

Now, consider the transition !

5{gq;,0)=aq, 8(g).1)= g,

d(g,,0)=q:, 8(¢;.1)= 9,
So, transitions from ¢, and ¢, are not on the same state for (' input.
Hence, g, and ¢, arenot equivalent.

Consider the pair (g,.4.) :
Agz =1
"l{gﬁ }:i

Ouiputs are identical .
Now, constder the transition :

F(g,.0)= g3, 8{q,,1)= a4
5(9;,0)=q5. 5(g;.1)=qq
Sa, transitions from g, and g, are identical for inputs { and 1.
Hence, g, and g, are equivalent states.
So, merging g_and g, info [g,,g9,] o represent one state and replacing ¢, and ¢, by [g..4;1.
we have following intermediate transition table 1.

Intermediate transition table 1
— T g " inputs T T
Prosont State I Next State Next State
(FS) (NS} (NS) Output
—> 4, d. i, 0
9, !.‘3"!:"?2] qﬁ i 1
{2 9251 4% | 1
[@?_:%] I.,'i't:—"i'}l ' L 1
J | i

Applying Step 2 further on intermediate trﬁnsiti._:r_n_tahle we gee that q; :[ql .4, ] are equivalent
states,
So, replacing ¢, and {g, 4.1 bY [4,.4,.4; ], We have intermediate transition table 2.
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Intermediate transition table 2
3 . Inputs i _
Present State MNext State Next State
(PS) {NS) {NS} Qutput
- 9-1 Q.'- j I‘El ,Q} sﬁ'i] U
.[g:-':’r'zr‘?zlé gy 4443 ] iy 1
() .251 : {9192.9:1] q, 1
[9):92.495] 19,0731 4. L
Applying Step 3 and re-*.:;ﬂving redundancy, we ha_v;;to delete two rows.
Now, we have the following Gnal transition table 3 :
e ~ Transition i_a_pla 3
0 lnputs 1 ! B}
Present State Mext State MNext Siate
(P8) {NS} (NS} Qutput
- g, g, [91:42.9:] 0
(945,211 E L9155 ] T E 1
L. o !
Transition diagram : _
Ma' A

@- XL :Qza‘a’a

OF =0

P =1

Example 2 : Consider the following transition table of a Mealy machine. Gonstruct minimum state

Mealy machine,

"""" “Tnputs iy
e 1 o
PSs N 8§ Output N S Output
-+ 4, fa 4 ¢
g, g, A 1
; g s LB 1
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Solution : Last two rows of transition table show that states g, and g, are equivalent states.
So, replacing these statesby {g;.¢, ], we have the following intermediate transition table.

Inputs
D -
PS NS | Output N S Duiput
- G 9 b gyl 0
[4::42] 7 [9,.4,] i
{41921 iy [q,.9:} 1
Deleting the last row, we have the following final transition table.
l Inputs
iy eemsee “
PS N & Output N 5 Cutput
-+ Fa ! [419:] 0
[q.4921 dy [4:42] 1




FINITE STATE MACHINES 2.25

REVIEW QUESTIONS

Q1. Define and explain about Moore Machine.

Answer :
For Answer refer to Topic : 2.2, Page No : 2.3,

Q2. Consider the Moore machine shown in below figure. Construct the transition
table. What is the output for input 01010 ?

~ Quiput = 1

FIGURE: Moore machine

Answer ;
For Answer refer to example - 1, Page No : 1.2.4.
Q3. Design a Moore machine, which outputs residuz mad 3 for each binary input string
treated as a binary integer.
Answer :
For Answer refer 10 example - 2, Page No : 2.5,
Q4. Design a Moore machine which reads input from (0+1+42)* and cutputs residue mod
5 of the input. Input is considered at base 3 and it is treated as ternary mteger,
Answer :
For Answer refer to example - 3, Page No : 2.6,
QS. Define and explain about Mealy Machine .
Answer :
For Answer refer to Topic : 2.3, Page No : 2.7.
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6. Consider the Mealy machine shown in below figure. Construct the transition table and find
the output for input 01610,

FIGURE : Mealy Machine
Amswer :

For Answer refer to example - 1, Page No : 2.8.
Q7. Constructa Mealy machine which reads input from 10, 1} and outpute EVEN or ODD according
to total number of 1's even or odd.
Answer ;
For Answer refer to example - 2, Page No 1 2.9,
Q8. Design a Mealy machine which reads the input from (C+1)° and produces the foliowing outputs.
(i) Hinput ends in 101, outputis A,
{il) 1f input ands 110, the output is B, and
(it} For ofher inputs, output is C.
Answer :
For Answer refer to example - 3 , Page No : 2.9,
Q9. Explain conversion of Moore Machine to Mealy Machine.
Anywer !

For Answer refer to Theorem, Page No @ 2.1
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Q10. Constructa Mealy machine equivalent to Moore machine A, givenin following transition

table.
e s s
e { 1 i
Present Next State Next State
______ Stale (PS) {NS) (NS) Output
4 a @ 1
4 13 42 0
7 02 a 1
3 s LS 1
Answer

For Answer refer to example - | , Page No : Z.11.

Q11. Construct a Mealy machine equivalent to Moore machine M, = (0,5,0.6.4.9,)

described in following transition table.
Sty o
0 1
Present MNext State MWext State
State (PS) (NS) (NS) Qutput
q& 1?.]- ql B
@ 7 4 1
i da i3 0
s & e t
el S ity |- 2 . S o 2 il
Answer ;

For Answar refer to example - 2, Page No 1 2.13.
Q12. Explain conversion of mealy machine to moore machine.
Answer :

For Answer refer to Theorem , Page No : 2.14.
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Q13. Consider the Mealy machine shown in below figure. Construct an equivalent Moore
maching,

FIGURE : Mealy Machine
Answer :
For Answer refer to example - | , Page No : 2135,

Q14. Construct a Moore machine equivalent to Mealy machine M, = (0.EA8,4,9,)
described in following transition table

Inputs
- 0 : |
PS NS | Ouput | NS Output
qu QI. 3'I. ‘{!.'.1 =i
H
q‘r} Q:l 'zl (;!l z_i
d, . 5 4, g
".
- = |

Answer :
For Answer refer to example - 2, Page No : 2.17.
Q15. Explain about equivatence of iwo FSMs with an example.
Answer :
For Answer refer to Topic - 2.5, Page No: 2.19.
(Q16. Explain procedure for FSM minimization.
Answer :

For Answer tefer to Topic : 2.5.1, PageNo:2.20.
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17, Consider the foliowing transition table for FSM. Construct minimum state FSM.

Inputs
e 0 L 1
Present Next State Mext State
State{PS) (NS} (NS) Output
——ee———— e ————
q, 4, g, 0
E g, a2, i, 1
i q. a. g, 1
g, g, 9, 1
Answer :

For Answer refer to example - 1 . Page No : 2.20.

Q18. Consider the following transition table of a Mealy machine. Construct minimum state Mealy

machine,
T ripas
[ 4
PS NS Quitpuf H S Output
> 4, g, G g, 0
d; ds G iy 1
4 g, ¢ s 1
Answer

For Answer refer o example - 2, Pape No 2 223,
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HHHHH

OBJECTIVE TYPE QUESTIONS B _ﬂ

;-J

The automata in which the output depends only on the status of the machine is called:
(a) Moore machine {b) Mealy machine
(¢} Any finite automata {d) both (a) &(¢)
Choose the cotrect statement
(a) A Mealy machine has no terminal state
(k) A Mealy machine generates no language as scuh
{¢) A Moore machine generates no language as such (dy All.
Choose the correct siatement
{a) A Mealy machine has no terniinal state
{b) A Mealy machine generates no language as such
(c) A Moore machine generates no language as such
(d) Al '
The major difference between a Moore and Mealy machine is
(a) Output of Moore depends on output only
() Qutput of Moore depends on present state and input
() Output of Moore depends on state only
(d)None. '
Choose the correct statements
{w) Aoy given Mealy machine hag an equivalent Moote machine
{b) Moore and Mealy machines are finite state machines with output capability
(¢} Any given Moore machine has an equivalent Mealy machine
(d) AlL
The finite state machine in below figure 13a
01,10

i P

{a) Kleene machine {b) Mealy machine
{c) Moore machine {d) none of the above
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7.  Mooremachineis
(2) Automaton in which the output depends only on the state and the input.
(b} Automaton in which the output depends only on the states
{¢) Automaton in which the output depends only on the inpul
{d) None of the above.

ANSWER KEY

Wby 2(a) 3(a) 4y S 6&b) T
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3

REGULAR LANGUAGES AND
FINITE AUTOMATA

After going through this chapter, you should be able to understand :

Regular sets and Regular Expressions
Identity Rules

Constructing FA for a given REs
Conversion of FAto REs

Pumping Lemma of Regular sets
Closure properties of Regular sets

& 8 & @ & @

3.1 REGULAR SETS

A special class of sets of words over S, called regular sets, is defined recursively as follows.

(Kleene proves that any set recognized by an FSM is regular. Conversely, every regular set can
be recognized by some FSM.)

1. Every finite set of words over S (including &, the empty set ) is a regular set.

2. If Aand B are regular sets over S, then 4, p and AB are also regular.

3. IfSisaregularset over 8, then so is its closure S*.

4. Nosetis regular unless it is obtained by a finite number of applications of definitions (1) to (3).

i.e., the class of regular sets over S is the smallest class containing all finite sets of words over S
and closed under union, concatenation and star operation.

Examples:

1) Let £={ab}then the set of strings that contain both odd number of a's and b's is a
regular set.

i) Let X ={0} thenthe setofstrings {0,00,000.....} isaregularset.

i) Let T = {0,1) then the setof strings {01,10 } isaregular set.
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3.2 REGULAR EXPRESSIONS

The languages accepted by FA are regular languages and these languages are easily described
by simple expressions called regular expressions. We have some algebraic notations to represent
the regular expressions.

Regular expressions are means to represent certain sets of strings in some algebraic
manner and regular expressions describe the language accepted by FA.

If ¥ isanalphabet then regular expression(s) over this can be described by following rules.
1. Anysymbol from Ze and ¢ are regular expressions.
2. If r, and », are two regular expressions then union of these represented as r, w r, or
r, + ry isalso aregular expression
3, If r, and r, are two regular expressions then concatenation of these represented as rr, is

also a regular expression.
4. The Kleene closure of a regular expression r isdenoted by » + is also a regular expression.
If ris a regular expression then (r) isalso aregular expression.
6. The regular expressions obtained by applying rules 1 to 5 once or more than once are also
regular expressions.

g

Examples :

(1) Z = {a, b}, then

(a) aisaregularexpression (Usingrule 1)
(b) bisarcgularexpression (Usingrule 1)
(¢) a + b isaregularexpression (Using rule 2)
(d) »* isaregularexpression (Using rule 4)
(€) gb isarcgular expression (Using rule 3)
() ab + b+ isaregularexpression (Using rule 6)

(2) Find regular expression for the following

(a) A language consists of all the words over {a, b} endingin .

(b) A language consists of all the words over {a, b} endingin pp.

(¢) A language consists of all the words over {a, b} starting with aand ending in b.

(d) A language consists ofall the words over {a, b} having pp asasubstring.

(€) A language consists of all the words over {a, b} ending inaab.

Solution : Let £={a.b},and

Allthe words over £ = {e a,b,aa,bb, ab,ba,aaq,.....} = ZYor(a + b)* or(aw b)*
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(a) Regular expression for the given languageis (a + b) * b

(b) Regular expression for the given languageis (a + b) * bb

(c) Regular expression for the given languageis a (a + b) * b

(d) Regular expression for the given language is (a + b) *aa or aa{a + b) * or

(a+b)*bb(a+b)*

(e) Regularexpression for the given languageis (a + b) * aab
The table below shows some examples of regular expressions and the language
corresponding to these regular expressions.

Regular expression Meaning

(a+h)* Set of strings of a's and b's of any length including the
NULL string.

( a+ b)*abb Set of strings of a's and b's ending with the string abb.

ab (a+b)* Set of strings of a's and b's starting with the string ab.

(a+b)*aa(a+b)* Set of strings of a's and b's having a sub string aa.

a*b*c* Set of strings consisting of any number of a's (may be
empty string also) followed by any number of b's ( may
include empty string) followed by any number of ¢'s
( may include empty string).

a'be Set of strings consisting of at least one'a’' followed by
string consisting of at least one 'b' followed by string
consisting of at leastone '¢',

aa*bb*cc* Set of strings consisting o' at least one '8’ followed by
string consisting of at least one 'b' followed by string
consisting of at least one 'c'.

(atb)*(a+bb) Setof strings of a's and b's ending with eithera or bb.

(aa) * (bb)*b Set of strings consisting of even number of a's followed
by odd number of b's.

(0+1)* 000 Set of strings of 0's and 1's ending with three consecutive
zeros(or ending with 000 )

(1y* Set consisting of even number of 1's

TABLE: Meaning of regular expressions
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Example 1 : Obtain a regular expression to accept a language consisting of strings of a's and b's
of even length.

Solution :
String of a's and b's of even length can be obtained by the combination of the strings aa, ab, ba,
and bb. The language may even consistof an empty string denoted by « . So, the regular expression
can be of the form
(aa+ab+ba+bb)*

The * closure includes the empty string,
Note : This regular expression can also be represented using set notation as

L{ry={{aa + ab + ba + bb )" |n=0}

Example 2 : Obtain a regular expression to accept a language consisting of strings of a's and b's
of odd length.

Solution :

String of a's and b's of odd length can be obtained by the combination of the strings aa, ab, ba

and bb followed by either a or b. So, the regular expression can be of the form
(aatab+batbb)* (ath)

String of a's and b's of odd length can also be obtained by the combination of the strings aa, ab,

ba and bb preceded by either a or b. So, the regular expression can also be represented as
(a+b)}(aa+abt+ba+bb)*

Note : Even though these two expressions are seems to be different, the language corresponding

to those two expressions is same. So, a variety of regular expressions can be obtained for a

language and all are equivalent.

Example 3 : Obtain a regular expression such that L(r) = {W |W < {0,1}" with at least three

consecutive 0's }.
Solution :

An arbitrary string consisting of s and 1's can be represented by the regular expression,
(0+1)*
This arbitrary string can precede three consecutive zeros and can follow three consecutive zeros.
So, the regular expression can be written as
(0+1)* 0000+ 1)*
Note : Using the set notation the regular expression can be written as

E(r)y={{0+1)"000 (0 + 1)" mz0and nz0}
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Example 4 : Obtain a regular expression to accept strings of a's and b's ending with 'b' and has
no substring aa.

Solution :

Note : The statement "strings of a's and b's ending with 'b' and has no substring aa" can be
restated as "string made up of either b or ab". Note that if we state something like this, the
substring aa will never occur in the string and the string ends with b, So, the regular expression
can be of the form

(b+ab)*
But, because of * closure, even null string is also included. But, the string should end with'b'. So,
instead of * closure, we can use positive closure "+, So, the regular expression to accept strings
of a'sand b's ending with 'b' and has no substring aa can be written as

(b+ab)’

The above regular expression can also be written as
(b +ab) (b+ab)
Note : Using the set notation this regular expression can be written as
Lir)y={(b + ab )" |n=1}

Example 5 : Obtain a reguiar expression to accept strings of 0's and 1's having no two consacutive
zeros.

Solution :

The first observation from the statement is that whenever a 0 occurs it should be followed by 1.
But, there is no restriction on the number of 1's, So , itis a string consisting of any combination of
I'sand 01's. So, the partial regular expression for this can be of the form

(1+01)*
No doubt that the above expression is correct, But, suppose the string ends with a 0. What to
do? For this, the string obtained from above regular expression may end with 0 or may end with
& (i.e., may not end with 0), So, the above regular expression can be written as

(14+01)°(0+ )
Example 6 : Obtain a regular expression to accept strings of a's and b's of length < 10.

Solution :
The regular expression for this can be written as
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e+a+ b+ aa+ab + ba + bb+.....+bbbbbbbbba + bbbbbbbbbb
But, using ....... in a regular expression is not recommended and so we can write the above
expression as
(c+a+b)"

Example 7 : Obtain a regular expression to accept strings of a's and b's starting with 'a’ and
ending with 'b’.

Solution :

Strings of a's and b's of arbitrary length can be written as (a +5)*
But, this should start with 'a' and end with 'b'. So, the regular expression can be written as
ala+by*b

Hierarchy of Evaluation of Regular Expressions

We follow the following order when we evaluate a regular expression.
Parenthesis

Kleene closure

Concatenation

Union

. 10 1d ot

Example 1: Consider the regular expression (a + b) * aab and describe the all words represented
by this.

Solution :
(a+b)*aab ={All wordsover {a,b}}aab (Evaluating (a + b) * first)
= |e,a,b,aa,bb.ab,ba,aoa ..} aab
= {Allwords over {a, b} ending inaab}

Example 2: Consider the regular expression (a * +b*) * and explain it

Solution : We evaluate 4 * and p # firstthen (a * +b%) *.
(a * +b*) * =(All the words over {a} +all the words over {b} }*
= ({g a,aa,...} or {c b,bb,...})*
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=({ga,b,aa,bb,...})*

= {e a, b, aa, bb, ab, ba, ana, bbb, abb, baa, aahb, . ..}
= {All the words over {a, b} }

=(a+b)*

So,(a*+b*)*=(a+ D)*

3.3 IDENTITIES FOR REs

The two regular expressions P and Q are equivalent ( denoted as P = Q ) if and only if P
represents the same set of strings as Q does, For showing this equivalence of regular expressions
we need to show some identities of regular expressions.

Let P, Q and R are regular expressions then the identity rules are as given below
L. eR=Re=R

2. E =€ EBﬂUﬂmg
3. (#) =e ¢ isempty string.
4. OR=Rp=4¢

5. é+=R=R

6. R+R=R

7. RR*=R*R=R'

8. (R'Y =R

9. €+RR =R’

10, (P+()R=PR+0OR

11. (P+Q) =(PQ)=(P+Q)
12, R(e+R)=(e+RR" =R’

13. (R+e) =R’

14. e+ =R

15. (PQ)" P=P(OPY

16. RR+R=RR

3.3.1 Equivalence of two REs

Let us see one important theorem named Arden's Theorem which helps in checking the
equivalence of two regular expressions.
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Arden's Theorem : Let P and Q be the two regular expressions over the input set 3, . The
regular expression R is given as

R=0+RP
Which has a unique solution as R = QP'

Proof : Let. P and Q are two regular expressions over the input string ¥ .
If P does notcontain ¢ then there exists R such that

R=Q+RP e (1)
We will replace R by QP* in equation 1.
Consider R. H. 8. of equation 1.
=Q+0P'P
=0{e +P"P)
=Qpr° e+ R'R=R'
Thus R=0F

is proved. To prove that & = OP" isa unique solution, we will now replace L.HL.S. of equation 1
by Q + RP. Then it becomes
Q+RP

Butagachmbcrcplam:dhyQ+RP
& Q+RP=Q+(Q+RP)P

=0+ 0P+ RP?
Again replace R by Q+ RP,

=Q+0QP+(0Q+RP)P

=Q+0QP+0QP +RP
Thus if we go on replacing R by Q + RP then we get,

Q+RP=0Q+0P+0F +....+0P' + RP"

=Qe+P + P +...P )+ RP'
Fromcquation 1,
R=Qle+P+ P +...+ P')+ RP™ —-(2)
Where iz0
Consider equation 2,

R=Q(e+P+ P +... +P';|+ Rp™
pe

R=QP' + RP™
Le:twbe astring oflength i.
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In gp+ has no string of less than i + 1 length, Hence wis not in set gp~ . Hence R and Q'
represent the same set. Hence it is proved that

R=Q + RP has a unique solution.
R=QF".

Example 1 : Prove (1+00*1)}+(1+00*1)(0+10*DH*(0+10*1)=0* {0+ 10*1)*
Solution : Let us solve L.H.S. first,

(14+00% 1) + (14 00* 1)(0+10%1)*(0+10*1)

We will take (1+00*1) asacommeon factor

e +(0+10* 10+ 10 *1
I+Urﬂ“'!'l: 1}“{ )

(e +R*R) where R=(0+10*1)
Asweknow, (e +R*R)=(e +RR*)=R*
SA(14+00%1) ((0+ 10*1)*) out of this consider

(+00%D) (g1 1091)»
4

Taking | as a common factor
(e-+00*)1(0D+10*%1)*
Applying e +00% =0
0*1(0+10*1)*
=R.H.S.
Hence the two regular expressions are equivalent.

Example 2 : Show that (0*1%)*=(0+1)*

Solution : ConsiderL. H. S.
=(D*1*)*
={€,0,00,1,11,111,01,10,........}
= { any combination of (/'s, any combination of 1's, any combination of
Oand l,e }
&. ]nh h‘i
R.H.S.
=(0+1)*
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={e,0,00,1,11,111,01,10,.........}

={ e.any combination of 0's, any combination of 1's, any combination of
Oand 1}
Hence, L.H.S.=R. H. S. is proved,

3.4 RELATIONSHIP BETWEEN FA AND RE

There is a close relationship between a finite automata and the regular expression we can show
this relation in below figure.

Can be Regular Can be
Converted Ei expression converted to
Deterministic NFA with
fimite £ moves
automata
Can be Can be
converted converted to
NFA without
& Moves

FIGURE : Relationship between FA and regular expression
The above figure shows that it is convenient to convert the regular expression to NFAwith e
moves. Let us see the theorem based on this conversion.

3.5 CONSTRUCTING FA FOR A GIVEN REs
Theoram If r bearegular expression then there existsa NFAWIN -moves, which accepts L(r).
Proof : First we will discuss the construction of NFA s with ¢ - moves for regular expression
r and then we prove that L(M) = L(r).

Let » be the regular expression over the alphabet ¥ .

Construction of NFA with = - moves
Case 1:

@ r=2¢
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(=
=
=

NFA M = ({s, £}, { 18,5, {f}) as shown in Figurel (a)
. (No path from initial state s to

reach the final state f7)
Figure 1 (a)
i) r=¢€
NFA M = ({s},{ }, 8, s, {s}) as shown in Figure | (b)
(The initial state 5 is the final state)

Figure 1 (b)
i) »r = a,foralla eX,
NFA M = ({s, ), £.8,5 {/)

N\ a (One path is there from initial state s
NS Of -
to reach the final state fwith label a.)

Figure 1 (c)
Case 2: |r] =1

Let », and r, be the two regular expressions over £,, £, and N, and N, are two NFA for
r, and r, respectively as shown in Figure 2 (a).

L(Ny) = 1

LiN,)=n

Figure 2 (a) NFA for regular expression », and r,
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Rule 1 : Forconstructing NFA p¢ for r=r+ry0rnun
Letsand f are the starting state and final state respectively of As.
Transition diagram of ¢ is shown in Figure 2 (b),

Figure 2 (b) NFA for regular expression r, + r,
L(M)=eL(N)eorel(N,;)e
= L(N,) or L(N;) =norn

S‘ﬂ,r‘:ri-i-l‘*z

M= (Q %, v I,,8,s {f}), where 0 contains all the states of N, and N, .

Rule 2 : For regular expression r = ryr;, NFA jf isshown in Figure2 (c).

Figure 2 (c) NFA for regular expression rr,
The final state (s) of &, is merged with initial state of N, into one state [£,5,] as shown
above in Figure2 (¢).
L(M) = L(N,) followed L(N,)
= L(N)) L(N;) = nny

So,r =nn

M = (0, I, U .8, 8, {R]), where 0 contains all the states of N, and N, such
that final state(s) of N, is merged with initial state of N, .
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Rule 3 : For regular expression r = r; , NFA s is shown in Figure2 (d)

Figure 2 (d) NFA for regular expression for
L(M) = {e,L(N1).L(Ny) LNDLL(NDL(NDL(Ny),...}
= L(Ny) *

=5

M =({s, f}wQ,L,.6.3{f}) .where O, isthe setofstatesof N,.

Rule 4 ; For construction of NFAM for r = n" » M is shown in Figure 2 (¢).

Figure 2(e) NFA for regular expression for '
L(M ) ={L(N,),L(N)L(N,LL(NL(NL(N}), ...}
=LN) =1
M =({s,f}wv 0,.L,,6.s4f}), where O istheset of states of V,.

Example 1 : Construct NFA for the regular expression a + ba *.

Solution : The regular expression
r=ag+bha* canhehmkenintu:; Hﬂd.rlﬂﬂ

n=a

r,=ba*
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Let us draw the NFA for r,, which is very simple.

FIGURE 1: For

Now, we will go for r, = ba * , this can be broken into r, and r, where r, = b and r, =a*.Now
the case for concatenation will be applied. The NFA will look like this ~, will be shown in figure2.

FIGURE 3 : For »,

The r, willbe r, =r,.r,

FIGURE 4 : For r,
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Now, we will draw NFAfor r=r +r, i.c. a+ba*

FIGURE S : NFAfor r=r,+r, i.€ a+ba*
Example 2 : Construct NFAwith ¢ moves for the regular expression (04 1)*.

Solution : The NFA will be constructed step by step by breaking regular expression into small
regular expressions.

rn=(r+r)
r=p
where r, =0, r, =1
NFA for r will be

NFA for r, will be

NFA for r, will be
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Example 3 : Construct NFA for the language having odd number of one’s over theset £ = {1} .

Solution : In this problem language L is given, we have to first convert it to regular expression. The

re forthisLiswrittenasre.=1(11)%
The r s now written as

NFA for rn=11Is
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The final NFA is

Example 4 : Construct NFA for the r. e. (01+2%)0.

Solution : Let us design NFA for the reqular expression by dividing the expression into smaller
units

r=(n+nn
where r, =01, r, =2* and r, =0
The NFA for r, will be

The NFA for r, will be
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The final NFA will be

Example 5 : Obtain an NFA which accepts strings of a's and b's starting with the string ab.
Solution : The regular expression corresponding to this languageisab(a+b) *.

Step 1 : The machine to aceept 'a’ is shown below.

Step 2 : The machine to accept b’ is shown below.
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Step 5 : The machine to accept ab is shown below.

FIGURE : To accept the language ( ab (a+b)*)

Example 6: Obtain an NFA for the regular expression g* 4+ 5" + &'

Solution :
The machine corresponding the regular expression a* can be written as
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The machine corresponding the regular expression ¢* can be written as

FIGURE: To accept the language (a" + 5" +¢")
Example 7 : Obtain an NFA for the regular expression (a + b) * aa(a + b)*

Solution :

Step 1 : The machine to accept (a+ b)is shown below.
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Step 2 : The machine to accept (a+b)* is shown below.

FIGURE : NFAto accept (a+b)*aa(a+b)*
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Example 8 : Construction of DFA equivalent to a regular expression (0+1)*(00+11)(0+1)*
and also find the reduced DFA.

Solution : Given regular expression is (0+1)*(00+11)(0 + n*

Step 1 : ( Construction of transition graph for NFA without ¢—moves ).
First of all construct the transition graph with ¢ using the construction rules

Start . (0+1)* (@O+11) (0+1)* {@)

(d)
FIGURE: NFA for the given Regular Expression

Transition graph for NFA without & - movesis:

FIGURE : NFA without ¢ - moves
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Step 2 : We construct the transition table for NFA as given in below table :

0 1
~* 4, 19::9,) {9, 9.}
q, fa,} -
95 = la,}
fa,} lg,}

FIGURE: NFA Transition Table
Step 3 : Construct DFA table for NFA.

Input
States 0 1
- {4} 9.5 9} {9. 4.}
{9, 9.} 19.-9.9,} {9, 9.}
{90, G,} {900 9:} 1909649 ¢
{9.,9,9,} {90,967}
19,99} {90:9649 4}

FIGURE: DFA Transition Table

The state diagram for the successor table is the required DFA as shown in below figure .

FIGURE: Required DFA for Regular expression (0+ 1)*(00+11)(0+1)*
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As g, isthe only final state of NFA, {4¢., q,.q,% and {q,, qa,q,}mmeﬁm]stntﬂsnf[}FA.

Reduce the Number of States of above DFA

As the rows corresponding to { g,,4,,q,) and { 4, 4., g, } are identical and delete the last row
{an";-fn '?.r} =

Tnput
__Stalﬂﬁ 0 |
— 1900 4.} {9,.9.}
(9,4} {9, 9.9} {9::9.)
190 4.} {4, 4.} {90:96:9 1}
fqnf‘;'wq;} {qn ‘?;-‘L-} Wm‘hsq_r}

FIGURE : Reduced Transition Table of DFA

The reduced DFA transition diagram s,

FIGURE : Reduced DFA for Regular Expression (0+1)*(00+11)(0+1*
36 CONVERSION OF FATO RE
Theorem : if L is accepted by a DFA, then L is denoted by a regular expression.

Proof : Let L. be the set accepted by the DFA,
M ={{Q|1§'1r '''''' ?n}rzlgr‘?t-F}
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Let &, denote the set of all strings x such that 5(g,,x) = ¢, and if 5(g,,y) = g, forany y thatisa
prefix ( initial segment) ofx, other thanx or ¢, then 1<k ,i.e., R isthe setofall strings that take

the finite automaton from state ¢, to state ¢, without going through any state numbered higher
than k.

R, can be defined recursively as,
R,=R(RF)*RE WRY L. ()
R.Jﬂ{{ah‘-—(q,.a]w) ifisj

lalb(g,a)=q}le ¥i=]f

To show that for each i, j and k, there exists a regular expression R’ denoting the language

R’ i.e.. by applying induction on k.
Basis Step :
If (k=0), R, is a finite set of strings each of which is either ¢ ora single symbol.
r, can be expressed as,
r,=a+a+. +alorr =a+a+..4ra+eifi=j)
Where, {a,,aq,....,a,} is the setof all symbols ‘s’ such that 8(q,.a) =¢,.

If there are no such a's, then  (or  inthecasei=j)servesas 7.
Induction :

The recursive formula for R, given in (1) clearly involves only the regular expression operators.
By induction hypothesis, for each 1 and m, aregularexpression 7. such that,
Ll JoRE!
ri = (k) b))
Which completes the induction.
To complete proof observe that (M) = U &7,
Since R}, denotes the labels of all paths from ¢, 1o g,
. L{ M) is denoted by regular expression,
L(M)y=r; +r, +n),
Where, F=1g,.9,,.-.4,}
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Example 1: Write equivalent regular expression for the following deterministic finite automaton.

Solution : A table is constructed as shown in below Table ( K starts from 0 to number of states
in the design) and the entries are calculated according to theorem.

k=0 k=1
A I+ e (1+e)*
e 0 o1°*
o 1 11*
T 0+ e 11*0+0+ €

. |lald(g,a)=q,} fi#j
r’ values are calculated as, ", ={{m‘5{q,.d)=q‘.} ifi=j
r:8(q0,0) = g, not satisfying above condition
5(g01) =g, satisfying above condition and ¢ is default added because i = condition.
r=l+e
rd:8(q,,0) = g, satisfying condition (i)
8(g,1) = g, not satisfying condition
=0
rl):6(g,,0) = ¢, notsatisfying
8(gy,1) = g, satisfying condition
Ay =10# )
rdy5(q,.0) = q, sutisfying condition
(g,.1) = g, not satisfying condition
L =0re(i=))
r' : Where k= | we have to apply,

PR TE k=
L (ru ) (rh }UI‘;J

m=r () (31) v
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Considering values from table (k=0),

=+ e(l+e)*(l+ 9 u (1+ €)

Applying (e+rr*)=r*
=+ e((l+€)*(l+ ) + )
=(l+e) (1+e)"* ((l+e")=1%
=(l+e)1*
o= ) ()2 2o ()
=(1+ €) (1+ €)*0+0
=(1+ ) (1+e)*+ g) (vetrr*=r*)
=0(l+e)*
=01*
A=) 6 6o )
=] (I+e)¥1+e)+ 1|
=1{{1+ €)*(1+ e+ €)
=1(l+e)*
=}1*

R= () () () ()

=1(1+ €)*0+(0+ )

=11*0+0+ €
Nowhmnmletecmwhmﬁmufreguhrnpmaimis,intlwgivenFAﬂ:eslxrtingmteis g,
and final state g, Write expressing from starting to all final states by taking k as total number of
slates.

r,, is final term to construct regular expression.

o= () (S 6 o ()
=0 1*(11*0+0+ ) *(11*0+0+ ) +01*
=0 1* ((1L1*0+0+ ©)* (1 1* 0+ 0+ ©) + ©)
=0 1* (11*0+0+g)* (v e+rr*=r¥)
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Example 2: Construct the regular expression for the finite automata given in below figure.

Solution :

Inabove table, we have calculated the values as r,, will indicate the setof all the input string from

g, to g, Ifi=jthenweadd e with the input string. If i# jand there isno path from ¢, 1o g,
then weadd ¢ .

Let us compute r;

#! where i =1, j=1,k=0. There s no path from g, to g,buti=j.Soweadd e inthek=0
columnat | row.

Similarly

v = Theinput from gqtoq,

ra =0

12 = No input from g, 0¢, and i # j
So we add é over there.

ri =No input from g,t0 g, ,sincei=j.
We willadd e.

Let us build the table when k= 1
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k=1

Computation Regular
Expression

n ri=rn (02) ;) vl

i=1j=1k=1 .

no=rn (n)r(n) +a
=e(e)*(e)+e

L
2

i=l, /=2,k=1

# r=r (r)*(r) +2

ry=e (€)*(0) +0 0
=e0+0
=0+0
=0

i=2, f=1 k=1

T = ()2 (n8) +(5)
=dieye+p ¢
=g+¢ . pe=¢
= ¢

i=2,j=2,k=1

% ry=rn (m)*(rd) +74
= (¥ O+ e 2
=‘ﬁ+E

=€
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Now let us compute for final state, which denotes the regular expression.
r} will be computed, because there are total 2 states and final state is g, whose start state is ¢,..
ro= Yo )
=0(e™e)+0
=040
r! =0 which isa final regular expression.

3.6.1 Arden's Method for Converting DFA to RE

As we have seen the Arden's theorem is useful for checking the equivalence of two regular
expressions, we will also see its use in conversion of DFA to RE.

Following algorithm is used to build the r. . from given DFA.

Let g, be the initial state.
Thereare g, , g, s,44.--4, Mumber of states. The final state may be some g, where j < n
Let e, represents the transition from g, fo g,.
Calculate g, such that
g,=0,4,
If 4, is astart state

Eatli I

g, =a,;4,+€

5, Similarly compute the final state which ultimately gives the regular expression .

Example 1 : Construct RE for the given DFA

Solution :

Since there is only one state in the finite automata let us solve for g, only.
g =90+ dalt e
g, =go(0+1)+e
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e (0+1)* “R=0Q + RP
g, =(0+1)*

Since g, is a final state, g, represents the final r. e. as
r=(0+1)".

Example 2 : Construct RE for the given DFA.

Solution : Let us build the regular expression for each state,

do =0+ €

Gy = ol + g4l

q; =g,0+g,(0+1)
Since final states are g, and g, , we are interested in solving g, and g, only.
Letus see g, first

gy = € +4,0

Whichis R=Q+ R P equivalent so we can write
qy = €.(0)*
go=0*" e .R=R

Substituting this value into g, , we will get

g =0*1+¢l

g1 =0*I(1)* ~R=Q+RP= QP *
The regular expression is given by

F=do+q

=0%+0%1.1*

r=0%40% I vlL.I*=1
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Example 3 : Construct RE for the DFA given in below figure.

Solution : Letus see the equations
Gy = ¢l + g0+ €
g, =9:0
g3 =gl
g3 = g0+ g1 +q5(0+1)

Let us solve g, first,
g, =q,1 +g,0+€
i =qﬂ01+gnlﬂ+e

go =01+ 10+ “ R=0+RP
g, =€ (01+10)* = OP* where
g, =(01+10)* R=q,0=¢,P=(01+10)

Thus the regular expression will be
r=(01+10)*
Since g, is a final state, we are interested in g, only.

Example 4 : Find out the regular expression from given DFA.
0
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Solution : Let us solve the DFA by writing the regular expression, for each state
g5 =9,0+g,0+¢ -- [nitial state
gy = g1+ g1 44,1
4 =9,0

For getting the r. ¢. we have to solve g, the final state.
gy =g 1+, 01+ gyl
g = gy(1+01)+ g,1

We will compare R = Q + R P with above equation, so R=g,,0=q,1, P=(1+01) which
ultimately gets reduced to QP*,
G =qol(1 +0D)*
Substituting this value to g,
gp =gy 0+q; 04 &
=gy 04,00+ €
=g, 0 +g,(1(1 + 01)*)00+ &
Go = gy(0+1(1+01)*00)+
Again R=0Q+RP
Where R=g,
=g
F=0+1(1+01)*00
Hence gy =€.[0+ p(1+01)*.00]*
g =[0+1(1+01)*.00]* e R = R

Example 5 : Construct the regular expression for following DFA.

Solution : We can get the regular expression from state ¢, , Let us see the equation of each
state,
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o =€
q,=¢,0+q,0+q,1+4,0
4, =4,1+4.0
Putting value of g, in g,
g =€.l+e D+ g (0+1)
gy =(1+0)+g;(0+1)
Now solve g,

G', =(] +ﬂ}ql
=((1+0) [(1+0) +q,(1+0))
g, =(1+0).(1+0) +¢q,(1+0) (1+0)

Here R=g,, @=(1+0) (1+0), P=(1+0)(1+0)
g, =(1+0) 1+0) [(1+0) (1+0)]* is a regular expression.

Example 6 : Give the regular expression of following DFA..

For given DFA we can write the equation
@y =qnﬂ+ q]ﬂ-l-e {I]
I?. :q|1+Q|] o {2}

By theorem R = Q + RP we get R=0QP*
R=g,
Q=g
P=1
g, =g,11*
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As we know R* = pR° We can also write

G =qol"

Let us put value of ¢, in equation (1)
Ga=g,0+gel"04
g = G (0 +1"0)+ €

Again we will apply R =Q + RP gives QP*
R=gq,
O=c
P=0+10
gy = e (0+170)
g, =(0+1%0)" "Re=eR=R

In the given DFA, 4, is a final state the equation computed for state g, will be regular expression.
Hence r. e. for above DFA is
r.e. =(0410)

3.7 REGULAR AND NON - REGULAR LANGUAGES

The languages accepted by finite automata are described by regular expressions. So to prove a
language is accepted by finite automata it is sufficient to prove the regular expression of that
language is accepted by finite automata.

The languages which are accepted by some finite automata are called regular languages. Here it
means that the FA accepts only the words of this language and does not accept any word
outside it.

1. Some ofthe words of the language are not accepted by FA.
(or)
2. All the words of the language are accepted in addition to that some extra strings are also
accepted.

All languages are either regular or non regular, none of the languages are both.
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By looking at some of the languages we can say whether they are regular or not.
i) The languageswhose words need some sort of comparison can never be regular.

Example : L={a"b',nz0}

Here the number of a's must be equal to number of b's for each 'a’ we check the existence of b
which cannot be done using FA.

i) The languages whose words are in arithmetic progression and need no comparisons will be
regular.

Example: 1. L={a",n=1}

The words of this language are , aa, aaaa, aaaaaa, ....., a™ which are in A.P with period 2.
Hence it isa regular language.
2.L={a’, p is prime}
The words of this language are {a,aa ,aaa ,aaasana ,...@”} . We can see these words
are not in A.P. Hence it is not regular.

In this section, we will discuss how to prove that certain language is not regular
(non -regular) language. Pumping Lemma is a useful tool to prove that a certain language is not
regular language.

Since, the number of statesinaFA is finite, say it is n ( for some fixed value of n), and then it can
recognize all the words of length less than n without any loop. Suppose, a regular language I has
infinite number of words and the length of these words may or may not be equal to n. So, how
can a FA recognize the L? A FA can recognize L having some loop(s) and whenever the length
of a given word is greater than or equal to n. So, we conclude that the loop in FAmakes it able
to accept those sirings, which have length greater than or equal 10 its total number of states.

When astring 2 has bigger length ( greater than number of states in FA) then we break this string
into three parts, say u, v ( v should not be null string), and w. Let FA has loop for v, and
z=uvwe L is accepted by FA.

So, z=wuv'w fori=0,1, ... isalso accepted by FA having some loop for v. This is the main
concept, used in Pumping Lemma.
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Now;, consider a regular language L=a*b and corresponding FA shown in below figure.

We see the list of accepted strings given below :
b, ab, aab, aaab, ....

Let u=&v=a(y should notbe ¢ ),and w=b, then 4 i.c. z=uw'w forsomei=0,1,...is
accepted by FA, Now, we have good base to discuss the Pumping Lemma.

3.8 Pumping Lemma for Regular Sets
Pumping Lemma is useful because

1. It gives amethod for pumping (generating) many substrings from a given string. In other
words, we say, it provides means to break a given long input string into several substrings.

2. It gives necessary condition(s) to prove a set of strings is not regular.

Theorem :
Let M = (0, Z,8,q, F) bea DFA having n states. M recognizes the language L. A long string

ze L suchthat [z|2n and z=uvw, where v #€ , then u'wel forj>o.

Proof :
M recognizes 1 and 7, isaregularset. If 2 € L suchthat w=uvw. Here visoptional in z
and |z |2 n ,where » isthe number of states in DFA.

Consider following DFA shown in below figure.

¥= ﬂ;,_-.ﬂ.,_:--ﬂt
U=ady.q, W=ap 0;...4,

FIGURE : DFA for uv'w
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let z = 2,010,808, 0385, Gy
Where u = a,a,a5..a,,¥ = @;,..a; and w=a;,,..a,
The lengthof z is m and j > ».Itmeans, when m > n. itindicates that there is some loop in

wansition disgram of pf.Let v is the string obtained from the edges involved in looping as
shown inabove figure.

Case1: When z = uv"w = uw for j = ¢, itmeans, uw is accepted and " € L,

Case2: z = uv'w for j > 1.itmeans that control of DFA s goes j - times into the loop
with label v and .y, is accepted by As.
So, forall valuesof ; > 0, z = yv'w isaccepted by M
Hence, the statement of the theorem is proved.

Application of Pumping Lemma

Pumping Lemma is used to prove certain sets are not regular sets. This is done as follows :
Step 1 : We assume that given set is regular and accepted by DFA pf having » states.
Step 2 : Choose a string z suchthat |z | > n and use Pumping Lemma to write z=uwv'w

for iz 0,vee ,and uw|< n.

Step 3 : Find a suitable integer ; such that 'y g L and this contradicts our assumption made
in step 1 and hence L is not regular.

Example 1: Provethat L = {a"h" :n = 1} is notregular

Solution : In given language the number of ¢ ¢ is equal to the number of ' ¢. This is the one
clue to find the contradiction.

Step 1:Let 1 isregularand accepted by DFA ps with n states.

Step 2 : String 22 L such that 11'2 n and z:w"wEL for i = 0,y ge, and

|mt'|£n.
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Step 3 : Selecting substring v

a” b a’b® for p,q 2 0
Let z=wuv'w forj = ¢

Case1: When , — 47, then
z=a”  Pp"
Numberof &' s = n — p,andnumberof ' 5 = 5
Number of 4 ¢ =Numberof p ¢ ifand onlyif p = 0 and numberof 4 ¢ and y ¢ isnot
equal when p > 0.

So,for p >0, z=yv'weL

Case 2 : When y — 47, then

z=a"h""

Numberof 4 s = n,andnumberof b's = n - ¢

Number of & ; =Numberof p 5 ifandonlyif ¢ = 0 and number of 4 ¢ and p ¢ is not
equal when g > 0.

So,forg >0, z=uv'we L.

CiSQE: “‘r]}Eﬂ u:apb#‘ﬂ“n = ﬂ#—pbn—'
Numberof a's = n = p,and numberof b's = n - ¢.
Numberof 5 5 = Numberof p s ifandonlyifg = p.

Sofor p# q. z=uwv'we L
Since, we get contradiction in all the cases, therefore 7 is not regular.
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Example 2 : Show that L ={a"b"jn 20} Is not regular.
Solution :

Step 1 - LatLisregulﬂrandnbelhenumbﬂufminFA.Cﬂnsiderthc:string T T
Step 2 : Note that [z=2n and is greater than n. So, we can split z into uvw such that [sv{< n and
| 2 1 as shown below.

- L
—————y ey

7 = gooaaa a bbbbbbb
R— L i

where |u=n—1 and |v|=1 sothat [uv|={u+y|=n—1+1=n and |w|=n. According to pumping
lemma, v'wef fori=0,1,2,....

Step 3 :Ifiis 0i.e., v doesnot appear and so the number of a's will be less than the number
of b's and so the string w does not contain some number of a's followed by same number of b's
( equal to that of a's)

Similarly, ifi=2, 3,..., then number of a's will be more than the mumber of b's and so number of
a%fnﬂomﬁdbynq:m]mmwm‘sdﬂmmm&mMMgwmnnpmglmnmjmbﬂ
of a's should be followed by n number of b's which is a contradiction to the assumption that the

language is regular. So, the language Lis not regular.
Example 3: Provethat [ = {a" :i 21} is notregular

Solution :
Method - 1 ( Using Pumping Lemma for regular sets)
In L, all words have their lengths in perfect square and this is the clue for proving non - regular.

Step 1 : Let L be regular and accepted by DFA M with n states.

Step 2 : String z ¢ L suchthat [zfzn and ;= iv'we L foriz0,y¢e, let|z}= n* 2 n,and
| uwis 0, (n is the number of states).

Step 3 : Since, length of vcannot exceed n ( the number of states), it means, |vign.
Leti=2,%0 ;= yviwe L,and
jz|=fuvwl +|vi= P 4{v]
So, nt<lzlcn +n ( Since, |visn)
Or, w? glzisn’+n+{n+l) ( Adding n + 1 to make perfect square )
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Or, n’ sjz)s(n +1)°
It means, the length of z is between ,* and (n+1)", and is not a perfect square. Therefore,
Lis not regular.

Method - 1l
For example,
Sﬂﬂﬁ
Let i=2
Z=aaaa
Z=Uuvw
Assume uvw = aasa
Take u=a
v=ga
w=a

By pumping lemma, even if we pump v i.€. increase v then language should show the length as
perfect square .
uvw
=UV.VW
= @aaaaa
=length of aisnot a perfect square
Thus the behaviour of the language is not regular, as after pumping something onto it does not

show the same property (being square for this example.)
Example 4 : Show that I = {ww*|w (0+1)*} is not regular.
Solution :

Step 1 : Let L is regular and n be the number of states in FA. Consider the string

where n is the number of states of FA, w=1...10 ... 0and reverse of wi.e.. " =0 01...1-
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Step 2 : Split the string zinto uvw such that juv |<» and |v |21 asshown below.
g =1 e 1 0. 00, 01 ... ]

_—.—.—-‘.—_—.——"

where [#=n—1 and |v|=1 sothat [w|=ut{=n—-1+1=n which is true. According to pumping
hmnﬂ, wv'w e L fori=0,1, 2,.........

Step 3 :Ifiis 01i. e., vdoes not appear and so the number of 1's on the left of z will be less than
the number of 1's on the right of z and so the string is not in the form " . S0, w'w ¢ L when
i=0. This is a contradiction to the assumption that the language is regular. So, 1" isnot regular.

Example 5 : Showthat L={ 0*|n 21} isreguler.

Solution : This is a language length of string is always even.
ie. n=1; z=00
n=2: z=00 00 andsoon.
Let Z=UVW
z2=0*
|Zi=2" =uwv'w
If we add 2n to this string length.
|2} dn = wv.ow
= even length of string.
Thus even after pumping 2n to the string we get the even length. So the language L is regular
language.

Example 6: Prove that L={ ww | win (a+b)* } is not regular.
Solution : Prove the result by the method of contradiction.
Step 1 : Suppose L is regular, letn’' be the number of states in the automaton M accepting L.

Step 2: Letus consider ww=a"b"a"b in L.|wwl|=2(n+1)>n apply pumping lemma we write
ww=xyzwith [y|=0,| pi<n .

Step 3: Tofindisuchthat xy'z ¢ L for getting a contradiction. The string 'y’ can be in only one
of the following forms.
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Case1:yhasnob'si.e, y=q' forsome 1.

Case 2 : y has only one b.

We may note that y cannot have two b's. If so [y{=2n+2.

But |y <z <n.

In case 1, we can takei=0.

Then xy'z = xz isofthe form g~pgp . Where m=n—k < n{or a"b a"b) x z cannol be written
in the form vu with 4 e {a,b}" andso xz ¢ L.

In case 2 also. We can take i=0.

Then xy“z = xz hasonly oneb.

So xz ¢ Lasany element in L should have even number of a's and even number of b's.
Thus in both cases we get contradiction.

- Lisnot regular.
Example 7 : Show that L={a" | pis a prime number } is not regular.
Method - | :
Step 1 : Let L is regular and get a contradiction. Let n be the number of states in the FA
accepting L.

Step 2 : Let p be a prime number greater than n. Let = = " , By pumping lemma, z can be

written as z = i, with |wv]s s and |v[>0. %, v w are simply strings of a's. So, v=ga" for
some z;>1 (and <n).

Step3:Lleti=p+ 1. Then wv'wi=lwmw |+ v |=p+(i - )m =p + pm . By pumping lemma,

wwe [-But w'w|=p+ pm = p(l+m) and p(l+m) is not a prime. So uwv'wer . Thisisa
contradiction. Thus Lis not regular.

Method - Il : Let us assume L is a regular and P is a prime number.

z=a’
|z|=uvw i=1
Now consider o it b where i =2
=|V.VW
Adding 1 to P we get,
P <[uvvwi
P<P+1

But P+ 1 is not a prime number. Hence what we have assumed becomes contradictory. Thus L
behaves as it is not a regular language.
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Example 8 : Show that the language L= {a' b"|i>0} s not regular.

Solution : The set of strings accepted by language L is,
L = {abb, aabbbb, aaabbbbbb, aaaabbbbbbbb...}

Applying Pumping lemma for any of the strings above,

Take the string abb.

It is of the form www,

Where, |wv [<i|v21
To find i such that wv'we L
Take i =2 here, then
w'w = a(bb)b
= abbb
Hence uw'w=abbb ¢ L
Since abbb is not present in the strings of L.
+ Lisnot regular,

Example 9 ; Showthat L = {0°|n is a perfect square } is not regular.

Solution :
Step 1 : Let L is regular by Pumping lemma. Let n be number of states of FA accepting L.
Step2: Let ;=0 then |z=n22.
Therefore, we can write z=uvw ; Where [wvisnalvizl.
Take any string of the language L= { 00, 0000, 000000 .... }
Take 0000 as string, hereu =0, v=0, w=00to find i such that w'wel,
Take i =2 here, then
' w= 0(0)° 00

= 00000
This string 00000 is not present in strings of language L. S0 wv'we L.

- Itis a contradiction.

3.9 PROPERTIES OF REGULAR SETS

Regular sets are closed under following properties.
1. Union

2. Concatenation
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il 2

Kleene Closure

Complementation
Transpose
Intersection

Union : If R and R, are two regular sets, then union of these denoted by R, + R, or
R, w R, is also a regular set.

Proof : Let R, and R, be recognized by NFA N, and N, respectively as shown in
Figurel(a)and Figurel(b).

FIGURE 1(b) NFA for regular set R,
We construct a new NFA N based on union of N, and N, as shown in Figure 1 (c)

FIGURE 1(c) NFAfor N, + N,

Now,
L(N) =€ L(N,) € + € L(N,) €
=eR,e + eR,e
=R +R,
Since, Nis FA, hence L(N) isaregular set (language). Therefore, R, + R, isa regularset.
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Concatenation : If R and R, are two regular sets, then concatenation of these denoted
by &R, isalso aregular set,
Proof : Let & and R, be recognized by NFA ¥, and N, respectively as shown in
Figure 2(a) and Figure 2(b).

FIGURE 2(b) NFA for regular set R,
We construct anew NFA N based on concatenation of N, and N, asshown in Figure2(c).

FIGURE 2(c) NFA for regular set &K,

Now,
L(N) = Regular setaccepted by N, followed by regular set accepted by N, = /R,
Since, L(N) isaregular set, hence R, R, isalso a regular set.

Kleene Closure : If Risaregular set, then Kleene closure of this denoted by R*is also
aregular set.

Proof : Let R isaccepted by NFA » shownin Figure 3(a).

FIGURE 3{a) NFA for regular set R
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We construct a new NFA based on NFA N as shown in Figure 3(b).

FIGURE 3(b) NFA for regular expression for k"
Now,

LN)={e,R,RR,RRR,.)
=L
Since, L({N) is aregular set, therefore R is a regular set.

4. Complement : If g is a regular set on some alphabet 3, then complement of g is
denoted by £ - R or j is also a regular set.
Proof : [.et g be accepted by NFA N = (0Q,2,8,5,F). It means, L(N)=R.
N is shown in Figure 4(a).

FIGURE 4(a) NFA for regular set R
We construct a new NFA n 'based on n as follows ;
(a) Change all final states to non-final states.

(b) Change all non-final states to final states.
N'is shown in Figure 4(b)

FIGURE 4 (b) NFA
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Now,

L{N') = {All the words which are not accepted by NFA N}

= { All the rejected words by NFAN}

=% -R

Since, L(N') isaregular set, therefore (T° — R) isaregular set.

5. Transpose :If Risarcgular set, then the transpose denoted by g, isalso aregular set.
Proof : Let g beaccepted by NFA N = (Q.2,6 ,5,F ) asshown in Figure 5(a).

FIGURE 5 (a) NFA N for regular set R

If wisawordin R, then transpose (reverse) is denoted by ,,7 .
Let w = a,a;...a,

Then w” = a,a,_...a

We constructanew N* based on y using following rules:

(a) Cl'lm'.lge%h:nﬂﬁnﬂslﬂeshhmnﬁnalsﬂﬁmﬂmgzal]ﬂmhhmstmaﬂmkﬁt
(b) Change initial state to final state.
(c) Reverse the direction of all edges.

A is shown in Figure5 (b)

FIGURE 5(b) NFA N'for regular set g’
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Let w = aa,...a, beawordin R, thenitisrecognized by » and

w' =a,a, ,..a, istecognizedby N* asshown in Figures (b)

In general, we say that if a word inRisaccepted by »,andthen y» accepts ,,7
Since, L(N") is aregular set containingall ,,* ; it means, LIN)=RT.

Thus, R” isaregular set,

6. Intersection : if R and R, are two regular sets over 3, then intersection of these
denoted by R, n R, isalso aregular set.

Proof : By De Morgan's law for two sets 4 and B over R,
ANB=R*<((R*-A)U(R*-B)

SO, Ry Ry =Z*~((Z*-R)U(E*-R,))

Let Ry =(Z*-R,) and R, = (5 * ~R,)

So, & and R, are regular sets as these are complement of R, and &,.

Let R, =R, U R,

So, R,isamgu]m*mbecauscitislheunimnfnmmgularm&and.lr,,.
Let R, = £ *-R,
Sn,&isarcgulanetbmuuitisthemmplmnmlai‘mgulnrsﬂ R
Therefore, intersection of two regular sets is also regular set.
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REVIEW QUESTIONS

Q1. What is regular set 7 Explain with an example.
Answer :
For Answer refer to Topic : 3.1, Page No:3.1.
Q2. What is regular expression ? Explain with an example.
Answer :
For Answer refer to Topic : 3.2, Page No : 3.2.
Q3. Obtain a regular expression to accept a language consisting of strings of a's and b's
of even length.
Answer
For Answer refer to example - 1 , Page No : 3.4.
Q4. Obtain a regular expression to accepta language consisting of strings of a's and b's
of odd length.
Answer :
For Answer refer to example - 2 , Page No : 3.4.
Q5. Obtain a regular expression such that L(r) = (¥ | W e (0,13 with at least three
consecutive 0's }.
Answer ;
For Answer refer to example - 3 , Page No : 3.4,
Q6. Obtain a regular expression to accept strings of a's and b's ending with 'b’ and has
no substring aa.
Answer !
For Answer refer to example - 4 , Page No : 3.5

Q7. Obtain a regular expression 1o accept strings of 0's and 1's having no two consecutive
Zeros.

Answer 2

For Answer refer to example - 5 , Page No : 3.5.
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Q8. Obtain a regular expression to accept strings of a's and b's of length < |(.
Answer :
For Answer refer to example - 6 , Page No : 3.5.
Q9. Obtain a regular expression to accept sirings of a's and b's starting with 'a’ and
ending with b’
Answer :
For Answer refer to example - 7, Page No : 3.6.
Q10. Explain equivalence of two REs using Arden's theorem.
Answer :
For Answer refer to Topic : 3.3.1, Page No : 3.7.
Q11. Prove (1400* 1)+ (1+00*1)(0+10* D*(0-+-10*1) =0*1(0+10* 1) *
Answer ;
For Answer refer to example - 1, Page No : 3.9,
Q12, Show that (0*1*)* = (0+1)*
Answer :
For Answer refer to example - 2 , Page No : 3.9,
Q13. If r be a regular expression then there exists a NFA with «- moves, which accepts L(R).
Answer :
For Answer refer to Topic : 3.5 , Page No : 3.10.
(Q14. Construct NFA for the regular expression a + ba *
Answer :
For Answer refer to example - 1, Page No : 3.13.
Q135. Construct NFAwith ¢ moves for the regular expression (0+1)*.

Answer :
For Answer refer to example - 2, Page No : 3.15.

Q16. Construct NFA for the language having odd number of one's over the set £ = {1} .

Answer :
For Answer refer to example - 3 , Page No : 3.16.
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Q17. Construct NFA for the . e. (01+2%)0.
Answer :
For Answer refer to example - 4, Page No : 3.17.
(Q18. Obtain an NFAwhich accepts strings of a's and b's starting with the string ab.
Answer :
For Answer refer to example - 5 , Page No : 3.18.
Q19. Obtain an NFA for the regular expression 5° +4" +¢"
Answer :
For Answer refer to example - 6 , Page No : 3.19.
Q20. Obtain an NFA for the regular expression (a + »)*aa(a +b)*
Answer :
For Answer refer to example - 7, Page No : 3.20.

(Q21. Construction of DFA equivalent to a regular expression (0-+1)*(00+1 N(0+1)* and also
find the reduced DFA,

Answer :
For Answer refer to example - 8 , Page No : 3.22,

Q22. If L is accepted by a DFA, then L is denoted by a regular expression.
Answer :
For Answer refer to Theorem , Page No ; 3.24.

Q23 Write equivalent regular expression for the following deterministic finite automaton.

Answer :

For Answer refer to example - | , Page No : 3.26.
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Q24. Construct the regular expression for the finite automata given in below figure.

Sat /N 0

{8)

Answer ;

For Answer refer to example - 2 , Page No : 3.28.
Q25. Explain Arden’s method for converting DFA to RE.
Answer :

For Answer refer to Topic : 3.6.1 , Page No : 3.30.
Q26. Construct RE for the given DFA.

Answer :
For Answer refer to example - 1 , Page No : 3.30.
Q27. Construct RE for the given DFA.

Answer ;

For Answer refer to example - 2 , Page No : 3.31.
Q28. Construct RE for the DFA given in below figure.

Answer ;
For Answer refer to example - 3 ; Page No : 3.32.
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(Q29. Find outthe regular expression from given DFA.

Answer :

For Answer refer to example - 4 , Page No : 3.32.
(Q30. Construct the regular expression for following DFA.

For Answer refer to example - 5, Page No : 3.33.
Q31. Give the regular expression of following DFA.

Answer :
For Answer refer to example - 6 , Page No : 3.34,
(Q32. State and prove Pumping Lemma for regular sets.
Answer :
For Answer refer to Theorem , Page No : 3.37.

Q33. Prove that [, = {a"b” :n = 1} is notregular.
Answer :

For Answer refer to example - 1 , Page No : 3.38.
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Q34. show that L ={a"b"|n=0} is not regular.
Answer ;

For Answer refer to example - 2 , Page No : 3.40.
Q35. Prove that L = (4" 21} is not regular .
Answer :

For Answer refer to example - 3 , Page No : 3.40.
Q36. Show that L= {ww"|w e(0+1)*} is not regular,
Answer :

For Answer refer to example - 4 , Page No : 3.41.
Q37. show that L={ 0*|n 21} is regular
Answer :

For Answer refer to example - 5, Page No : 3.42.
Q38. Prove that L= { ww | win (a +b )* } is not regular.
Answer ;

For Answer refer to example - 6 , Page No : 3.42,

Q39. Show that L={a” | pisa prime number} is not regular.
Answer :

For Answer refer to example - 7 , Page No : 3.43.
Q40. sShow that the language L = {a'5? |i > 0} is not regular.
Answer :

For Answer refer to example - 8 , Page No : 3.44.
Q41. Show that L = {0"|n is a perfect square } is not regular,
Answer ;

For Answer refer to example - 9, Page No : 3.44.
Q42. List and prove various closure properties of regular sets.

Answer :
For Answer refer to Topic : 3.9, Page No : 3.44.
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L

OBJECTIVE TYPE QUESTIONS H

Find the regular expression for the set of all strings over {a, &} in which there arc atleast
two occurrences of b between any two occurrences of a.

(a) b*(aa+bb)*a* (b) (aa)*ba(bb)*

(c) b*+(b+abb)*ab* (d) None of the above.

(1+00%1) + (14 00* 10 +10*1) ¥(0+10%1) =2

(a) (0+10*D)*0*] (b) (1+00*1H0+10%1)*

(c) 0*1(0+10*1)* d) None of the above.

The empty string is the string with:

(a) zero occurrence of symbol (b) non zero occurrence of symbol
() no occurrence of symbols (d) None of the above

Which of the following regular expressions over {01} denotes the set of all string not
containing 100 as a substring?

(@) 0*1010* (b) 0*(1*0)*

(c) 0*1*01* (d) 0*(10+1)*

Find the regularexpression for the set of all strings having atmost one pair of 0's or atmost
one pair of 1's

(a) (1+00)* +(1+0D* (L +10)* {1+ 11)* +(0 +10)*11(0 + LO) *

(b) (1+01)* +(1+00)*(1+10)* +(1+ 10)* +(1+10)* 110+ 10) *

(€) (14 01)* +(1+ 01) * 00(1 + 01) * +(0+10)* +(0+10) * 11(0 + 10) *

(d) None of the above.

e+1*(0ID*(1*{01)*)*="7

(a) 1*(011)* (b) (1+011)*

(c) 1*01*(1+011)* (d) None of the above.
Find the regular expression for the set of all strings of the form vw where &'s occur in pairs
in v and b's occur in pairs in w.

(2) ((aa)* b)((bb)* a) (b) (aabaa)*(bb + a)*
() (aa+b)*(bb+a)* (d) None of the above.
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8.

10.

11

12,

13.

14,

3. 87

The intersection of (a +b) a and b(a+b)' isgiven by

(@) ab(a+b) (®) ata+6) b

(c) (a+b) ab(a+b)" d) Wa+5)a
Which one is false

@ n+n) =(rrn) ®) "y =+

© 1’ +m) =(n+n) (d) none.

The set of regular languages over a given alphabet set is not closed under
(a) Intersection (b)union

(c) Complement {(d) none

Which of the following pairs are equivalent

(@) (a" +b) and (a+b) (b) (at)'a and a(ba)’
(©) (a+b) and (a" +b") (d) None

The language of all words with at least 2 a's can be described as
(@) b°ab’ata+ k)"

(b) (a+ b}*ﬂ{ﬂ+ b}*[a + b}'
©) (a+b) ab (a+b)

(dyall

Which of the following pairs are not equivalent

(@ x* and x'x* (b) (ab)" and a'p’
(©) x(xx)" and (xx) x (d) 101)" and (10)"1

Let L may be language. Define even(w) as the string obtained by extracting from w the

letters in even numbered positions i.e., if w=aa,65a4....,then

even(w) = ayay..... Corresponding to this, we can define a language :

even(L) = { even(w) : we L} then given Lis regular, even(L)is
(a) is not context free

{(b) contex! free

(c) must be regular

(d) may not be regular
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15.

16.

17.

18,

19.

20.

21

Which is the correct regular expression for the language : "Set of sirings over alphabet
{a,b,¢} containing at least 1 'a' and atleast 1 'b

(@) c'aa+c) ba+b+c) +c bib+c) ala+b+e)
) (a+b+e) —(a +b" +c)

(€) (a+b +c}‘Ea{a + b+c]'b +hla+b+c) alla+b+ e)
(d) none of these.

Which is the correct order of precedence of regular expression operators in increasing
order?

@) *,( )by ) (). .+ (CR S W @ () ot
Which of the following is accepted by L(aa" + aba’b")
(a) abab (b) aaab (¢) abba (d) None.

Let n and r, are regular expression and let «, stands for equivalence in the sense of the
language generated, then

(a) nin +i|"1}. =(K -Hﬂ' (b) [4|-|1 +r2f = {rl'r:']'
(©) () =n (d) None of these

Regular expression for the language, L = {we {0,1}" : whasno pair of consecutive zeros}
18

(a) r=(1+01) (0+1") () r=@’ 011"y 0+ A)+1 (0 + 4)
(€) r=(1+01) (0 + 4) (d) all of these

For L(r)={a,bb,aa.abb,ba,bbb,......},r is given by

(8) r=(a+b)"(a+bb) (b) r=(aa+b)a+b)’

() r=(a+bb)’ (d) r=a(a+bb)"

Alanguage [ = {awa :we |a,b)7} 18

(a) context sensitive (b) regular

(¢) context free (d) none of these
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22

23.

24,

25.

26.

27

28.

29,

30.

3l

32.

33.

The value of the relation 4, pg*is

(@) g (b) ¢ ©)e (R

The value of the relation (r")" is

(a) e (MR (c) g* (d) None of the above
The value of the relation ¢' is

(@ ¢ (b) £ () e (d) None of the above
The value of the relation 4*is

(@) ¢ (b) & (c) e (d) None of the above
The value of the relation g cis

(a) ¢ (bR () e (d) None of the above
The value of the relation g gis

(a) & (b)R (c) e (d) None of the above
The value of the relation Rjis

(@) ¢ (b)R () e (d) None of the above
The value of the relation éRis

(a) ¢ (bR (c) e (d) None of the above
The value ofthe relation ¢ + R is

(a) ¢ (b)R () e (d) None of the above
Which of the following identities for regular expression does not hold good?

@ (@R+8) =R +5 (b) (R'S"Y =(r+5)"

() (e+8)=R" (d) (&") =r"

¢ (Kleene's closure of ¢ }( ¢ is the empty language over ¢ ) is equivalent to

(8) = (b) ¢ (€) e (d) none of these.
Give English description of the language of the regular expression : (1+-€)(00"1) 0"
(a) alternating 1's and 0's (b) 0's only in pairs

(¢) no pair of consecutive 1's (d) set of all strings of (s and 1's containing
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34,

35.

36.

37.

38.

39.

41.

42.

Let L be the language {e,0,103over {0,1} . Determine theset 1 [ -
(a) {0,1}" (b) &
(c) same as the given set (d) None of the above

The regular expression representing the set of'all strings over {x, y} ending with xx beginning
withy

(@) x(x+¥) w ) px+ ) xx (€ yp(x+3)x (d) xxix+y) y

How many strings of length tare in y*if £isan alphabet of cardinality r.

(a)r+t (b) tr (c) rt (d) None of the above
Which of the following doesn't hold?

(@) e+17(011)° (1" (O11)7) = e+1"(0111")

(b) 11"y =@1+111)

(&) a+0) =1"@1")

() (1400 + 0 +00"10 +10"D)" (0 +10'D) =010 +10"D)’
A solution to the equation R=Q+ RPis

@ R=PQ' ) p=rQ" () @=rF (d) r=pP"

The value of the relation (p* +0")"is

(a) (P'g"y ® z* (c) P'0" (d) None of the above
The value of the relation (P + 0)' is

@ P+ (b) (P'0"y (©) P'Q" (d) g*

The value of the relation g + Ris

(@ g’ ® ¢ (c) e (DR

mvalmﬂfﬂm relation RR. + e is
() g (b) ¢ (c) e (R



REGULAR LANGUAGES AND FINITE AUTOMATA 3.

43,

45,

47.

48.

=

In English language the set represented by ;*5 4 3" is:

(a) Strings of a's followed by one b and strings of b's followed by one a,

(b) String containing single aand single b

(¢) Strings of a's followed by one b or strings of b's followed by one a.

(d) String containing single a or single b

The regular expression representing the set of all strings over {a,b} with three
consecutive b's

(a) (a+8) bbbla+b) (b) (a+5) bb(a+b)

(€) (a + b)bbb(a + )’ (d) (a+b) Bbba+b)

For the following conditions find all the strings over the alphabet {a, } that satisfy the
condition. (i) no symbol is repeated in the string and (ji) the length of string is 3.

(a) No such string is possible (b) All possible strings of length 3
() Only single string ab (d) None of the above.

Find the true staterent

(a) If R is regular expression then so is p*

(b) If Rand S are regular expression then sois Ru §
(¢) If R and S are regular expression then so is R.S

(d) All of the above.
Find the true statement

(a) represents empty word, e represents empty language.
(b) erepresents empty word, ¢ represents empty language
(¢) &,¢ represents empty word

(d) & ¢ represents empty language
Regular expression for the set {42 2° o8, .. }is:
(@) aa(aa)" ®) a(aqa)"

(€) aa[ma]' (d) aalaaa }'
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49. Letn and ryareregularexpression which of the following represent r 41y

(d) none.

50. 1" 40 is represented by
(a) 1" (0+0)) (b) (oq" +0))

(e) (o1’ +0) (d) (o(1"))+0)
51. Whichofthe following identities doesn't hold?

(@ &"R =R b) (RuS) =(R'5"Y
© (R"us") =(RS) d) (RUS) =(R" US")
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52, Letn and r, are regular expression which of the following represent »

53.

54.

My
fy

[ )
PR = () (% —2—")

(b)

(c)

(d) none

Which of the following is false

(@) pr" =rR ™) R+R=R (c) ('Y =& (d) none.

Let n and r, areregular expression which of the following represent .ry.

(a)
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33,

56.

57.

58.

(b)
. |
? e TNE) @D
(d) none
Which of the following are correct
(a) If ;*is regular then L is regular

(b) If Ly w L, isregularand L;isregular, then L, is regular,

(c) If I,L,isregularand [;isregular, then L, is regular.

(dyall

Which of the following is set of strings of the form vw where a's occur in pairs in vandb's
ou::urinpa.irsin W

(a) a" +(ab+a) (b) (aa+b)" (bb+a)’

€ a'b+b'a (d) a{a+b}'ab

The set of all strings which are either strings of a's followed by one b or strings of b's
followed by one a.

(a) &' +(ab+a) (b) (aa+b) (bb+a)

©) a'b+b'a (d) a(a+b) ab

Select which of following represent a set of all strings with a and ending with ab.
(@) a’ +(ab+a) (b) (aa+b) (bb+a)

(©) a'b+b'a (d) ata+b)'b
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39,

61.

62.

63.

(a ab+ba) a isequivalentto
(@) (a+b+ab) (b) (aba + bnﬁ}-
(€) (a +ab+ba) (d) (ab + ba + aba)

The two regular expressions are equivalentiie., e +(a + ) b(a + b)’ =[a'b(a’ba’8)’a’]’
(a) True (b) False.

The setall strings of 0's and 1's such that every pair of adjacent (/s appears before any pair
of adjacent 1's

(8) (10 +0)" (epsilon+1)01 + 01) (epsilon+0)
(b) (10 +0)" (epsilon + 101 + 1)’ (epsilon + 0)
(€) (10 + 0) (epsilon +1)" (epsilon +0)

(d) (100)" (epsilon + 1)(01+ 1)’ (epsilon + 0)
Write the regular expression for the following:
"The set of the strings over alphabet {a,b, ¢} containing at least one a and at least one b"

(@) ca'(a+e) Bla+b+e) c'bb+c) ala+b+e)
®) ¢'a’ (a+ c}' bla+b+ec)+ c'b[b + c}' ala+b+c)
(€) ca'(a+e) bla+b+c) e bib +c) ala+b+c)

(d) c-ﬂ(a+¢]- Bla+b +-::}* +c‘b[b+c)‘a{a+b+ c)
The reversal of the language L ={00L10,111) is:

{a) {111,01,110} (b) {100,01,111}

() {111,10,001} (d) none

(L") equalto:

© ™) @ ®) (d) none

The language generated by the regular expression (aa)”(bb)" b is
(b) ginpintl (a) (ab)*"b (c) none of these.
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67.

70.

71,

(1°011°)" (0+ e) isequivalent to

(b) (0 +1)(1+10)° (a) (1+01)°(0+€)  (c)noneofthese
Which of the following identity doesn't hold?

(a) p+R=R+¢=R (b) 4R=Ro=0

(¢) e+R=R+e=R (d) eR=Re=R
The language of all words that have at least one aand at leastone b is

(8) (a+b) a(a+b) bla+ b) +bb'aa”

(b) (a+ b]'a{a + b}' +(a +I:‘_|' ba+ b}‘a{a + .‘En}.t'II

(€) (a+b) bla+b) aa+h)

(d) (a+b) a(a+b) bla+h)

Let a and b be two regular expressions then (o" wb")” isequivalent to

(a) aurb (b) (hua) © @ va ) (d) l’_aub}.
If e, and e; are regular expressions denoting the languages Ly and L, respectively, then
which is false?

(8) (e,)" is aregular expression denoting K

(b) $isnota regular expression

(€) (e Xey) is aregular expression denoting Ly L,

(d) (e )(e, ) isaregular expressiondenoting 1y L [
Whﬂwn@ﬂﬂmﬁm&ﬁnhgulwafﬂlmrﬁudﬁmaddmmbaoﬁs
is

(8) a'bla"ba’d) a”

(b) ab+ {a*ba -+ .Er}. +a
(c) a- (ﬂ'-b}‘ a

(d) None of these.
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72.

73

74,

75.

76.

(1 +0)" represents

(a) Set of strings over 1 and 0.

(b) Set of strings starting with 1 and ending with 0
(c) Set of strings with equal number of 1'sand 0's
(d) Set of strings with even number of 1's and 0's

Which one is TRUE
(8) {1010 }belongs t0(10) ®) (105" = 1" +0'
© qoy =0’y @ 0y =1%0"

The RE.=(10+01+11+00) represents
(a) set of strings with at least one 0 and at least one 1

(b} set of strings with even length
(c) set of strings withequal O and 1's
{d) All strings over O and |
Regular expression generated by the following automaton is given
ab

SoWlh<)
(@) (a+b)ab+ m}t (b) (a+b)ab+ m}'a
(¢) € +(a +b)ab +aa) a (d) & +(a + b)ab +aa)’
Regular expression generated by the following automaton is given as:

a,b
@ T

(2) (a+b)b+ab+aa) a (b) € +(a+ b)b + ab + aa)a

(¢) (a+b)b+ab+aa) (d) € +(a+bXb+ab+aa) a
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T7.

78.

79.

80,

81,

Regular expression corresponding to the finite automaton drawn below is given by

(d) (0+0(1+10) 00y’

(b) (0+0¢1+01) 00)"

(e) (0+1(0+10)"00)"

(@) (0+1(1+01) 00)"

The regular expression 1+ 00'1) + (1+00'1)(0 +0+10°1)" (0+101)is equivalent to

(a) (+00"1)0 0" ' (b) 0" 10+10™)°
() +00" )0 +10)’ (d) All of the above.
Which of the following is regular?

(&) String of odd number of zeroes.

(b) Strings of 0's, whose length is a prime number

(c) String of all palindromes made up of ('s and 1's

(d) String of 0's whose length is a perfect square

The recognizing capability of NDFA and DFA

(a) must be same (b) may be different
(c) must be different (d) none of the above.
The intersection of the two regular languages below:

Ly=(a +b}’a and Ly =bla +b)'iﬂﬁimb3’
(2)ab(a+b) (b) a(a+b)'b
(©) (a+b) ab(a+b)" (d) ba+b)a

Which of the following regular expression over {0,1} denotesthe set of all string not containing
100 as a substring?

(a) 0"'go+n)’ ) o*101°  (© 0'1010" (d)o oy
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83.

85.

The setall strings over {a,b} in which there are atleast two occurrences of b between the
two occurrences of a.

(8) a(bbabb) a ®) 6" (b+ab)’ b

(€) b" +(b+abb) ab” (d) None of the above.

Set of all strings over {0.1} having atmost one pair of ('s or atmost one pair of 1's.
@ a” +on"' «a"xon'ooa’on")" +0"0)" + 0"y +10) ) 1100 +10)"

M) 1+ 01" + (14017001 +01)" +(0+10)" +(0+10)"11(0 +10)°

(©) (1 +01)" + (0 +10)"00(0 +10)" + (0 +10)* + 1 +01) 1101 + 01)°
(d) None of the above,
Regular expression corresponding to the FA given below is

(@) a' +(ab+a) (b) (ab+a) (aa+b)

©) @b+b"a)’ (d) None of the above.

Which of the following closure properties hold for regular sets?

(1) If L is regular, then ;7 is also regular.

(ii) If L is regular setover x, then v* _ ; is also regular over .

(iii) If X and Y are regular sets over 3, then X intersection Y is also regular over 5

(a) Only (i), (ii) and (iii). (b) Only (i) and (iii)
(¢) Only (ii) (d) Only (i)
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87.

88.

89.

91.

92,

93.

94,

95.

If L is an infinite regular language, then there exist some positive integer m such that any
string w e 1 whose length is m or greater can be decomposed into three part, xyz, where

(a) w=xy'zisalsoinL foralli=0,1,2,3, (b) | xy|is less than or equal to m.
(c) |¥>0.. ' (d) All of the above.

If L isthe language £(01°2), whatis h(L):

(a) aba ab {(b) mb[bﬂ}* (©) aah’ba (d) ﬂ{ﬂf’}*b"

The inverse homomorphism of a regular language is :

(a) not regular (b) regular (c) none

A homomorphism is a function from some alphabet £, to strings in another alphabet I, . If
X =ity dty €53, then Wx)=Hahay)... ay), andif L, then A(L)={h(x)/x€ L},

Suppose s the homomorphism from the alphabet {0,1,2} to the alphabet {a,b} defined
by: h(0)=a; k(1) = ab, and h(2)=ba What is h(0120)?

(a) ababa (b) abbbb (c) aaabb (d) aabba
If L isregular, then {x: reverse(x) in L} is also regular

(a) May or may not be (b) Yes

(c) No (d) None of the above.
Finite state machines....... can recognize palindromes

(a) may not (b) may (c) can't (d) can
Pick the correct statement. The logic of Pumping lemma is a good example of
(a) Iteration (b) Recursion

(¢) The divide and conquer technique (d) The Pigeon hole principle
Which of the following is not regular

(a) String of zero whose length is prime

(b) String of zero whose length is perfect square
(c) Set of palindromes over 0 and 1

(d)All

Pumping lemma can be used

(a) Whether two languages are equivalent
(b) To check whether a language is regular
(c) Tocheck whether a language is irregular
(d) None.
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96.

100.

101.

Let L be a regular language defined are y*. Then

(a) index (R; ) may be zero (b) index (R )isfinite

(c) index (R; ) may be infinite (d) None.

Let £ = {0,1} and R be the relation defined on v* by (x,y)e R iff | x| -] y|=0dd Then R
B

(a) not a right congruence (b) an equivalence relation

(c) aright congruences (d) none.

Let £ = {a} and let I be the identify relation on y*. Let L = {} U {a} . {aa}. Then index
(Nis

(a)3 (b) finite (c) infinite (d) None.
Is there a finite automation which accepts all palindromes over {a,b}?

(a) No,but it cannot be proved. (b) No, it can be proved.

(¢) Yes. but it cannot be proved (d) Yes,it can be proved

Which of the following sets is regular?

(@) @™ [nz1 (®) {ww|wefa,b}'}

(¢) {a” | pis a prime) @ @ iz

Which of the following languages cannot be produced by a regular grammar?
(1) {a"b" :n=0}
(i) {a™8% k> n=0)

(i) fww® 1 we fa,b)"}

(a) (i) and (ii) (b) (i)
() (i) and (ii) (d) All of the above,
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l{c)
10 (d)
19.(d)
24.(c)
32(c)
40.(b)

48.(d)
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64.(b)
71.(a)
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11(c)
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25.(c)
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72.(a)
80.(a)
88.(d)
96.(b)

98.(c)  99.b) 100.(a) 101.(d)

4{d) 5(c) 6(a) 7(c) 8(d) 9(a)
13(b) 14(c) 15(c) 16(b) 17(a) 18(b)
22(a) 23(c)
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REGULAR GRAMMARS

After going through this chapter, you should be able to understand -

« Regular Grammar
» Equivalence between Regular Grammar and FA
+« Interconversion

4.1 REGULAR GRAMMAR

Definition : The grammar G= (V. T, P, S ) is said to be regular gramumar iff the grammar is
right linear or left linear.
A grammar G is said to be right linearifall the productions are ol the form
A->wB andior A —w where 4, BeF and 4 7.

A gramunar (5 is said to be left linear if all the productions are of the form
A~»Bw and/or A —»w where 4, BeV and , 7.

Example 1: The grammar
e n:s aaB | bbA | ¢
A - aAlb

B -»  bBla} e
is anight limear grammar, Note that e and string of terminals can appear on RHS of any production
and if non - tenminal is present on R. H, $ of any production, only one non - terminal should be
present and it has to be the right most symbol on B H. S.
Example 2:

The sranumar

A - Aajb

B 5  Bblajs
isaleft linear grammay, Note that < and string of terminals van appear on RHS of any production
and ifnon - terminal is present on L. H. S of any production, only one nen - terminal should be
present and it hasto be the left mostsymbolonl., H. 5.
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Example 3:
Consider the grammar
5 - a A
A E=~ sB|b
B - Abla

in this grammar, each production is either left knear or right linear. But, the grarmar is nof either
left lingar or right lincar. Such type of grammmar is called linear grammar. So, a grammar which has
« most one non terminal on the fght side of any production without restriction onthe position of
this non - terminal { note the non - terminal can be lefimost or right most } is called linear

AT,

Note ﬂmt the Janguage generated from the regular grammer is called repudlar language. So, there
should be some relation betsveen the regular grammar and the FA, since, the language accepted
by FA s also regular language. So, we can construct a finite sutomaton given aregular grammar.

4,2 FAFROM REGULAR GRAMMAR

Theorem : LetG={V. T, 7 S) be aright linear grammar. Then there exists a language L{G})
which is accepted by a FA. i e, the ianguage generated from the regular grammar
is regular language.

Proof :Let ¥ ={g,, g,,....) bethe variables and the startstate S =4, Let the productions in
the grammar be
gy, &

q: L I} q:

d4 -+ X,

Ga 7 I;rf!'n

Assume that the language L(G) generated from these productions is w. Corresponding to each
production in the grammar we can have a equivalent transitions in the FA to accept the string w.
Afier aceepting the string w, the FA will be in the final state. The procedure to obtain FA from
these productions is given below : '
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Step 1: g, whichis the start symbol in the grammar is the start state of FA.

Step 2: For each production of the form

‘?! ¥ “Ig_l
the corresponding transition defined will he

"3‘{4’”“’}“ ds
Step 3; For cach production of the form ¢, —» w

the conesponding trapsition defined will be 87 (g,, w) =g, ,where g, is the final state,

As the string w € £(G) is also accepted by FA, by applying the transitions obtained from
stepl through step3, the language is regular. So, the theorem is proved.

Example 1 : Construct 2 DFAto accept the language generated by the following grammar

& - 014
A = 10B
B - 04111

Solution :

Note that for each production of the form A > wB, the corresponding transition will be
&( A, w) = B.Also, foreach production 4 -» w , we can introduce the transition 5(4,w) =g,

where ¢, is the final state. The transitions obtained from grammar G is shown using the following
table :

; Preductions Tremsitions

I S o 01A 8(S, 01 = 4

LA o5 0B | 54, 10)=8

B 0A (B, 0)=A
B o 1l 5(8, 11)=q,

‘The FA corresponding to the transitions obtained is shown below :
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So,the DFA M = (0. £, 5, g, A) where
Q=15 A4 B, ;9 4o} 5 E= {00}
g =S , A=lg,)
& is as obtained from the above table.
The additional vertices introduced are ¢,,4,, g, -

Example 2 : Construct a DFAto accept the language generatad by the following grammar .
] — ah| ¢
A —3 aAlbB| =
B ~3 bB| c

Solution

Note that for each production of the form 4 - wg, the corresponding trangition will be
5(A,w) = B.Also  for each production 4-» w,We canintroduce the fransition 8{ 4, w} =¢;

where ¢, isthe final state. The transitions obtaitied from grammar G s shown using the following |

table: -

Productions Transitions
S -y ad B(S,a)= 4
S —> € S iz the final state
A y @A 8(d,a)=A
A - BB B(A,b) = B

| A i e A isthe final state
B —» bB 5(B,b)~ B
B » e B is the final state.
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Note : For each transition of the form 4 — <, make A as the fina] state.
The FA corresponding to the transitions obtained is shown below :

S0, the DFA M =((0.%, 8, g,, 4) where
PD={5. 4.8} ,EZ={a,b}
gi=5 s d={8, A, B}
&1s as obtained from the above table .

4.3 REGULAR GRAMMAR FROM FA

Theorem : Lst M =(0.%,8,4,.4) beafinite automaton, If L is the regular language accepted
by FA, than there exists a right finear grammar G = (V. T, P, $ ) so that L = L(G).

Proof : Let M =(0,2.6.4,.4) beafinite automata accepting L. where

O = {Gs.q1 2}
¥ ={a.0,..a,}
Areguler grammar G=( V, T, P, § ) can be constructed where
V={gyq i
=%
h‘uqn
The productions P from the transitions can be obtained as shown below ;

Step 1 : For each transition of the form 8(g,, @) =g,
the corresponding production defined will be ¢, — ag,
Step 2: if g = 4 i.e., if qis the final state in FA, then introduce the production

g

Asthese productions are obtained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar,
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Example 1 : Construct a regular grammar from the following FA.

Solution : Note that for each transition of the form 3( 4. o) = B, introduce the production

A-»aB .If g € 4 i.e,if g is the final state, introduce the production 4 - <. The productions
obtained from the transitions defined for FA is shown using the following table ;

Transitions Productions

B8, a) = 4 S - aA
(S, By=C S ->  bC
B(d, ay=C A -~  aC
&4, =B A - bB
8B, a)=B B - ila
B, B =8 B > bB
SC, a)=0C C — aC
8(C,b)=0C C - pC

1t is very important to note that B is the final state. So, we have to introduce the production
B —»c. The grammar G corresponding to the productions obtained is shown below :
Grammar G=(V, T, I} §) where
V={8A,B,C}

T={ab}
P={
S ad|bC
A3 al|bB
B—aB|bBie
C—alC|bC
h

§ isthe start symbol



REGULAR GRAMMARS 4.7

Example 2 : Constructa regular grammar for the following FA.

Solution : Note that for each transition of the form 8( 4, a) = B, miroduce the production

A—aB. Il g € 4 Le.. ifqis the final state, introduce the production 4 .. The productions
obtained from the transitions defined for FA is shown using the following table :

Transitions Productions

8(S. ay= A S ~» ad
o(8,5)=8 S ~¥ bS
S(d,a)=4 A - gA
&(A4, by=RB A = bR
S{B,a)=4 B —  aA
S{8,b)=C B ¥ bC
8C, a)=C C - aC
SC. b= C C - B

Ttis very important to note that S, A and B are final states, So, we have to introduce theproductions
§ &, A—c and B e The grammar G corresponding to the productions obtained is shown
below :
Grammar G={ V, T, P, § ) where
Vo= IRALBCS

T = {ab}
P= { S . 2A|bS|e
A i J ’dﬁgtha
B -3 ad 1bC| ¢
C o aCipC
}

S is the start symbol

Note : The FA in this problem aceepts strings of a'sand bis except those conlaining the substring
abb. So, from the grammar G we can obtain a regular Janguage which consists of strings of a's
and b's without the substring abb.
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REVI IONS

(1. What is regular grammar ? Explain with examples.
Answer :

For Answer refer to Topic 4.1, Page No : 4.1
Q2. Explain procedure to construct FA from regular grammar.
Answer ;

For Answer refer to Topic : 4.2, Page No: 4.2

)3, Construct a DFAto accept the language generated by the following grammar

8§ —= D14
A - 108
B —» 04111

Answer ;

For Answer refer to example - 1, Page No 1 4.3
Q4. Construct a DFA to accept the language generated by the foliowing grammar .

5 —% ah| «
A —> aAlbB|
B 3 bB| =

Anywer :

For Answer refer to example - 2, Page No : 4.4,
Q8. Explaim procedure to obtain Regular grammar from FA:
Answer

For Answer refer to Topic : 4.3 , Page No 1 4.5.
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06. Construct a regular grammar from the following FA .

Answer ;

For Answer refer to example - 1, Page No : 4.6,

Q7. Construct a regular grammar for the following FA

Answer :
For Answer refer to example - 2 , Page No : 4.7,
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i LT

OBJECTIVE TYPE QUESTIONS

ks

The grammar generated by production rule §-aCaCralab ir,
(a) a"a" m=0 (b) g"ba”,n > 0
(€} ¢ n20 {d) None of the above

The language £{0"1"2%3"}isa

(&) Recursively enumerable Janguage. (b} Regular language

t¢) CSL (d) CFL

The set {a"h"} can be generated by the CFG

(a) S > abjasBlE (b} § > ab|aSh

(€) §—» aaShb : (d) None of the above
Chomsky hierarchy from type 0 totype 3 is:

(@) Lpy.Losy Low Lk (b} Ly, Loy lest+Lie

(©) LpgLosp-Lerp L (d} LprLeres Lose-Lre
Which of the following relationship holds?

(@) Lop s lpe 2 lpg () Lep = Lpe = Lpg

(@ Lep = Lpe 2L (d) Lepy, < Loes & Lrg
Which of the following slatements is true?

(a) Lpg < Lpe = Logr (b) Lgg = Lpe < Lest
Which ol the following is true?

(8) Ly < bepr < Lost & Lax (b) Ly < Loy & Lepr & Lo
{© Lpp < Lepr, & Lest € Ly (d) Lo < losr € Lor S Lre
Which of the following is Tue?

{a) Lyis subset of Lepp (b) Ly issubsetof Legy

(c) Lyissubsetof Legr . (d) None of the ahove.
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10,

11.

12,

13

14.

16.

A grammar G = {F,T,S,P} is said to be coniext sensitive if all Productions are the form
- v, where ¢ ye (iUt and
(a) {xfz] »| {b) ix|=| ! (c)ixlgy!  (d)Noneoftheabove

A grammar G =(¥.T, S, P)is called unrestricted ifall the productions are of the form —5V,
where,

(@) we o and ve (W uTy (0 we( uT) ad ve(@ury
@ uwevun) andve(Wul) (D) we(F Ty ad ve(F uT)

The grammar that generates [ = {a"b"¢’ |n = 1,i 2 0} i,

(a) § sach|Sac-—»abicb (b) § —+elSe,cablach

() Any one of the two (d) None of the two,

The grammiar that generates 7= fwew' | we {a,b) ) is,

(a) § —»aSa|bShic (b} § — aSa|bSh|aca| bek

(¢} Any one of the two {d) None of the two,

Let G be the grammar § — ad, 4 - 4 bb} b, sentential forms of G are,

() adb® b swhere,n 2 0 1) adb? @b here 10
(€) adb™ ab®* wiere, n>1 (d} None of above.

Which of the following grammars can generate w = gabbb

(@) § > AB.A— BB|a,B—> AB|b (b) 5§ — AB, A~ ad|u,B—bB|b
{c) Both (d) None.

The grammar having productions as 4 g.where 4 ¢ B,Be (V' U E)is

(a) Type 3 (b) Tvpe2 (e} Type 1 (d) Type 0

The grammar generated by production rules 5->a88Gabe, cA— e al-sall->aais
(8) a"p%e".n <0 (B) 4" n =0

{C') a“b”c”,ﬂ =} {d] r.frbn:,'.n,n |
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17.

18

19.

20.

L

2%

24,

[f we have an algorithm to determine whether a given element belongs to a set X ornot,
then this set is called

(a) Context-sensitive {h) Complete
(c) Recursively Enumerable {d) Recursive

A production of the form 4 —» g whete 4 € ¥ and & e (7 U I) represents which type
of grammar?

(a) Three {b) Two {c) One (d) Zero

What is the highest type number to grammar given by these production rules
S ASBld. Ad—>ad

{a) Three (b) Two (c) One {d) Zero
The produciions: £ > E+E E—> E-EE-3EXYEE—id

() Are unambiguous

(b) Generated an inherently ambiguous language

(c) Generate an ambiguous language

{d) Noae,

The set [ ={q"b"c"} ts anexample of grammar that is

{2) not coniext free {b)regular

{c) context free {d) none.

Choose the correct staternents

{a) some regular languages can't be generated by an CFG.

{b) Some non regular languages can't be generated by an CFO
(¢) Any regular language has not an equivalent CFG

{d) all languages can be penerated by CFG

The gramimar having production as 4 —» B, Where Ae(F wE) . Be(V I is
(a) Type 3 {(b) Type2 - (e) Type ] (d) Type &

The grammar having productionas 4 —» xB, Where A=V ,Be(V vekxe o'is
(@) Type 3 ®Type2 () Typel (d) Type 0
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26,

27.

28.

30.

31,

32.

33,

Chomsky Hierarchy is representation of

(a) Parsers (b} Grammars
{cyMachines : {d) None of these

Find language penerated by the following grammar § - 051{0.41.4 — 140|10
(a} 10"1™0™1" [m,n = 1) (B) (0™ | n=1

(€} 410" | m,m =1} {d) None of the above.
Type 2 gramumar is also called

() context-free (b) Context-sensitive
{chregular (d) none of these,

Which of the following language is context free?

{a) a™b '=“_fi (b) 3 l:ﬂ:l a"pt (d} 2"
Which of the following language is regular?

(e} phi {b) gtp" (€) g7g7e" (d) g"pn
A grammar is context-sensitive ifall production of the form x > y are such that
() | x|=} y} (b} xi<i ! () ixigiyl  {d) |x|=f
A recursive lenguage is also:

(a} detarministic (b) CFL

(c) recursive enumerable {d)regular

Which of the following grammars can generate w = gabbb

(a) § =+ 4B, A— BR|a, B> AR b

(b} § > AB. A-vadia,B—+hBib

{c)Both

(d) None.

Which of the following js true for the language generated by 5 — AR 4 — BB|a B -» AB| b
{a) aab belongs to this language.

(b) ab doesn't belongs to this language

{c) aabb belongs to this language
(d) sabbb doesn't belongs to this language
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35.

36.

38,

39.

40,

41.

Let Gy = (#,%.5, R) beright linear and G; =(¥,,£.8,, P,y be left lincar grammar and
assume that ¥, and ¥, are disjoint. Consider, the linear grammar

G=(Ishulwih, L5 P where S isnotin Fy Ly

and P={s-—> a5 Wiy b, then L{G)is

(a) not regular. (b) regular (¢)lefilinear  (d}rightlinear

A regular graanmar is

(s} Fither left linear or right linear {b) Neither left linear nor right linear
(¢) Right linear and not left linear (d) Both lefi linear and right linear
Agrammar G = (¥, T, 5, P)istight linear if’ '

() CF . context sensitive « tight linear (®) A5 xBlx A BeV and xeT’

(¢) Nonc of these

A lanpuage L is accepted by a finite automaton ifand only if

(a) recursive. {b) context sensitive

(c) primitive recussive (d)right linear

"The correct relationship is given by

{a) right linear « CF < context sensitive, (b} context sensitive < CF < right linear
{¢) CF < context sensiiive < right lincar (4 CF « right linear < context sensitive
Which of the following can be generated by: § — eS| bda > d|ecd

{a) ababeed (b) aabced (c)abbbd (d) beeddd

Language generated by the grammar: § — 04115|0{La—14|15]{1 s

(a) all sirings of 0's and 1's that neither contain 2 consecutive ('s nor contains two
consecutive 0's,

{b)all strings of 0's and 1's that does no contain 2 consecutive 1's

(c)all strings of s and 1's that does no contain 2 consecutive 0's

(d) all strings of s and 1's

Consider the grammar: § — 4B} abe, A —> aa| B -» bthen equivalent representation is

(#) £ —aBlabe, A->aaB->b (b) § = aaaBlab|abe, A+ aa.B-—2b

{C) § -»auuB|abe, A—>aa,B—+b (d) § »>adBlabe, A~ aa,B—>b
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42,

43,

45.

46.

47,

48,

49,

Give the regular grammar that generates the following set: {(ab)"* | n 2 1}

(@) 8 85,55,8 > b8, 5> a85,5; >b (b) § 48,8, 55,8 - a8,.55 = b
(€} §->a8)5;.5) > b8.5; b (d) None of the above.

Give the regular grammar that generates the following set: {2°5™c" {1, m.n n2 1}
(8) § = @S9y, 8} — a8}, ) = b, Sy — 68,8 - c5283.85; = ¢

(b) § - a8, 8) — a8y, 8 555,55 > b83,85 »e83.8; > ¢

(@) 5uass;, 810 a8)S;,8) wbSy, 85 bS8 wely, Sy e

-{d) None of the above,

Give the regular grammar that generates the following set: {527 > 1)

(4} 8 e85, 85 »as s —a {b) §-3a5,,8 = aS.S > a¥, 8 >a
{¢} S 2 as,8»a {d) None of the above.

Find language generated by the following grammar: § 50415110 4> 14]15}1
(@) fxe {01}

{b} {x={0.1}" | » does not contain any two consecutive zeroes, }

{c) None of the above.
A production of the formn 4 — qor 4 -5 g represents which tvpe of grammar?

{a) Three. (b) Two (2)One {d) Zero
What is the highest type nurober to grammar given by these production rules: § — aS | ab,
{a) Three. (b) Two {c) Ome {d) Zero

What is the highest type number to the grammar given by these production rles:
Nes»da, A—ejBa, B— abe,

(a) Three. (b) Two (¢} One (d) Zero
LG = {wwR rwela, ﬁ}*} iy

(8) not context free (b) regular

(¢} context free (d) none of these.
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50. What language is generated by the following grammar G={5, <. B}.{a,b}, P, § ) where Pis:

52.

L

5 — aBijbd
A—» | arjbdd
B —b|BS |aBB
{a)All words consisting of one bmore than the number of a's.
(b) All words consisting of equal numbers of a's and b's.
(e} All words consisting of one a more than the number of b's
{d} None of the above
Find the false statement for k-equivalent states
(@) If ¢, and ¢ are k-equivalent forall £z 0, then they are equivalent.
(b) If ¢; and g; are (k+1)-equivalent then they are k-equivalent.
(¢) Two states gy and g9 are k-equivalent if' both 8(g;.x) and 5(qz.x) are final states or
both non-final states for atl strings x of lengthk or more.
(d) The k-equivalence is an equivalence relation,
The language penerated by the grammar §—-051{041, 4-51401101s

{&}{i’”ﬂ”:n,mé‘i} (b} lﬂ“l":n.mﬁil

{c} {1}" 1" 0" 1", n 21 } (d) None of the above

‘The language generated by the grammar § ->0sl] 04}, 4 14|15

(a) [ﬂ”‘l":nbm:ﬂ] (h) {i}‘“l”:n:smal;‘

(c) iﬁﬂz” cmn ] } {d) None of the above

Maich the lsnguage with the corresponding machine:

Language Machine

(i} Regular language (A) Non-deterministic pushdown automaton
(il DCFL (B} Turing machine
(iii) CFL (C) Deterministic pushdown automaton
{iv) Context-sensitive language (1) (Non)Deterministic finite-state accepior
(v) Recumsive language {E) Turing machine that halts

(vi) Recursively enumerable language  (F) Lincar-bounded automaton
(a) DACFEB (LYyDCATEB (c) DCABEF (d) DCFFAB
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55, When Minimizinga DFA M ={0.1.5, gy, F ) we tryto minimize
(a) The cardinality of the language L such that L=1(41)
(b} The cardinality of Q
{¢) The put-degree of each vertex,
(d} The Jength of the sirings accepted by M
(e) None of the above.

pasamnE

ANSWERKEY

LY 2(d) 3qb)  4(c) S5{) 6(d) T() 8b) 9.d) 10(c)
1) 12.() 13.06)  140b) 15.b) 16.06) 17.d) 18.(b) 194b) 20.(a)
21(c) 22.b) 23(d) 24.a) 25.D) 26.(a) 27.(a) 28.c) 29.4@) 30.(c)
| 31(e) 32(c) 33.4a) 34(b) 35.(a) 36.0b) 37(d) 38.42) 39.b) 40.c)
L ALD) 42.0) 43.a)  44(b) 45.b) 46.(a) 47.(b) 48.b) 49.4) 50.D)
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CONTEXT FREE GRAMMARS

After going through this chapter, you should be able to understand :

Context free grammars

Left most and Rightmost derivation of strings
Derivation Trees

Ambiguity in CFGs

Minimization of CFGs

Normal Forms (CNF & GNF)

Pumping Lemma for CFLs

Enumeration properties of CFLs

5.1 CONTEXT FREE GRAMMARS

A grammar G = (V, T, P, §) issaidto be a CFG if the productions of G are of the form :
A->oa whereae(VuTl)*
The right hand side of a CFG is not restricted and it may be null or a combination of variables and

terminals. The possible length of right hand sentential form ranges from 0to « ie, 0 < | & | sw.

As we know that a CFG has no context neither left nor right. This is why, it is known as

CONTEXT - FREE. Many programming languages have recursive structure that can be
defined by CFG's.

Example 1 : Considerthe grammar G = (¥, T, P, §) having productions :
§ — aSa | bSh| €. Check the productions and find the language generated.

Solution :
Let P :S - aSa (RHSisterminal variable terminal)
P,: § —» bSh (RHSisterminal variable terminal)
P: 8 - e (RHSisnullstring)
Since, all productions are of the form A4 —» o, where & e(V W T') * Jhence ¢ 1sa CFG
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Language Generated :

§ = aSa or bSh
= a"Sa" or b"SH" (Using n step derivation)
= a"b"8h"a" or b"a"Sa"b" (Using m step derivation)
= a"b"b"a" or b'a"a"b" (Using § — €)

S0, L(G) = {ww": w e(a + b)*)

Example 2 ; LetG=(V, TP, S)whereV=(S C},T={a,b}
P={ 8 - aCa
¢ —»aCa|b
} S is the start symbol
What is the language generated by this grammar ?

Solution :  Consider the derivation
§ = aCa = aba( By applying the # and 3+ production )
So, the string aba e L(G)

Consider the derivation
S = aCa Byapplying § = aCa
= aaCaa Byapplying € — aCa
= aaaCaaq Byapplying € - aCa
= a"Ca" Byapplying € - aCa n times
= a"ba" Byapplying c b

So. the language L accepted by the grammar G is L(G) = {a"ba" |n21}

i. €., the language L derived from the grammar G is "The string consisting of n number of a's
followed by a'b' followed by n number of a's.

Example 3 : Whatis the language generated by the grammar
S—>04|e
A=+ 18

Solution : The null string « can be obtained by applying the production § ¢ andthe
derivation is shown below :
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S=e ( By applying §— €)
Consider the derivation
§=04 (By applying 5 0.4)
=018 ( By applying 4-—»15)
= 0104 (By applying 5 04)
= 01018 (Byapplying 4-15)
= 0101 ( Byapplying § »c)

So, alternatively applying the productions § — 0.4 and 4 — 1§ and finally applying the production

§ —»&, We get string consisting of only of 01's. So, both null string i.., e and string consisting

01's can be generated from this grammar. So, the language generated by this grammar is
L={w|w € {01 }*}or L = {(01)"|n20)

Example 4 : Show that the language [ ={a"5" |m#n} is context free.

Solution :
If it is possible to construct a CFG to generate this language then we say that the language is
context free. Let us construct the CFG for the language defined. Assume thatm=ni.e.,m
number of a's should be followed by m number of b's, The CFG for this can be

S—>alble o iy

But, L ={a" b" |m+n} means, a's should be followed by b's and number of a's should
not be equal to number of b'si.e, m«n.
Let us see the different cases when m > nand whenm <n,

Case1:
m>n : This case occurs if the number of a's are more compared to number of b's, The extra
a's can be generated using the production

A-»ad|a
and the extra a's generated from this production should be appended towards left of the string
generated from the production shown in production 1. This can be achieved by introducing one
more production.

S,—>AS
So, even though from S we get n number ofa's followed by n number of b's since it is preceded

by a variable A from which we could generate extra a's, number of a's followed by number of b's
are different.
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Case 2:
m<n: This case occurs if the number of b's are more compared to number of a's. The extra
b's can be generated using the production.
88— bB|b
and the extra b's generated from this production should be appended towards right of the string
generated from the production shown in production (1). This can be achieved by introducing one
more production
5,—SB
The context free grammar G = (¥, T, P, §) where
V ={5,,5,4,B} , T={a,b)
P={
5,— AS|SB
S afh|e
A— adla
8-+ bB|b
} 8, isthe start symbol
generates the language [ = { a™ b" | m = n }. Since a CFG exists for the language, the language is
context free.

Example 5 : Drawa CFG to generate a language consisting of equal number of a's and b's.

Solution :  Note that initial production can be of the form
8 = all | bd
If the first symbol is 'a', the second symbol should be anon - terminal from which we can obtain
either 'b' or one more 'a’ followed by two B's denoted by aBB ora 'b' followed by S
denoted by bS.
Note that from all these symbols definitely we obtain equal number of a's and b's. The productions
corresponding to these can be of the form
B - BaBBbS
On similar lines we can write A - productions as
A—ra|bdd| a8
from which we obtain a b’ followed by either
1, a"or
2. a'b'followed by AA's denoted by bAA or
3. symbol s’ followed by S denoted by aS



CONTEXT FREE GRAMMARS 8.5

The context free grammar G=(V, T, P, §) where
v={(S 4,8},T={a b}
P={ S - aB| b4
A = aS| bdd |a
B - bS| aBB |b
} 8§ isthe start symbol
gmerm:sﬂwlanguagcmsiatingnfaqmlnmbﬁnf a's and b's.

Example 6 : Construct CFG for the language L which has all the strings which are all
palindromes over T ={a,b}

Solution ; Aswe know the strings are palindrome if they posses same alphabets from forward
as well as from backward.
For example the string "LIRIL" is palindrome because
LIRIL

- —
read read
]

It is the same !

Since the language L is over 7' ={a,b} . We want the production rules to be build a'sand b's. As
¢ can be the palindrome, a can be palindrome evenb can be palindrome. So we can write the
production rules as
G=({8}, {a, b}, P.S)
P can be Saa8a
5= hS80b
8= a
S b
5 =
The string abaaba can be derived as
8§ — aSa
- ab Sha
- ghua Saba
— abaeaba

—» gba aba

which isa palindrome.
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Example 7 : Obtain a CFG to generate integers .

Solution :

The sign of a number can be "+ or '-' or . The production forthis can be writtenas -
S§—>+-|e

A number can be formed from any of the digits 0, 1, 2, .....9, The production to obtain these

digits can be written as D—-0)112]..19

A number N can be recursively defined as follows .
I. AnumberNisadigitD(i.e, N—> D)
2. The number N followed by digit D isalso anumber (i.¢., ¥ —» ND)
The productions for this recursive definition can be written as
N->»D
N - ND
An integer number [ can be a number N or the sign S of a number followed by number N. The
production for this can be writtenas 7 — N| SN
S0, the grammar G {o obtain integer numbers can be writlenas G = (V, T, P, S) where
V={D,§N,I},T={+-0,1,2,..... 9}
p={
I - N|SN
N - D|ND
S+ |-|e
D= 0]1}2]. |19

}
S =1 which is the start symbol

Example 8 : Obtain the grammar to generate the language
L={0"1"2"\m=zland nz0}.
Solution : Inthe language [ = { 0™172"}, ifn =0, the language I contains m number of 0's and
m number of 1's. The grammar for this can be of the form

A-> 01]041
[fnis greater than zero, the language L should contain m number of s followed by m number of
I's followed by one or more 2's i.. e, the language generated from the non - terminal A should be
followed by n number of 2's. So, the resulting productions can be written as

S 4|82

A 01]041



CONTEXT FREE GRAMMARS 5.7

Thus, the grammar G to generate the language
L={0"T2"|mz]1 and n2 0}
can be written as G=( V, T, P, S ) where
V={S,A},T={0,1,2}
p={
S—> 4|82
A—01]041
} 8§ is the start symbol

Example 9 : Obtain a grammar to generate the language L = {0" 1" |[n=0} .

Solution :

Note : Itisclear from the language that total number of 1's will be one more than the total number
of 0's and all 0's precede all 1's. So, first let us generate the string 0* 1" and add the digit | at the end
of this string,

The recursive definition to generate the string 0" 1 can be written as

A—0A4l]e

Ifthe production 4 -»041 is applied n times we get the sentential form as shown below.
A=041=00411 = O, | ) I

Finally if we apply the production
A= e

the derivation starting from the start symbol A will be of the form
A=204l=>0041l =041 =01
Thus, using these productions we get the string 0" 1* . But, we should get the string (" 1" L.e.,an
extra 1 should be placed at the end. This can be achieved by using the production
8= Al

Note that from A we get string 0" 1" and 1 is appended at the end resulting in the string 0" 1™,
So, the final grammar G to generate the language L = { 0"1"'|n >0} will be G=(V,LE.5)

where V={SA},T= {01}
el
5 =+ Al
ﬁ.—}ﬂﬁl[e

} S isthe start symbol
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Example 10 : Obtain the grammar to generate the language
L={w]|n,(w)=n(w)}

Solution :
Note: n (w)=n,(w) means, number ofa's inthe string w should be equal to number of b's in
the string w. To get equal number of a's and b's, we know that there are three cases :
1. There are no a's and b's present in the string w.
2. The symbol'a’ can be followed by the symbol '
3. Thesymbol b’ can be followed by the symbol a'
The corresponding productions for these three cases can be written as
S e
8~ aSh
S— bSa
Using these productions the strings of the form ¢, ab, ba, ahab, baba etc., can be generated.
But, the stimgs such as abba, baab, ctc., where the string starts and ends with the same symbol,
can not be generated from these productions ( even though they are valid strings).
S0, to obtain in the producitons to generate such strings, let us divide the string into two substrings.
For example, let us take the string 'abba’, This string can be split into two substrings 'ab’ and 'ba’.
The substring 'ab’ can be generated from S and the derivation is shown below

8§ = aSh ( Byapplying § — aSh )
= ab (Byapplying § —»«)
Similarly, the substring 'ba’ can be generated from S and the derivation is shown below ;
8= bSa ( By applying § — bSa )
= ba (Byapplying § >¢)

L €., the first sub string ‘ab' can be generated from S as shown in the first derivation and the
second sub string "ba’ can also be generated from S as shown in second derivation,
So. to get the string 'abba’ from S, perform the denivation in reverse order as shown below

A
ah ba
{ 4
S S
~ s-‘ﬁ/
So, to get a string such that it starts and ends with the same symbol, the production to be used is
5§85
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So, the final grammar to generate the language L= {w|n (w)=n, (w)} iIsG=(V,T,RS)
where

V={8} ,T={ab}
P= { So»¢

§— aSh

S bSa

§— 58

} 8 isthe start symbol
5.2 LEFTMOST AND RIGHTMOST DERIVATIONS
Leftmost derivation :
If G=(¥,T. P, S) isaCFGand w € L(G) then a derivation § => w is called leftmost
derivation if and only if all steps involved in derivation have leftmost variable replacement only.
Rightmost derivation :
£G=(V,T,P,S) isaCFGand w & L(G), then aderivation s:;: w is called rightmast
derivation if and only if all steps involved in derivation have rightmost variable replacement only.

Example 1 : Consider the grammar § — S + §] § * §|a| 5. Find leftmost and rightmost
derivations forstring w = g *a + b.
Solution :
Leftmostderivation for w = g* g+ b
§=>5¢8 (Usings — 5+ 5)
?E*S (The firstleft hand symbol isa, sousing § — g)
=a*§+S  (Usings — §+5,inordertoget g + p)
a*a+$ ( Second symbol from the leftis a, so using § - a)
=L=~a"'a+-’-' (The last symbol from the leftis b, sousing § — p)
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Rightmost derivation for = g * 4 4+ b
=258 (Using § — 5 * §)
=8%85+5  (Since,in the above sentential form second symbol from the right is * so,
we can not use § — alb. Therefore, weuse § - S+ §)
?S“S+b (Using § — 5)
=S %a+d (Using § —» a)
Sa*ath  (Usings - a)

Example 2 : ConsideraCFG § — b4|aB, 4 - aS|addia, B —» bS|aBB{b.Find
leftmost and rightmost derivations for w = agabbabbba -

Solution :
Leftmost derivation for w - gaabbabbba :
§ = aB (Using § — aB to generate first symbol of w)

— auBB (Since, second symbol is o, soweuse B —» aBB )
= aaaBBB (Since, third symbol is a.soweuse B —» aBE)
=» aaabBB (Since fourth symbol is b, soweuse B — b)
= aaabbB (Since, fifthsymbolis b, soweuse g —» b)
= aaabbaBB (Since, sixth symbol isa, soweuse 3 - aBR)
= aaabbabB (Since, seventh symbol is b, soweuse 8 — b)
= aaabbabb8 (Since, eighth symbolis b, soweuse B — bS)
= agabbabbbA (Since, ninth symbol is b, sowe use § —» bhA)
=» aaabbabbba (Since, the tenth symbolisa, sousing 4 —» a)

Rightmost derivation for y = agabbabbba
5§ = aB (Using § — ap to generate first symbol of w )

— gaBB (We need a as the rightmost symbol and second symbol from the left side, so we
use B —» aBB)

- aaBbS (Weneed aas rightmost symbol and this is obtained from Aonly, weuse B — 55)
= aaBbbA (Using § — b4)

= aaBbba (Using 4 — a)

=> aaaBBbba  (Weneed b as the fourth symbol from the right)

= gaaBbbba (Using 8 » b)

= aaabSbbba  (Using B —» bS )
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= aaabbAbbba (Using § — bd)
= gaabbabbba (Using 4 — a)

5.3 DERIVATION TREES

Let G =(V, T, P, 8) isaCFG Each production of G is represented with a tree satisfying the
following conditions:

1. If 4 5 a,0,0,...a, isaproduction in G, then 4 becomes the parent of nodes labeled

oy, Uy, Oy, ... 0, , BN
2. The collection of children from left to nght yields a0, .. &,

Example : ConsideraCFG § — § + 5|5 * §|a| b and construct the derivation trees
for all productions.

Solution :
For the production
5S> 85+85 :> Cf
Figure (a)
For the production :> .
Figure (b)

For the production l:> e For the production Q o
S—a S->b
(@) I

Figure (c) Figure (d)
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If w € L(G) then it is represented by a tree called derivation tree or parse tree satisfying the
following conditions :

1.

2,
i
4

5.

The root has label g (the starting symbol),

The all internal vertices (or nodes) are labeled with variables,

The leaves or terminal nodes are labeled with < orterminal symbols,

If 4 » o,0,04...0a, isaproductionin G,then 4 becomes the parent of nodes labeled
[T T TR T 1 |

The collection of leaves from lefi to right yields the string w.

Example 1 : Considerthe grammar § — S + 5} § * S|4} b. Construct derivation tree for

stﬂngw=a"‘b+a.

Solution : The derivation tree or parse tree is shown in below figure .
Leftmost derivationfor w = g* 5+ a :

= g * § (The first left hand symbol is a, sousing § — g)

= a*S+85(Using § » §+ §,inordertoget p + 5 )

§= 55 Usings » 505) [ 7 \@)

&
= E9a
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= a* b+ § (Second symbol from the leftisb, sousing § — 5 )

g
()
&) © fs)
® & O W
(2)

—» a*b + a (Thelastsymbol from theleftis a,sousing § > a)

Example 2 : Consideragrammar G having productions § — a4Sja, 4 — SbA| 55| ba.
Show that § ;a aabbaa and construct a derivation tree whose yield is aabbaa.

Solution :
5 = ad¥
= aShAS
— anbAS
= aabbaS
= aabbaa

Hence, § = aabbaa
Parse tree is shown in figure .

Figure : Parse free yielding aabbaa
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Example 3 : Consider the grammar G whose productions are
S = 0B|14, 4 = 0]0SNAA4, B — 1]1S|0BE . Find
(a) Leftmost andi{b) Rightmost desivation for string 00110101, and construct derivation tree also.

Solution :
(a) Leftmost derivation :
§ = 0B = 00BB
= 0018 = 00118

=» 001108 = 0011018
= 00110108 = 00110101
(b) Rightmost derivation :
§ = 0B = 00BB
=» 0081 = 0015
= 001141 = 0011051

= 00110141 = 00110101
(c) Derivation tree :

Derivation tree is shown in below figure .

54 AMBIGUITY IN CFGs

Figure : Derivation tree for 00110101

A grammar G is ambiguous if there exists some string w ¢ L(G) for which there are
two or more distinct derivation trees, or there are two or more distinct lefimost derivations,



CONTEXT FREE GRAMMARS 5.15

Example 1 : ConsidertheCFG § — S+ §|S * S|a|b andstring w = ¢ * ¢ + b ,and
derivations as follows:
Solution :

First leftmostderivation for w = a*a + b

S=>8*S (Using s — S*5)
= a*§ (Using § — a)
= a*S+8§ (Usings —» S+ 8)
= a®a+8 (Using § — a)
= a*a+bh (Using § — )
Second leftmost derivation for w = a* a + b
S§=>8+8 (Using § - § + 8)
=385%8+5 (Using § - §+*§)
= a*S5+ 35 (Using § — a)
= a'a+$ (Using § — a)
= a*a+bh (Using 5 —» 5)

Two distinct parse trees are shown in figure (a) and figure (b)

Figure(a) Parse tree for g * 2 + & Figure(b) Parse tree for a*a + b
Since, there are two distinet leftmost derivations (two parse trees) for string w, hence w is
ambiguous and there is ambiguity in grammar G

Example 2 : Show that the following grammars are ambiguous.
{a) S —» 85|alb
(b)S —» A|B|b, A —>adB|ab, B —> abB|e
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Solution :
(a) Consider the string « = ses , two leftmost derivations are as follows :

§=S5 (Usings-»s8) 75 (Usings - s5)

| S=bS  (Using s - 5) D (Using s — S5)
=>bSS  (Usings - s5) TS (Using S — b)
=bbS  (Using 5 - b) =bbS (Using § — b)
=bbb  (Using 5 > b) =>bbb (Using § — b)

Two parse frees are shown in figure(a) and figure(b) .
() ()
(&) &) (s ] ()
ONEOERO O ) Le )

Figure (a) Parse tree for bbb Figure (b) Parse tree for bbb
So, the given grammar is ambiguous.

(b) Consider the string w = ab,we gettwo lefimost derivations for w as follows :

S=4 S=8
L L
=ab  (Using A - ab) 2abB  (Using B — abB)
?"f" (Using B =€)

Two parse trees are shown in figure (c) and figure (d).
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Figure (c) Parse tree for w = ab Figure (d) Parse tree for w = ab
So, the given grammar is ambiguous.

541 Removal of Ambiguity

5.4.1.1 Left Recursion

A grammar can be changed from one form to another accepting the same language. Ifa grammar
has lefi recursive property, it is undesirable and left recursion should be eliminated. The left
recursion is defined as follows.

Definition :A grammar G is said to be left recursive if there is some non terminal A such that
4 =" Ac.Inotherwords, in the derivation process starting from any non - terminal A, if a sentential
form starts with the same non - terminal A, then we say that the grammar is having lefi recursion.

Elimination of Left Recursion
The left recursion in a grammar G can be eliminated as shown below. Consider the A - production

of the form A s da|dald @y da BBy | B o Bu
where £,'s do not start with A. Then the A productions can be replaced by
A=>B 4| fA" | B By A
A sa A ;A |ayd') v @, A \e
Note that ,'s do not start with 4!,
Example 1 : Eliminate left recursion from the following grammar
E= E+T|T
T—+T*F|F
F-»(E) |id
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Solution :  The lefi recursion can be eliminated as shown below :

Given Substitution Without left recursion
A=Aalf, A= fAd'and A'sa A'le
E—= E+T|T A=F E - TE'

ey =+T E'54TE! |e
B=T
. ITeF|F A=T I T -
oy =*F T' 5 *FT |e
B=F
F(E)|id Not applicable F=(E)|id

The grammar obtained after eliminating left recursion is
E —» TE
B +IE1|1&
r —-» FI'
" o *Fre
F - (E)|id

Example 2 : Eliminats left recursion from the following grammar

5 = 4b|a

A > 4Ab|Sa
Solution :
The non terminal S, even though is not having immediate left recursion, it has lefi recursion
because § — Ab= Sab i.€., § =* Sab - Substituting for S in the A - production can eliminate the
indirect left recursion from S. So, the given grammar can be written as

S Abla

A—> Ab | Aba|aa

Now, A - production has left recursion and can be eliminated as shown below :
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Given Substitution Without left recursion
A= da |p, A->f A'and A' - a, A"l
S Abla Not applicable S~ 4b|a
i A= Ab| Aba |aa A=A oy el
a =b A' b4 |bad'| e
@; = ba
A =aa

The grammar obtained after eliminating left recursion is
8> 4bla
A — aad'
A' = bA' bad' | e
5.4.1.2 Left Factoring
Definition :
Two or more productions of a variable A of the grammar G = (¥, T, P,S) are said to have left

factoring if A - productions are of the form A= af |af)...|af,, where g,e(V UT)* and
does not start ( prefix) with « . All these A - productions have common left factor « .

Elimination of Left Factoring

Let the variable A has ( left factoring) productions as follows :

A= afyjafiz af3 | o @B ulr |72 |-\7m , Where 8.4, 4 ..... B,and Y1 ¥21 ¥ 4O MOL
contain & asa prefix, then we replace A - productions by :

A= ad |yl 71l ... | ¥ » Where A= B | Bl ....] B,

Example : Consider the grammar § - aSa | aa and remove the left factoring ( if any ).

Solution :

§-+aSa and §-»aa have « =4 asaleft factor, so removing the left factoring, we get the
productions: § —»aS", §' -» Sa|a.
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The problem associated with left factoring and left recursive grammars is back - tracking. We
can find o as a prefix in RHS in many ways and a string having o as a prefix can create
problem. In worst condition, to get appropriate remaining part of the string we have to search the
entire production list. We take the first production, if it is not suitable then take second production
and so on, This situation is known as back - tracking . For example, consider the above S -
productions § - aSa | aa and a string w= aa. We have choice of the both productions looking at
the first symbol on the RHS.

Iteration First : Iteration Second :
8 =» aSa S=>ana=w
= agaa £ w
So, if we follow the iteration first, then we can not get the string w and we will have fo return to
the iteration second i. e. the starting symbol. The problem, in which we proceed further and do
not get the desired string and we come to the previous step, is known as back - tracking. This
problem is a fundamental problem in designing of compilers ( parser).

Procedure for Removal of Ambiguity :

We have no obvious rule or method defined for removing ambiguity as we have for left recursion
and left factoring. So, we will have to concentrate on heuristic approach most of the time,

Let us consider the ambiguous grammar § — 5+ 5| § *S]a|b. Now, if we analyze the
productions, then we find that two productions are Jeft recursive. So, firstwe try to remove the lefi recursion.
S+ 8+5and §— §*8 isreplaced by § - a8 b8, §'— +58'*85" | e
Now, we check the derivation for ambiguous string = a4 + o . We have only one left most
derivation or only one parse tree given as follows :
5 =a¥
= a*35
=a*af'y
=a*a+555
=a*a+al'ss
=a*ag+ach's
=a*a+ach

=a®a+ae (=a'a+a)
So, we conclude that removal of left recursion ( and left factoring also) helps in removal of
ambiguity of the ambiguous grammars.
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5.5 MINIMIZATION OF CFGs

As we have seen various languages can effectively be represented by context free grammar. All
the grammars are not always optimized. That means grammar may consists of some extra symbols
( non - terminals), Having extra symbols unnecessary increases the length of grammar.
Simplification of grammar means reduction of grammar by removing useless symbols. The
properties of reduced grammar are given below :

1. Eachvariable (i. e. non - terminal) and each terminal of G appears in the derivation of some
word in L.

2. There should not be any productionas x —» ¥ where X and Y are non - terminals.
3. If & isnotinthe language L then there need not be the production ¥ —»e.

We see the reduction of grammar as shown below :

Reduced grammar
Removal of Elimination of Removal of
useless symbols e productions unit productions

5.5.1 Removal of useless symbols

Definition : A symbol X is useful if there is a derivation of the form
S="akff =" w
Otherwise, the symbol X is useless. Note that in a derivation, finally we should get string of

terminals and all these symbols must be reachable from the start symbol 8. Those symbols and
productions which are not at all used in the derivation are useless.

Theorem 551 :letG= (V. T, P, S) bea a CFG We can find an equivalent grammar
G, = (V,.I,,P,,5) such that for each Ain (VU T)) there exists o and £ in (VuT)* and x in
T* forwhich § =' @4 =" x.
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Proof: The grammar G, can be obtained from G in two stages.

STAGE 1 :
Obtain the set of variables and productions which derive only string of terminals i. e., Obtaina
grammar Gy = (¥,.7;,# ,5) such that ¥, contains only the set of variables A for which 4" x
where xe7 * .

Thealgorithm to obtain a set of variables from which only string of terminals can be derived
is shown below.
Step 1 : [ Initialize old _ variables denoted by ovto ¢ ]

ﬂF:#

Step 2: Take all productions of the form 4 — x where , 7+ i.e.,ifthe R. H. Sof the
production contains only string of terminals consider those productions and
corresponding non terminals on L, H. § are added to new _ variables denoted by nv.
This can be expressed using the following statement :

mw={A|Ad=>x and xeT"}

Step 3: Compare ov and nv. As long as the elements in ov and nv are not equal, repeat the
following statements. Otherwise goto step 4.

a. [Copynew varialbestoold variables]
ov=nv
b. Add all the clements in ov to nv. Also add the variables which derive a string
consisting of terminals and non terminals which are in ov.

nm =ov U {A|Ad-> yand ye(ov U T)"}
Step 4 : When the loop is terminated, nv (or ov) contains all those non terminals from which
only the string of terminals are derived and add those variables to ¥;.

ie, V=or

Step 5: [ Terminate the algorithm ]
return ¥

Note that the variable ¥, contains only those variables from which string of terminals are obtained.
The productions used to obtain ¥, arcadded to £, and the terminals in these productions are
added to 7, The grammar G, = (V;, T;, £, §)contains those variablesAin ¥, suchthat 4" »
forsome x in y+. Since each derivation in G, isaderivationof G L (G,) = L(G).
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STAGE 2:

Obtain the set of variables and terminals which are reachable from the start symbol and the
corresponding productions. This can be obtained as shown below :

GivenaCFG G = (¥, T, P, §), we can find an equivalent grammar G, = (V.11 £,5)
such that foreach X in ¥V, U 7, there exists a suchthat § =" & and X is asymbolin ¢« i.e.,
if Xisavariable x e ¥, and if X isterminal x e 7, Each symbol X in VW T, isreachable from
the start symbol S. The algorithm for this is shown below.

V) ={S}
ForeachAin v,
if 4 then
Add the variablesin A ro ¥,

Add the terminalsin & to T,
Endif
Endfor
Using this algorithm all those symbols ( whether variables or terminals) that are not reachable
from the start symbol are eliminated. The grammar @, does not contain any useless symbol or
production. For each X' €(G,) there is a derivation.
S="atf="x
Using these two steps we can effectively find G, such that L(G)=L(G,) and the two
grammars G and G, are equivalent,

Example 1: Eliminate the useless symbols in the grammar
S - aAl bB
A - aA |a
B — bB
D —» ab | Ea
E - aC|d
Solution :

Stage 1 : Applying the algorithm shown in stage | of the theorem 5.5.1, we can obtain a set of
variables from which we get only string of terminals and is shown below.
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oV nv Productions
A - a
é AD.E D =5 ah
E - d
=4 ah
A,D,E ADVES A —3 aA
D 5 Ea
A,D,E,S AD,ES
The resulting grammar G, = (¥, %, #, §) where
£ = {4, D, ES§}
?i - {a, b, d}
A = |
A “» alaA
D = ah|Ea
E - d
5 » ad

Stage 2:

1§ isthe start symbol
contains all those variables in ¥, suchthat 4 -~ w where y . 7+.

Applying the algorithm given in stage 2 of the theorem 5.5.1, we obtain the symbols such that
cach symbol X is reachable from the start symbol S as shown below.

Fy ' L4
: . S
§—» ad a S,A
A—salad a S, A
The resulting grammar G, = (7},7;, R, S) where ¥, =(S,4} , 7, ={a}
'Pt "{
S = ad
A = alad

} S is the start svmbol
such that each symbol X in (¥, U T;) hasaderivationof the form § =" aXg=" w.
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Example 2 : Eliminate the useless symbols in the grammar

Solution :

Stage 1:

oowew

LR I R

aA|a|Bb|cC

aB
a|Aa
eCD
ddd

Applying the algorithm shown in stage1 of theorem 5.5.1 , we can obtain a set of variables from
which we get only string of terminals and is shown below,

ov v Productions
S - a
4 S,B,D B 5 &
D =5 ddd
S.B,D S.B,D.A S - Bb
A -+ aBB
S,B,D,A S,B,D,A S = aA
B - Aa

The resulting grammar G, = (¥, , 7}, P, §) where
{S, B.D,A}
{a,b, d )

]

{

}

>ow®

P4l

a| Bb|aA
a|Aa
ddd

aB

S is the start symbol contains all those variables in ¥, such that 4 =* .

Stage 2:

Applying the algorithm given in stage 2 of the theorem 5.5.1, we obtain the symbols such that

each symbol X is reachable from the start symbol S as shown below.
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'P'I Tl F]
. . S
5 5 a|BblAa ab S,A.B
A-»aB ab S,A,B
B alAa ab S,A.B
The resulting grammar G, =(¥,, I,,F,,S) where
¥y = {S,A,B}
T, = {a,b}
P = {

S 45 a|Bb|aA
A - aB
B - alAa

} S isthe start symbol

such that each symbol Xin (¥, T} ) hasaderivationof the form §=" axf =" w.
55.2 Eliminating « - productions

Aproduction of the form 4 —» = isundesirable in a CFG unless an empty string is derived from
the start symbol. Suppose, the language generated from a grammar G does not derive any

empty string and the grammar consists of e- productions. Such ¢ - productions can be removed.
An e - production is defined as follows :

Definition1: LetG=(V,T,P,5)beaCFG A production in P of the form

A&

iscalledan e - production or NULL production. Afier applying the production the variable A is
erased. Foreach A in V, if there is a derivation of the form

A= e
then A isa nullable variable.
Example : Consider the grammar
S -  ABCa|bD

A > BC|b
B - b|e
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C o ﬂl €
D - d
In this grammar, the productions
Boe
C—oe
.are e - productions and the variables B, C are nullable variables. Because there isa production
A — BC

and both B and C are nullable variables, then A is also a nullable variable.

Definition2: Let G=(V,T,P, S)be a CFG where V is set of variables, T is set of terminals,
P is set of productions and S is the start symbol. A nullable variable is defined as follows.
1. If 4 - e isaproduction in P, then A is a nullable variable.
2. If A —» B, B......B, isaproductionin P,and if B, B,.......8, are nullable variables,
then A isalso a nullable variable
3. The variables for which there are productions of the form shown in step 1 and step 2 are
mullable variables.
Ewven though a grammar G has some ¢ - productions, the language may not derive a language
containing empty string. So, in such cases, the e - productions or NULL productions are not
needed and they can be eliminated.

Theorem 5.5.2 : LetG=(V, TP, S)where L[(G)+# . We can effectively find an equivalent
grammar (, with no e~ productions such that L(G, )= L{G)-<.
Proof : The grammar G, can be obtained from G in two steps.

Step 1: Find the set of nullable variables in the grammar G using the following algorithm.

ov=¢
v ={A|ld—e }
while(ov!=nv)

{

ov=nv
nw=ov u {Ald>aand aeov ")

}
V=ov
Once the control comes out of the while loop, the set V contains only the nullable variables.
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Step 2 : Construction of productions p, . Consider a production of the form
A= X]X:Xj ,....,..,.,.-'f-, Rz 1

where each X, isin (¥ v 7)., Inaproduction, take all possible combinations of nullable
variables and replace the nullable variables with ¢ one by one and add the resulting productions
to p, . If the given productionisnotan e - production,additto p, .

Suppose, A and B are nullable variables in the production, then

1. First add the productionto P, .
Replace A with cand add the resulting productionto P,
Replace B with e and the resulting productionto £, .
Replace Aand B with € and add the resulting productionto 7, .
If all symbols on right side of production are nullable variables, the resulting production is
an e production and do not add thisto P, .

Thus, the resulting grammar G, obtained, generates the same language as generated by G
without ¢ and the proofis straight forward ,

o

Example 1 : Eliminate all & - productions from the grammar

S - ABCa | bD
A —» BC|b
B -3 bl e
c Y c] e
D - d
Solution :
Step1 :

Obtain the set of nullable variables from the grammar. This can be done using step 1 of theorem
5.5.2 as shown below,

ov mw Productions
] B,C Be

C—oe
B,C B,C,A A- BC
B,C.A B,C,A -

V={B,C,A} areall nullable variables.
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Step 2 : Construction of productions p, .

Productions Resulting productions ( 7, )
8§ - ABCa § — ABCa|BCa|ACa| ABa|Ca|
Aa|Bala
S = bD § = bD
A= BClb A- BC|B|C|b
B-+ble _B=b
C=cle C—e¢c
o4 D—>d

Theﬂfm{;| ={F1.:Tli'ﬁ'rs) '-\"]'IL‘.I'E

-t
]

{S,A,B,C,D}
S i {ab,e,d}
P, = { S —» ABCa|BCa| ACa |ABaCa|Aa|Bala | bD
A SBC|B|C|b
Basb
C»C
Dosd
} 8 isthe start symbol
Example 2: Eliminate all - productions from the grammar

S - BAAB
A 0A2]|2A0] ¢
B ¥ AB|1B| e
Solution :
Step 1 : Obtain the set of nullable variables from the grammar. This can be done using
step | of theorem 5.5.2 as shown below.

ov v Productions

@ AB A—re
B—e

A B A, B, S A — BAAR

A, B,S A.B. S -

V={5,A, B} are all nullable variables.
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Step 2 : Construction of productions 7, . Add anon e-productionin Pto p, . Takeall the
combinations of nullable variables in a production, delete subset of nullable variables one by one
and add the resulting productions to P, .

Productions Resulting productions ( P, )

S - BAAB S - BAAB|AAB | BAB | BAA |
AB|BB|BA|AAJA|IB

A - 0A2 A - 0A2]02

A — 2A0 A - 2A0(20

B —» AB B AB|B|A

B - 1B B 1B|I

We can delete the productions of the form A —» A.In p, , the production 5 - B canbe
deleted and the final grammar obtained afier eliminating e -productions is shown below.
The grammar G, = (¥,,T;,F.5) where

v, = {5,A,B,C,D}

T, = {a,b,c,d}

P, = {S —» BAAB|AAB|BAB |BAA|AB|BB |BA[AAJA|B
A 5 0A2|02|2A0]20
B > AB|A|1B|1

} 8 isthe start symbol
5.5.3 Eliminating unit productions
Consider the production 4 — 2. The left hand side of the production and right hand side of the
production contains only one variable. Such productions are called unit productions. Formally,a
unit production is defined as follows.
Definition : LetG=(V.T,P,S)beaCFG Any production in G of the form

A=+ B

where A, p ey isaunit production.

In any grammar, the unit productions are undesirable. This is because one variable is simply
replaced by another vanable.
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Example : Consider the productions.
A— B
B— aBlb
In this example,
B —» aBt
B—=b

are non unit productions, Since B is generated from A, whatever is generated by B, the same
things can be generated from A also. So, we can have
A—» ab

4 - b and the production 4 -+ B can be deleted.

Theorem 5.5.3 ; LetG=(V, T, P, S ) be a CFG and has unit productions and no ¢ - productions.
An equivalent grammar G, without unit productions can be obtained such that L(G) = L(G)) i e,
any language generated by G is also generated by G, . But, the grammar G, has no unit productions.
Proof :
A unit production in grammar G can be eliminated using the following steps :
1. Remove all the productions of the form 4 —» 4
2. Addall non unit productionsto £ .
3. Foreach variable A find all variables B such that
A="B
i. e., in the derivation process from A, if we encounter only one variable in a sentential
form say B ( no terminals should be there ), obtain all such variables.
4. Obtain a dependency graph. For example, if we have the productions
A= B
B=>(C

C—B
the dependency graph will be of the form

@O—xB_>©

5. Note from the dependency graph that

a A=s* B i, e., B can be obtained from A

So, all non - unit productions generated from B can also be generated from A
b. A=*C i.e.,C canbe obtained from A

So, all non - unit productions generated from C can also be generated from A
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¢. B=*C i.e., Ccan be obtained from B
S0, all non - unit productions generated from C can also be generated from B
d. C =* B i.e., B canbe obtained from C

So , all non - unit productions generated from B can also be generated from C,
6. Finally, the unit productions can be deleted from the grammar G.

7. The resulting grammar G, , generates the same language as accepted by G

Example1 : Eliminate all unit productions from the grammar

s = AB
4 = u

B = (b
cC = D

D = E|bC
E - d|4b

Solution : The non unit productions of the grammar G are shown below :

s = AR
A = a
B = b
D -
E = didb N GRETTRal § }
The unit productions of the grammar G are shown below :
B - c
o = D
- B = E

The dependency graph for the unit productions is shown below :

(Br—{C)—0)—«E)

It is clear from the dependency graph that all non unit productions from E can be generated from
D, The non unit productions from E are

E = d|4ib SO )
Since D =*E,

D—»d|Ab
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The resulting D productions are

D — bC (from production(1) )

I — 4| Ab i)
From the dependency graph itis clear that, € = *E . So, the non unit productions from E shown
in (production(2)) can be generated from C. Therefore,

C=»d| Ab
From the dependency graph it is clear that, € = *D. So, the non unit productions from D shown
in (production(3)) can be generated from C. Therefore,

C=bC

C— d|4b PRI L,
From the dependency graph it is clear that 8 = *C, B="D, D="*E . So,all the productions
obtained from B can be obtained using (productions (1) , (2), (3) and (4) ) and the resulting
productions are :

B—h

B=»d |Ab

B8—=bC {5)

The final grammar obtained after eliminating uml[mdumunsmnbenhtmn&dbymmhmmgﬂm
productions (Productions (1), (2), (3) . (4), and (5)) and isshown below :

F! - {Smﬁ-B-C,DHE}
T,={ab,d}
P ={ AB

a
b|d|Ab|bC
bC |d|Ab
bC|d|Ab
d|Ab

} 8 isthe start symbol

44444

moOomE W

Example 2 : Eliminate unit productions from the grammar

5 - AO|B
B o Al 11
A - p|1z|B
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Solution : The unit productions of the grammar G are shown below :

S -y B
B - A
A - B

The dependency graph for the unit productions is shown below.

&5

The non unit productions are :
S - Al
B —» 11
A - 0]12 Easeasa i
It is clear from the dependency graphthat § =*B, 5 =*4, B=>*4 and 4>*B.So, the
new productions from S, A and B are

S o 11]0]12
B b 012
A 4> R PRPRMBRNIRRE) |
The resulting grammar without unit productions can be obtained by combining Productions
(1) and (2) and is shown below :
v, {S,A,B} ,1, = {0,1,2}
P, = { S — ADj11|0]12
A - 0|12|11
B e 111012
} S isthe start symbol

Note ; Given any grammar, all undesirable productions can be eliminated by removing
1. - productions using theorem 6.5.2
2. unit productions using theorem 6.5.3.
3. uselesssymbols and productions using theorem 6.5.1

in sequence. The final grammar obtained does not have any undesirable productions.

5.6 NORMAL FORMS

As we have seen the grammar can be simplified by reducing the « production, removing useless
symbols, unit productions. There is also a need to have grammar in some specific form. As you
have seen in CFG at the right hand of the production there are any number of terminal or non -
terminal symbols in any combination. We need to normalize such a grammar, That means we
want the grammar in some specific format. That means there should be fixed number of terminals
and non - terminals, in the context free grammar.



CONTEXT FREE GRAMMARS 5.35

In a CFG, there is no restriction on the right hand side of a production, The restrictions are
imposed on the right hand side of productions ina CFG resulting in normal forms. The different
normal forms are :

1. Chomsky Normal Form (CNF)
2. Greiback Normal Form (GNF)

56.1 Chomsky Normal Form (CNF)

Chomsky normal form can be defined as follows.

Non - terminal — Non - terminal Non - terminal
Non - terminal —» terminal

ThagivaFGslmﬂdbﬁmnv:mdimheabﬂvefumauhmwemmyihnuhamnmariain
CNF. Before converting the grammar into CNF it should be in reduced form. That means
remove all the useless symbols, e productions and unit productions from it. Thus this reduced
grmmarcmheﬂmnmmﬂadmﬂw.

Definition :
LetG= (V, T,P,5)beaCFG The grammar G is said to be in CNF if all productions are
of the form

A BC

{1 814

A a
where A,Band CeV andaeT.

Note that if a grammar is in CNF, the right hand side of the production should contain two
symbols or one symbol. Ifthere are two symbols on the right hand side those two symbols must
be non - terminals and if there is only one symbol, that symbol mustbe a terminal.

Theorem 5.6.1 : Let G=(V, T, P. 5 ) be a CFG which generates context free language
without <. We can find an equivalent context free grammar G, =(V,.T,F; ,S) in CNF such that
L(G)=L(G,) i.e., all productions in G, are of the form

A BC

i 81

A
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Proof : Let the grammar G has no « - productions and unit productions. The grammar G, can
be obtained using the following steps.

Step 1 : Consider the productions of the form
A= Xy XXX

where n 22 and each X, (V¥ w T i. ., consider the productions having more than two symbols
on the right hand side of the production. I{'X is a terminal say a, then replace this terminal by a
corresponding non terminal B, and introduce the production
B, a
The non - terminals on the right hand side of the production are retained. The resulting productions
are added to A . The resulting context free grammar G, = (¥, T, B, §) where each production
in P, isofthe form
A= A Ay A
or
A—a

generates the same language as accepted by grammar G So, L(G) = L(G,).

Step 2 : Restrict the number of variables on the right hand side of the production. Add all the
productions of G, which arein CNFto p, . Consider a production of the form

A= A dy e dy
where n 23 ( Note that if n =2 , the production is already in CNF and n can not be equal to 1.
Because if n= 1, there is only one symbol and it is aterminal which againis in CNF ). The A -
production can be written as

A —» A Dy

Dy - A D

Dy = AzD,

Dl-l - "n-lﬂn-l
These productions are added to P, and new variables are added to ¥, . The grammar thus
obtained is in CNF. The resulting grammar G, = (¥|, T ,R,S) generates the same language as

accepted by G i. e. LIG)=L(G,).
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Example 1: Consider the grammar
s 5 DA|1B
A o 0AA 1S |1
B - 1BB|0S|0 Obtainthe grammar in CNF -

Solution :
Step 1: All productions which are in CNF are added to 7. The productions which are in
standard form and added to A are:

A —» 1
B - 0 s )

Consider the productions, which are notin CNE. Replace the terminal a on right hand side
ufﬂlepmdtﬂinnb}famn-tcmﬁmlkandmmdmethepmdmﬁmﬁ - a. This step has to be
carried out for each production which are not in CNF.

The table below shows the action taken indicating which terminal is replaced by the
corresponding non - terminal and what is the new production introduced. The last column shows
the resulting productions.

Given Productions Action Resulting productions
S s0AlB Replace Oby B, and introduce S-» B, A|B B
the production B, 0 By—0
Byl
Replace 1 by 8, and introduce the
production B, -1
A - 0AA/S Replace 0 by 8, and introduce the | 4-» B, A4/ BS
production B, —+0 By — 0
B =1
Replace 1 by B, and introduce the
production B, — |
B - 1BB/S Replace 0 by 8, and introduce the B—» B,BB/ B,S
production B, =0 B, -1
By =0

Replace | by 5, and introduce the
production B, —» |
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The grammar G, = (¥}, T, #, §) can be obtained by combining the productions obtained from
the last column in the table and the productions shown in(1).
h " {S,A,B, B, 8 }

T = {0,1}

R = { b — ByA|B, B
A -5 B,A 4|85 |1
B - B,BB|B,S |0
B, — 0
B, - 1

: ¢ 8 isthe start symbol
Step 2:

Restricting the number of variables on the right hand side of the production to 2. The productions
obtained after step 1 are:

S - BA|BB

A = BiAA|BS|
B — B BB|BS|0
By, = 0
B - |1

In the above productions, the productions which are in CNF are

§ = B,ABB

A = BS|

B = BS|0

B - 0

B - 1 SR (.|
and add these productionsto 2, . The productions which are not in are

A - By AA

B -  BBB
The following table shows how these productions are changed to CNF so that only two variables
are present on the right hand side of the production.
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A By AA Replace AAon R.H.S with variable | 4— 8,0,
b, and introduce the production D, - AA
Dy — Ad
BB BB Replace BB onR. H. S with variable | B —» 8D,
D, and introduce the production D, —+ BB
D, » BB FEPTp 1

ﬁefhdmwﬁchhhﬂﬂthcubﬁhwdhymmbhhgﬂmmodmﬁmsh{i}andm.
The grammar G, = (F,,T,F,,S) isin CNF where

¥

{ S!Aﬂ' B'l B'J"'BI' DF'P Dl}

= {0, 1}

B = { 5 - BABB
A > BS|BD,
B - BS|0| BD,
B -0
8 =1
D, = A4
D, —» BB

} Sis the start symbol

Example 2 : Find agrammar in CNF equivalent to the grammar .

S»-S|[8TS]|alb
Solution :  Given, grammaris:

S»-S|[STS]|alb e {A)
where, terminals are :
~[.T.).aand b

In the given grammar (A) there is no any &—production, no any unit - production and no any
useless symbols .

Now, in the given grammar (A), following are the productions which is already in the form
of CNF: S—a

S—b
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Also, in the given grammar (A), following are the productions which are not in the form of CNF:
§-»-§

Thus: (a)  Considering the production:

We can write this production as:
SVS e (1)
S - (2)
where V, is a new variable.
(b) Now, considering the production :

5[5 15

We can write this production as
5> V, SV, 8V, e (3)
Vi =l e (4)
v, -1 .. (5)
el e (6)

where V,, ¥, and ¥, are new variables.

Thus, from (1), ....., (6), the result grammar becomes :
SV,S|V,SV, SV, |alb
¥y=h=
V= widB)
v, T
Ve ]

Now, in the resultant grammar (B), following is the production which is not in the form of CNF:
S— V, 8V, 5V,
(¢)  Now,considering the production :

S5, SV,

We can write this production as :
SV e (7
v, SV, enl8)

V, = SV, wi(F)
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Thus, from (7), (8) and (9), the resultant grammar becomes :
SV S|VVY, |alb
V- -
d|
V. — 8V, wu(C)
V, — SV,
V, = t
Vi—1
Nﬂw,inﬂmmmmmgmnm(C}fﬂlh“ingisﬂmptmhwﬁmMﬂdlismtmﬂmﬁm of CNF:
SV ¥,
We can write this production as ;
S-vv, (10)
Va Vsl mene(11)
Thus, from (10) and (11), the resultant grammar becomes :
AN
V-~
V=l
A A weil(D)
Vi = S¥,
¥y = SV,
v,=->1
Vo= ]
Thus, the resultant grammar (D) is in the form of CNF, which i5 the required solution.

5.6.2 Greibach Normal form (GNF)

Greibach normal form can be defined as follows :

Non - terminal —» one terminal. Any number of non - terminals

Example :
Soa is in GNF
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But 8> Ad is not in GNF
5§ Ada is not in GNF
Definition : A CFG G = (¥, T,P,S) isin Greibach normal form (GNF) ifits all productions
are of type 4 —» aa , Where @ e¥ " (String of variables including null string )and @ € T . A grammar
in GNF is the natural generalization of a regular grammar ( right - linear).

Theorem 5.6.2 : Every CFLL without e is generated by grammar, where productions are of
type A »aq,where aeV " and aeT.

Proof : We use removal of left recursion (without null productions) as given below.
Let the variable A has left recursive productions given as follows :

A Aaj| day|Aay)... | Aa, |88 B)....| B, ,where .5, B, ... B, donotbeginwithA, then
we replace A - productions by the productions given below .
A= BAA...| BuA\B| By 15\ 1B,,» Where
A= adla A a b o, Ala, | @, la; e,
Method for Converting a CFG into GNF :
We considerCFG G = (¥ , T.P,5) .
Step 1: Rename all the variablesof Gas 4,, 4, 4y, ......., 4,
Step2: Repeat Step3andStep4 fori=1,2, .oy 1t
Step3: If 4, »aa,a,ay....a,,where a T ,and @, isavariable or a terminal symbol,

Repeat for j=1,2, ..ccccy m
If &, is a terminal then replace it by a variable 4,.; and add production 4,., - @, and
n=n+1.Consider thenext 4, - production and go to step 3.
Step4: If 4, —aaya,......a, , where a; isavariable, then perform the following :

If &, issame as 4, , then remove the left recursion and go to Step 3.

Else replace o, by all RHS of &, -productions one by one. Consider the remaining

A, -productions, which are not in GNF and go to Step 3.
Step 5: Exit
Advantages of GNF :
1. Avoids left recursion.
2. Always has terminal in leftmost position in RHS of each production.
3. Helps select production correctly.
4. Guarantees derivation length no longer than string length.
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Example 1 : Consider the CFG §-»5+5|5*5|a| b and find an equivalent grammar in GNF.

Solution:  Let G, istheequivalent grammar in GNF.

Renaming the variable, we get
PS5 +5 { Notin GNF)
P52 5*5 ( Not in GNF)
PS> a ( In GNF)
P8 —=»b ( In GNF)

P, and P, are lefl recursive productions, so removing the left recursion, we get
§,—»aS,|bS 4| alb , where
S;—+5,8,* 55,1+ §,1*5,
Now, all productions are in GNF.
Example 2 : Consider the grammar G = ({ 4,,4,,4, }.{a,b},P, ;) , where P consists of
following production rules.
Ay > Ay Ay Ay A A,\b, Ay — A, A)la Convert it into GNF.

Solution : ( Renaming is not required )
Consider 4, - productions :

A = A Ay (Mot in GNF)
Replacing 4, by its RHS, we get
Ay = by ( In GNF)
Ay > Ay Ay Ay ( Not in GNF)
Now, consider 4, —» 4,4, 4,,and replacing 4, by its RHS, we get
A, = ad; 4, ( In GNF)
A = A A A4 ( Notin GNF)

So, A, - productions are A4, —»bd, | ad, A, |4, 4,4, 4,

Now, consider 4, —+ 4,4,4, 4, and removing left recursion, we get
A > by Ay |bAs (Tn GNF)
A, —ad, A, A, lad, 4, ( In GINF), where
Ay = Ay A Ay dy| A A4,

( A, isanew variable and its production is not in GNF)

So,now all 4, - productions are in GNF .
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Consider the 4, - productions :

Ay —b (In GNF)

Ay =5 Ay Ay ( Not in GNF)
Now, consider 4, - 4,4, and replacing 4, by its RHS, we get

Ay —vad, ( In GNF)

Ay = Ay Ay A ( Notin GNF)
Now, consider 4, -» 4,4, 4, and replacing 4, by its RHS, we get

Ay = bAy A A Ay, ( In GNF)

Ay~ by Ay (In GNF)

Ay = ad, Ay A, A, A, (In GNF)

Ay —vad Ay A, A, (In GNF)

So,all 4,- productions are in GNF.
Consider 4, - productions :
A, >a ( In GNF)
Ay — A4, ( Not in GNF)
Now, consider 4; — 4, 4, andreplacing 4, by its RHS, we get
Ay —bA A A, | bAA, ladi A, A 4, | adi A4, (In GNF)
Consider .4, - productions :
Ay~ As ApAyAy| Ay Ay Ay ( Not in GNF)
Replacing 4, by its RHS, we get
A, bA A A, |bA Ay | a A A A A, | ad A Ay
Ay = bAyAy Ay Ay A Az Ay,
Ay = Ay Ay A Ay A A,
Ay = bAy Ay Ay A Ay Ay,
Ay = bAy Ay Ay Ay Ay,
Ay vad\ Ay A Ay A A Ay Ay
A, —rad A Ay A, A 445,
A, »ad 4,434, A, 4,4, ,and
Ay = ad 44,4, 4,4,

Now, all 4, - productions are in GNF.
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Productions in GNF are :
4 —ak 4y | bA A, bAy | ad 4, A, | ad 4
Ay —2b| ad| b d A4, | BAyAy A, | adi A Ay A, ladi A Ay Ay
Ay —a|bA A A | b4, (ad A4 A4, lad A4, ,
Ay b A AA, | bA Ay | ad A Ay Ay lad A A | bAAA A A AA,,
Ay bA A A AAA | ad A M AAAA, |ad A4 44,44,
Ay SDAAAANA | bAAAAA | ad A LA A A ol A AN A4

Example 3 : Find equivalentgrammar in GNF.

(a) $ » aB|bAA > aS|bAA|a,B » bS|aBB|b
(b) 8 —» abSb|a|aAb,A —» bS|aAAb
{c) § — AA|O,A - SS|1
Solution :

(a) Renaming S,Aand Bby 4,, 4,,and 4, respectively, we get the following productions.

A= ady | by Ay ~> ad, | bAs Ay |a, Ay — bA, |ad A3 | b
Since, all productions are in GNF, so there is no need of any modification.

(b) Renaming S,and A by 4, and 4, respectively, we get the following productions.
A—> abd i a|ad,b,4,— bA, | ad, A,b
Consider the 4, - productions one by one.

A — abdb ( Notin GNF)
Replacing all the RHS terminals except the first by new variables, we get

Ay —» ads Ay 4y where 4; = b ( In GNF)
Considering the next 4, - production :

A—a ( In GNF)
Considering the next 4, - production :

A= adyb ( Not in GNF)
Replacing b by variable 4, (since, we have already defined A, - b ), we get

A —» ady A, ( In GNF)

Considerthe A, - production :
Ay =» bA, (In GNF)
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Considering the next 4, - production :

Replacing b by variable A, ( since, we have already defined A; - b ), we get

Now, all productions given following are in GNF.
l‘] - fk‘!!j1 A!lﬂlﬂ-“:/‘]‘.,‘ta —?'b..‘l! M:Alf‘!, an-d Jj b

(¢) RenamingS,andAby 4,.and 4, respectively, we get the following productions
A = 4 A0, A > 44| ]
Consider the 4, - productions one¢ by one.
A= A4, ( Not in GNF)
Replacing leftmost 4, by 4,4, and 1, we get
A Ad44 |4
Considering the production 4, — A4, 4,4, _ this is not in GNF and has left recursion. Considering
theall 4, - productions A —» A, 4,4,[14,| 0 and removing left recursion from the production
Ay A A Ay, WE gEt 4, —» 14, 45| 04, ( In GNF),
Where Ay — A4 4 Ay 4,4,
Considering 4, - production 4, - 4, 4, and replacing left most A, by 14,4, and 04, , we get

Ay =» 14, Ay A, 043 4, ( In GNF)
Considering A, - productions A;-» 4, A; 4| 4,4, and replacing 4, by 14,4, and 04, , we get
Ay =3 145 Ay 4|04y Ay | 1Ay Ay Ay Ay| 0.4y 4y Ay (In GNF)

Now, the productions in GNF are following .
Ay LAy A3|0 Ay, Ay = Ly As A OAs AL,
and Ay = LAy Ay Ay | 043 A4y | 1Ay Asdy 4y 04y Ay Ay
5.7 PUMPING LEMMA FOR CFLs

The pumping lemma for CFL3 states that there are always two short substrings close together
Mcmbep{mwdsamenmbﬁuf&masweﬁkcandﬂwrmuhisasﬂinginmemneﬂﬂ.
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Lemma :

Let L bea CFL and a long string z is in L, then there exists a constantn such that | z | 2 and z
can be written as uvwxy such that

(i) b |21

@  |wwx |=n ,and
@) ' w'yisinLfori=0,1,2,.....
Proof :
Let G be a CFG in CNF and generates Z-{e } . Since, zisa long string, so parse tree for 2

must contain a long path, Suppose, the longest path in parse tree of z has length h. In the parse
tree, no word can be greater that the length 341 or in other words, the maximum length word

would of length -1,

We see the proofas follows :

Since, the grammar G is in CNF ( productions are of types 4 — g 0r 4—s XY ), so parse tree for
zisabinary tree. The parse tree yields longest word if and only if its all levels except the last level
contain two children as shown in below figure ,

—— Levwel
— Lawel 1

= Lovel 2

.
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Since, the number of leaves is the length of longest string and it is equal to the number of
nodesat level ; _ | as shown inabove figure . The number of nodes at level ;- 1= 2"

So, the longest word has the length 2", where h is the longest path length. In other words,
we say that no word can be greater than 2*' length.

Let G has k variables and n=2*.Ifzisin L(G) and | z |=2* . So, the longest path in the
parse tree of z has length § .| and this path contains j +2 vertices( k +1 internal vertices and
one terminal vertex). Since, all the vertices except the terminal are variables, so the longest path
contains  +1 variables, It means, one variable appears twice in the longest path. Let variable A

appears twice, So 4=z, A:.?tz,}' A(z,), where z, and z, are two substrings of z. Let

.4? 2, then A= (2,) 2,(2,)' . We say that =, and :, can be pumped same number of times

as we like.

Example : ConsideraCFG S— S5 | a and » = qaaa . The parsetree for zisshown in figure(a) .

(8)
() (&)
(s) ()
)
°9 O
2
Figure (a) ) ‘
(s)
oo O
oo O | ks
(2 (&)

Figure ( b) Figure (c)
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From the subtree shown in figure (b), we get § - gaSe OF §= z, §z, andconsidering

ﬂwsubuﬁ:shuwninﬁgm{ﬂ};mgcl 5:;,, or 5;11.

The subtree shown in figure (b) can be added as many times as we like in the parse tree
shown in figure (a). So, §- F Szi:?»z,"s,z:

Therefore, string z can be written as us,=,2,» for some uand y substrings of z. The substrings
z, and z, can be pumped as many times as we like. Replacing z,, z, and z, by v, wand x

respectively, we get z= uvwxy and _g:', wiwx'y forsomei=0,1,2, ...,
Hence , the statement of theorem is proved.

Application of Pumping Lemma for CFLs

We use the pumping lemma to prove certain languages are not CFL. We proceed as we have
seen in application of pumping lemma for regular sets and get contradiction. The result of this
Procedure for Proving Language is not Context - free

The following steps are considered to show a given language is not context - free.

Step1:

Supposcthat I iscontext - free. Let 1 be the natural number obtained by using pumping lemma.
Step 2:

Choose astring s L such that |x 21 using pumping lemma principle write z = uvwxy.

Step 3:

Find suitable i so that wv 'wx 'ye L . Thisisacontradiction. So L isnot context - free.
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Example 1 : Consider the language [ ={a" " ¢": »n>1} and prove that L is not CFL.

Solution : All the words of L contain equal number ofa's, b'sand ¢'s. Let LisaCFLand z is
along string in | such that |2| =#, Using Pumping Lemma for L, we write z = wwxy and w/'we'y

isinL for somei=0, 1, 2, ...ccerroee.. 8nd | vx |21 and | vwx |<n .
The substring vx may be a” 4%, ¢', a’b", b%" butnot ,r.7.
Consideri=0,souwyisinL.

Case1: . .,7, 50 z=mwy=a""b"" isinL.

The number of a's is fewer than the number of b's and ¢'s for p 2 1, which is a contradiction.
Case2: ,-pr,50z=uwy=a"0"%" jsinL,

The number of b's is fewer than the number ofa's and ¢'s for ¢ 21, which is a contradiction.
Cased: .. ,% z=uwy=4a"b"c"" isinL.

The number of ¢'s is fewer than the number of a's and b's for , » |, which is a contradiction.
Cased: .. _,7h7,80 z=wuwy=a""p"%" isinL.

The number of a's and b's are fewer than the number of ¢'s for p,¢ = 1, whichis a contradiction.
Case5: wx=p%’, 30 z=mwy=a"p"c"" isin L.

The number of b's and ¢'s are fewer than the number of a's for ¢.21, which is a contradiction.
Since, we get contradiction for all values of vx, so L isnota CFL.

Example 2 : Prove that following languages are not CFL
(@) L = {aP : p is a prime number}
B) L = fa"b™c"d™ :m, n 21}

)L = {a"p"c™ : m = n}
Solution :
(a) Allthe words of 7, have length prime. Let  beaCFL and > isalong stringin f . Using
Pumping Lemma for [, wewrite z = wwxy and 1'wx'y isin L forsome i = 0,1, 2, ... and
|vx|=m and | wwy | = n where n is a prime number then | wv"wx"y | = n + mn.AS n + mn is
nota prime number, $0 1" wx" y ¢ . and thisis a contradiction. Therefore, L isnota CFL.
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(b) Let 7 beaCFLand 7 isalongstringin 2 suchthat z = wwwxy for |vx|=1and| vwx|=k,
where k is some constant.

In L.allwdshaweqmlnmnbemfa‘sandc’smduqunlnumhernf’b’sandd‘s.ﬂmvnluenf
vx may be combination of two consecutive symbols like 757, b%¢", cd*.
According to pumping lemma yv'ywx'y isin f forsome i = 0,1, 2. ...
Consider j = 0,then z = wwy isin L.
Casel: ,x = o”p,then

g = a" Py I g™

The number of a's and b's are fewer than the number of c'sand d's for p. ¢ 2 1, whichisa
—

Case2: V= chr‘ﬂgn 3 = anbm-—qcn—rdm
The number of b's and ¢'s are fewer than the number of d's and a's for ¢, r 2 1, whichisa
Case3: yx = o'd' then z = "y g™ *

The number of ¢'s and d's are fewer than number of a's and b's for r,5 2 1, which is a
fick

Since, we are getting contradiction in all cases, so Lisnota CFL.

(¢) Allthe words of L contain equal number of a's, b's and number of ¢'s is greater than number
of a's(orb's). Let LisaCFL and zisalong string in L such that | = | = n. Using pumping lemma

for L, we write z = wvwxy and w'wx'y, whicharein L forsome i = 0, L2...and|vs|21
and | vwx|<n.

The substring vx may be o7 b7, ¢", aPp?, p9c" butnot gPe.
Consider i = 0,s0uwyisinL.
Casel: wo=gagFs30 z=uwy = an_'pb"en isin L.

The number of a's is fewer than the number of b's for p = 1, whichis a contradiction.
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Case2: vx = }9.80 2 = uwy = atht—aNn isinL.
The number of b's is fewer than the number of a's for ¢ = 1, which is a contradiction.
Case3: ¥ = 80 z = uwy = a'hhar isin L.

The number of ¢'s may be equal or less than the number of a's (or b's) for , > 1, whichisa
contradiction.

Since, we are getting contradiction in all cases, so L is not a CFL.
Example 3 : Show that the following language is not context free 1, - {."1/. = 1)

Solution :
Method -1: Assume L is context - free and n is the pumping lemma constant

lﬂt z:dﬂz
write Z = wwxy ,where | vwx|<nand |wx|z1
Let | v |=m, msn

As | wlwely|> 0%, | wiwx’y |=k%, where kis=n + |

But| iwwx’y|=n® +m < n® +2n +1

S0 | uvlwxly| strictly lies between ,2 and (n + 1) which means w?wx?y ¢ L, a
contradiction. Hence [a"z :n =1} isnot context-free

Method -1l : We can also show that

I = {a,a00a ,qaaaaaaaa ...}

w'wx’y =€ a*aa*a = aaaaaa

wzwray ¢ L

L. is not context-free.
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Example 4 : Show that the following language is not context-free

L={0"1"2"/m <n<2m}.
Solution :

Method - | :

Assume [ is context-free and » is the pumping lemma constant.

Let 2= QM

Then Z = uwwxy,where | <|wx|<n

So vx cannot contain all the three symbols 0, 1 and 2. If vx contains only 0's and 1's then we
can choose { such that sy'wx'y has more than 2,; oceurrences of a 0 (or 1) and exactly 2
occurrences of L. This means yv'ywx 'y ¢ £ , a8 contradiction,

Inother cases also we can get a contradiction by proper choice of 7. Thus the given language
is not context - free.

Method - i :
Consider the accepted set of strings from the given language
L={0122,0011222,00112222,..}

z 201222

wiwxly = 0(01)%1(22)%2 = 0 0101122222 ¢
.. [ 1snotcontext-free.

5.7.2 Ogden's Lemma and Its Applications

There exist some non - context free languages which cannot be proved using the lemma of
section 5.7. We need a stronger result. Ogden's lemma is more powerful than the pumping
lemma. This lemma allows us to fix 'distinguished positions' in the sentence z and puts some
conditions for v, x, y with respect to these positions. Proof of Ogden's lemma is beyond the
scope of this book. However, we present the statement of Ogden's lemma and illustrate its
application.



5.54 FORMAL LANGUAGES AND AUTOMATA THEORY

Statement of Ogden's Lemma

Let L be a context free language. There exists a constant n such that for any sentence z, |z n,

we can fix at least n distinguished positions, and z can be written as uvwxy such that
i  vx contains at least one distinguished position,
i vwx contains at most n distinguished positions ; and

==

ii. any string ofthe form wv'wx'y,i 20 isinL,

Note :
1. Pumpinglemmaof 5.7 isaspecial case of Ogden's lemma in which every positioninzis
fistinouished

2. Inapplying Ogden's lemma, choice of distinguished positions is under our control.

Example :

Prove that [={a'b/c*|i = j, j=kand i # k } isnot context free.

Solution :
If L is context free we can apply Ogden's lemma. Letn be the constant of the
lemma. Consider the sentence ; _ g5+ 2+ . We will choose all positions in the block
of a's as distinguished. z can be split as uvwxy such that (i) vx has at least one distinguished
position and (if) vwx has at most n distinguished positions : By (i), vx should contain at
least one a. These are different cases.

Case 1:

veq® and g cp*. Let - 4¢ suchthat 1< p<n. Then, pisdivisorofnl. Letq be the integer
suchthat pg=n!.

Consider 2= ™ ux®*'y.
y consists of (2n'+n) ¢'s (remains unchanged).

v:tq+1. _alpﬂp = #hhp

wz;-l ga‘"_Fﬂ]nH" =ﬂ1n°.+n

Hence in Zz, number of a's = number of ¢'s.
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Case 2:
vea* and ..t Let ,_,» and pg=n!. Pumping v and x, (g+1) times, we get :

= wqﬂwx‘“l

}-'.-

InZ. no.ofd'swillbe n— pals p=ntirn.

No.of b's in 2’ will remain n! + n. Hence, no. of a's=no. of b'sin z',
Similarly, in other cases, we can arrive at strings not as per specification of L.
Hence, L is not context free.

5.8 CLOSURE PROPERTIES OF CFLs
The closure properties that hold for regular languages do not always hold for context free languages.
Consider those operations which preserve CFL.,

The purpose of these operations are to prove certain languages are CFL and certain languages
are not CFL.

Context-free languages are closed under following properties.
1. Union
2. Concatenation and
3. Kleene Closure (Context-free languages may or may not close under following properties)
4. Intersection
5. Complementation
Theorem §.8.1 :If 7, and L, aretwo CTFLs, then unionof £, and L, denotedby L; + L,
or Iy v L, isalsoa CFL.
Proof :
Let CFG G, = (V,,T,,P.S) generates Iy and CFG G, = (V,,T,,P.5) generates L,
and G=(V,T, P,S) generates L = L) + L.
We construct ( as follows :

Step 1: Rename the variables of CFG G,

f¥, = {S,4,B,.., X} thentherenamed variables are (S, 4;, B;....X,} . This modification
should be reflected in productions also.
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Step 2 : Rename the variables of CFG G,

If ¥,={S,4,B..X}, then the renamed variables are {5, 47, By...X2}. This
modification should be reflected in production also.

Step 3 : We get of the productions of G, and G, to get productions of G as follows :

§ — 5y |8;,where 5, and S, are starting symbols of grammars G, and G, respectively and
§; -productions and §, - productions remain unchanged.

r=T,uf,,
V ={S,, 4, By .. X1} U {53, 43, 85,..X, }

Since, all productions of G; and G, including § — §) | §; are in context-free form, so
GisaCFG

Language generated by G :
L(G) = Language generated from (8 or S3)
= Language generated from S, or language generated from S
= L(Gy) or I(G,) (Since, §; and 5, are starting symbols of G; and G; respectively.)
= Iy or Ly (Since, G, produces 1, and G, produces L, .)
=L+
Hence, statement of the theorem is proved.

Example : Considerthe CFGs § — aSb|ab and § —» cSdd | edd , which generate
languages I, and L, respectively, Construct grammar for L = L + Ly.

Solution :
Let Gy generates [, and G, generates [, and G = (V, T, P,S) generates L = Iy + L.
Renaming the variables of G, and G, , we get

v,=1{8,} and ¥, ={S,}, where § - productions are 8§ — aSib | ab, and
53 -productions are §; —» cSqdd | cdd
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We define G as follows :
V ={S.5,,8,),
T = (Terminals of G, or Gy} = {a, b, ¢, d},
Pincludes: § — 5, | 5,, §, o aSblab ,and § - cSydd | cdd .
L=L +L,
= [a'b":m,nzl}u{c"d“:nzi}
Theorem 5.8.2 I I, and 1, aretwo CFLs, then concatenation of Z; and £, denoted by
141, isalsoa CFL .

Proof : Let CFG Gy =(¥.7,.P.5) generates L and CFG g, =(V,;,7;,P,8)
generates L and G = (v ,T,p, ) generates L = [1,.

We construct (5 as follows :
Step 1: Rename the variables of CFG @,
Itv, ={s,4,8,., x) » then the renamed variables are 181, 4, By,... Xy} . This modification s
reflected in productions also,

§ = 8,8, , where 5, and S are starting symbols of grammars Gy and G, respectively and
S} - productions and 55 -pmdumiunsrcmainmdw.

Teliuly,

Vo= ASp 4.8y, X,}U{(S,.4,.8,.., X3
Since, all productions of Gy and G, including § -, 8y53 are in context-free form, so Gisa

CFG
Language Generated by G:

L(G) = Language generated from 8 fulluwdbylanguagcgmrmtudﬁnm S;z
= L(Gy) L(G,) (Since, S) and §, are starting symbols of Gy and G, respectively).
= Il (Since, G produces and G produces L, )
Hmce,s:atmcnmfﬂ:etheumnispmwd.



5.58 FORMAL LANGUAGES AND AUTOMATA THEORY

Example : Considerthe CFGs § — aSb|aband § — cSdd | cdd , which generate languages
Ly and L respectively. Construct grammar for £ = L;[,.
Solution :
Let Gy generates 1y and G, generates L, and G = (¥ ,T,P,S) generates [, = LiLy.
Renaming the variables of G, and G, we get
Vi={5,} and ¥, = {5,} , where & - productions are : 5, — aSib |ab, and §, -
productionsare: S; —» ¢Sydd | edd .
We define G as follows :
V ={5,5,,8,}, 2= {Terminals of Gy or G;} = {a, b, ¢, d},
Pincludes: § — §;5,, S, - aS blab ,and §; —» cSqdd | edd

L=Lil;={a"b":m,nzl){c"d*" :n21}.

Theorem 5.8.3 : If L is a CFL generated by grammar G = (¥, T, P, S) . then Kleene
closure of L denoted by f * is also a CFL.

Proof : Letgrammar G’ = (V,T,P',5") generates 7, +. Wedefine ' based on given
grammar G
I* = {s L, LL, LLL, ....},since 7, * includes null string, so G has production: §' — &
and from other productions, G' has to generate multiples of L. So, we have two recursive
§' -productions : §' — S§' | §'S, where Sis the starting symbol of G
So, P' = {§' —€|S8S'|$'S} U {§ - productions of grammar G}
Since, all productions of ' are in context-free form, so i’ isa CFG

Language generated by ' :
LG) = {e L, LLLLL, ...} = L *
Thus, statement of theorem is proved.

Example : Considerthe CFGs § —» aSa| aa, which generates [, = {a®" : n 2 1} . Construct

a grammar, which generates  ».
Solution :

Let G'= (¥ .T,#",5") generates ; =. We define the productions of ¢ as follows :
8 5| 88|88, where § - aSa|aa
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Language generated by ¢;' :
5 =>e
Hence, e isin L(G").

S =58 (Using §' — §7%)

= S§'S§ (Using 8' —» §'S)

= §'§§ ... ntimes (Using §' — S§'S n times)
=€ §§ ... ntimes (Using " —¢)

= S§5 ... n limes

:.:e- LL ... n times (Since, G generates language L and S is the starting symbol of G.)
=L
So, (G ={eyu L* =1L
Theorem 5.8.4 : If L, and [, aretwo CFLs, then intersection of I, and L, denoted by
L m L, may or may not be a CFL.

Proof: We willdiscuss some examples, which prove the theorem.
Example 1 : Considerthe CFLs L, = {a"b"¢" :m.,n21} and L, = {a"b"c" : m,n21},
then intersection of L and L, isnot a CFL.
Solution:
L, = {abc,aabbee, aaabbbece,...} and L, = {abe,abbee ,aabbec ,aabbbece ,aaabbbece ...}
So, Ly n Ly = {abe, aabbec, aaabbbece,...)
= {a"b"" 1nz1)
Clearly, £; n L isnota CFL.
Example 2: Considerthe CFLs [, = {a"b" : n21} and L, = {a”b?: p,g =1}, then

intersection of /; and L, isa CFL.
Solution :

Ly = {ab, aabb, aaabbb,...} and L, = {ab,aab,aabb,abbb,aabbb, aaabbb, .....}
So, 4; 1 Ly = {ab, aabb, aaabbb....} = {a*b*: k= 1}
Clearly, L, n L, isaCFL.
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Theorem 5.8.5: If L is a CFL over some alphabet 7' then complement of L denoted by
7* - 1 may or may not be a CFL.
Proof ;

Wemiﬂdhmmmm&&nnﬁicalidnrﬁﬂﬁanwﬂﬁsmmmwmmﬂmmm:phmm
of a CFL is also CFL. It means, L=T+*_y isCFL.

Let R and S are two CFLs aver T, then we know that

RNnS=T*~(Ru?f) (De Morgan's law)

Since, we have assumed that complement of CFL is also a CFL, so R and § are CFLsand
hence p - R U T isa CFL (P is union of two CFLs).

50, RnS=T*-pP

OL R § = ?

Since, Pisa CFL, so p isa CFL.

Thus, g ~ § isaCFLj.e., intersection of CFLs R and S isa CFL.

But, according to Theorem 584, p ~ § may or may not be a CFL. So, our assumption
about complement of a CFL is not hundred percent correct.

Singe, intersection and complement are interchangeable using De Morgan's law, so whatever
the truth about intersection we have proved that is also applicable to complement.
Therefore, we conclude that complement of a CFL may or may not be a CFL.

We will discuss some examples, which prove the theorem,

Example 1:

Considera CFL L over T = {a, b} which contains all the strings that not have the number of s

and b's equal or if number of a's and b's are equal then no two a's or b's are consecutive, then
o isa CFL.

Solution :

L= { All strings over {a, b} not having numberofa's and b's equal } or {All strings over {a, b}
which have number of a's and b's equal but no two a's and b's are consecutive}
So, L = (e, aab, baa, aaab, ...} U {ab, abab, baba, ...}
= \€, ab, aab, baa, aaab, baaa, abab, baba, ...}
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Simply, L = (a + b) * —(akb¥ 1k 22
80, T" = L=(a+ bY*~((a+b)*~{a"b":n>2))
= {All the words over {a, b} having equal number of a's and b's and all a's and b's are
consecutive}
= {a"8* 1 k 2 3
Clearly, 7+ _; isaCFL.

Example 2:

Consider a CFL L over {a, b, ¢} luvingnﬂﬁrshings n which numberof a's number of b's and
number of ¢'s are not equal or ifnumber ofa's, b's and ¢'s are equal then no two a's, b's and ¢'s
are consecutive, then T* - L isnota CFL,

Solution :

= {g a,b, ¢, ab, ba, ac, ca, aaa, bbb, cce, abe,,..)

Simply, [ = (g + b + €) * ~{a"b"c" : n2 2
LetT ={a,b,c} then
T" - L = {agbbec , aaabbbece 543

= { All the words over {a, b, ¢} having equal number of a's, b'sand ¢'sand all a's, b's
and ¢'s are consecutive }

= {a"b"c" n22)
Cjﬁﬂﬂ}", ; G ismtaCFL.
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REVIEW TIONS

Q1. Define context free grammar.
Answer

For Answer refer to Topic : 5.1, PageNo: 5.1

Q2. Consider the grammar G = (V', T, P, ) having productions :
8 — aSa | bSh| e. Check the productions and find the language generated,

Answer :

For Answer refer to example - | , Page No : 5.1.

Q3.LetG=(V,T,P.S)whereV={S,C},T={a.b}

P={ 8§ — aCa
¢ —»aCa|b
} S Is the start symbol
What is the language generated by this grammar ?
Answer ;

For Answer refer to example - 2, Page No : 5.2,
Q4. What is the language generated by the grammar
S§=>04|e
A=>15
Answer :
For Answer refer to example - 3 , Page No : 5.2.
Q5. Show that the language L ={a"b" |m#n} is context free.
Answer :
For Answer refer to example - 4, Page No : 5.3.
Q6. Drawa CFG to generate a language consisting of equal number of a's and b's.
Answer :
For Answer refer to example - 5, Page No : 5.4.
Q7. Construct CFG for the language L which has all the strings which are all
palindromesover T ={a,b}
Answer :
For Answer refer to example - 6 , Page No : 5.5.
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Q8. obtain a CFG 1o generate integers _
Answer ;
For Answer refer 1o example - 7, Page No : 5.6,

Q9. mﬁhth&gmmm&rhwmt&m&hnm L={0"1"2"\m>land n>0}.
Answer :

For Answer refer to example - 8 , Page No : 5.6.
Qlﬁ.Dhtainagmmmrtanenamte!hn language = {0 1" {520} .
Answer :

For Answer refer to example - 9 | Page No : 5.7.

Q11. Obtain megmmmqemratemahnguage,{, ={w|n(w)=n,(w)}
Answer ;
For Answer refer to example - 10, Page No : 5.8,
Q12. Explain about lefimost and right most derivations.
Answer :
For Answer refer to Topic: 5.2, Page No: 5.9.

Q13. Consider the grammar § — S+8 85" SIaib.Finclleﬂmnstmdrighhnmt
dezivaﬁmmfnrsuﬁ]g wW=a*a+h.
Answer :
For Answer refer to example - 1, Page No : 5.9,
Q14. Considera CFG 5 - b4jaB, 4 aSladdla, B - bS|aBB|b . Find
h&mmﬂﬁghumst&aivaﬁmsfﬂr w = agabbabbbq .
Answer :
For Answer refer to example - 2, Page No : 5.10,
Q15. Explain derivation tree with an example,
Answer :
For Answer refer to Topic: 5.3, Page No : 5.11.



5.64 FORMAL LANGUAGES AND AUTOMATA THEORY

Q16. Consider the grammar § —» § + 5|5 * §| a b Construct derivation tree for
sl:ring w=a®*h+qg.
Answer :

For Answer refer to example - 1 , Page No : 5.12.
Q17. Consider agrammar ¢ having productions § —» aAS|a, A —» ShA|SS) ba.

Show that § = aabbaa and construct a derivation tree whose yield is aabbaa,
Answer :

For Answer refer to example - 2 , Page No : 5.13.
Q18. Consider the grammar G whose productions are

S —» 0B|14, 4 — 0|0Slld4, B — 1[15]0BB . Find

[a}mmhjmmdmmmmﬁmm.mmmmm also,
Answer :

For Answer refer o example - 3 , Page No : 5.14.
Q19. What is ambiguity in CFGs ? Explain .
Answer :
For Answer refer to Topic : 5.4, Page No : 5.14.
Q20. Considerthe CFG § - § + S|S*S|a|bandstring w = a* 4 + b ,and
derivations as follows:
Answer ;
For Answer refer to example - 1 , Page No : 5.15.
Q21. show that the following grammars are ambiguous.
(@) § — S5|a|b
(b) § > A|B|b, A > adB|ab, B — abB|e
Answer :
For Answer refer 1o example - 2, Page No : 5.15.
Q22. What is left recursion ? Explain procedure to eliminate left recursion.
Answer :
For Answer refer to Topic : 5.4.1.1 , Page No ; 5.17.
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Q23. Eliminate left recursion from the following grammar
E- E+T|T
T>T*F|F
Fy(E) |id
Answer :
For Answer refer to example - | , Page No : 5.17.
Q24. Eliminats left recursion from the following grammar

§ > 4dbla
A — Ab|Sa
Answer ;
For Answer refer to example - 2 , Page No : 5.18.
Q25. What is left factoring? Explain procedure to eliminate left factoring,
Answer :
For Answer refer to Topic:54.12, Page No : 5.19.
Q26. Consider the grammar 5 — aSa | aa and remove the left factoring (if any ).
Answer :
For Answer refer 1o example , Page No: 5,19,
Q27. What is useless symbol ? Explain procedure to removal of useless symbols.
Answer :
For Answer refer to Topic : 5.5. 1, Page No: 521,
Q28. Eiiminate the useless symbois in the grammar

S - aA| bB
A - aA|a

B - bB

D =4 EbIEH
E - aC|d

Answer :
For Answer refer toexample - | , Page No : 5.23.
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Q29. Eliminate the useless symbols in the grammar

S Y aA|a|Bb|cC
A -3 aB

B = alAa

C - cCD

D - ddd

Answer :

For Answer refer to example - 2 , Page No - 5.25.
Q30. Whatis ¢ - production ? Explain procedure to removal of ¢ — productions.
Answer :

For Answer refer to Topic : 5.5.2 , Page No : 5.26.
Q31. Eiiminate all ¢ - productions from the grammar

s - ABCa |bD
A -+ BC|b

B “k ble

C — cle

D - d

Answer :

For Answer refer to example - 1 , Page No : 5.28.
Q32. Eliminate all ¢- productions fram the grammar

S - BAAB

A - 0A2 |2A0| e

B % AB|1IB|
Answer ;

For Answer refer to example - 2 , Page No : 5.29.
Q33. What is unit production? Explain procedure to elimination of unit productions.
Answer :

For Answer refer to Topic : 5.5.3, Page No: 5.30.
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Q34. Eliminate ail unit productions from the grammar

5§ = AR
A = a

B = Cib
C - b
B E|bC
E = dda

Answer :
For Answer refer to example - | , Page No : .32,
Q35. Eliminate unit productions from the grammar

AD|B
Al

s
B
A 0j12|B

LR

Answer :

For Answer refer to example - 2, Page No : 5.33,
Q36. State and prove CNF,
Answer :

For Answer refer to Topic: 5.6.1 , Page No : 5.35,
Q37. Consider the grammar

5] - DAl1B
A —» 0AA11S8]|1
Answer ;
For Answer refer to example - 1, Page No : 5.37.
Q38. Find a grammarin CNF equivalent to the grammar -

S+-S[ST8])a|b
Answer ;

For Answer refer to example - 2 | Page No : 530,

B =  1BB|0S|0 Obtain the grammar in CNF .

5.67
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Q39. State and prove GNF.
Answer :
For Answer refer to Topic : 5.6.2 , Page No: 541.
40, consider the CFG S—S+515*5/a|b and find an equivalent grammar in GNF.
Answer :
For Answer refer to example - 1, Page No : 5.43,

Q41. Consider the grammar G = ({ 4,,4,,4,}.{a.b},P,4,) , where P consists of
following production rules,

Ay 24 45,4, 4;4,|b, 4, 4, 4,|la Convertitinto GNF.
Answer :
For Answer refer to example - 2, Page No : 5.43.
Q42. Find equivalent grammar in GNF.
(a) S > aB|bA A aS|bAA|a,B —» bS|aBB|b
(b) S —» abSb|a|aAb,A - bS|aAAb
(c) S— AA|D,A - SS|1
For Answer refer to example - 3 , Page No : 5.45.
Q43. State and prove Pumping lemma for CFL's.
Answer :
For Answer refer to Topic : 5.7, Page No ; 5.46.

Q44. Consider the language L ={4" b" ¢*:n> 1} and prove that L isnot CFL.
Answer :

For Answer refer to example - 1 , Page No : 5.50.
(Q45. Prove that following languages are not CFL

(8) L = {aP : p is a prime number}
B L = (a"b™c™d™ :m, n 2 1}

(©L = {a"b"¢™: m = n}
Answer :

For Answer refer to example - 2 , Page No : 5.50.
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Q46. Show that the following language is not context free ¢ _ "/ > 1y

Answer ;
For Answer refer to example - 3, Page No : 5.52.

Q47. Shmmatthefmmmmnguageisnntmntmd-ﬁﬂﬁL ={0"1"2"/m < n < 2m}.
Answer :
For Answer refer to example - 4, Page No : 5.53.
Q48. Siate ogden’s lemma .
Answer :
For Answer refer to Topic : 5.7.2 , Page No : 5.53.
Q49. Prove that 1 - {ab'c'liej, jukand =k } 18 not context free.
Answer :
For Answer refer to example , Page No : 5.54.
Q50. Write and prove closure properties of CFLs.
Answer :
For Answer refer 1o Topic : 5.8, Page No : 5.55.
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[ OBJECTIVE TYPE QUESTIONS }

1. Acontextfree grammarwhich generates {@5" ¢" 11+m=n} hag its production rules given by
(@) § —=aS, $—»aSy,5) b5, 5] —>bS3,57 bS53, 53— cS3) ¢
(b) 8 —»cSb, c8—Sc, bS—»5b,S —» a8y c, S} —>aSc, §; —»ac
() §—saSc|ac| be|bSje, 5 b8 ¢/ be
(d) S—bSciasc|ac| a|bS,5 > Sjel e
2. Lettwokinds of grammars be defined as follows.
(I) 4—»a,4—BC (I) 4— aa, where 4 BCeV, 4V and g cp*

(a)] denotes Chomsky Normal form but [1 does not denote Greibach Normal Form.
(b) I denotes Chomsky Normal form and I1 denotes Greibach Normal Form.,

(¢) I denotes Chomsky Normal form but I does not denote Greibach Normal Form.
(d) II denotes Chomsky Normal form and I denotes denote Greibach Normal Form

3. Thelanguage [={a" b™ c"d™ in21, m21)
(a) abstracts the problem of checking number of formal and external parameters

(b) is context free (c) is not context free
(d) (a) and (c)
4.  CFGisnot closed under
(a) product (b} complementation (c) Kleene star (d) Union
5. Theintersection of a CFL and regular language
(a) Is always context free (b) Is always regular
(¢) need not be context free d) need not be regular
6. Which ofthe following languages cannot be produced by a Context Free Grammar?
(@) L={a" 6" " :n2 0} (b) L={ww® : we {a, 51"}
() L={a"b* : k>n20} d) L={a"b" :n 20)
7. Every CFG is ambiguous
(a) some times false (b) sometimestrue (c) false (d) true
8. Consider the language L={4”:pis prime}
(a) CFL (b)RL (c) both (d) None

9. Agrammar G is known to have GNf representation then
(a) G can't be written lefi or right linear
(b) we can write G as lefi linear or right linear
(¢) G may be written as left linear orright linear  (d) None of these.
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10.

11.

12,

13,

14.

15.

16.

17.

18.

19.

L=fwn’ where w belongs to [0,1)") is

(a) Context Free (b) Context sensitive (c) both (d) None
Aﬁammarﬂhupmdumiunsuftype A—aBA->BaA—>a thenGis

(a) CF (b) regular (¢) both (d)ynone
lﬂGbeth:gmmm;:S—m{_,{_rAMib,mwnﬁalfﬂnnsofGam,

(@) @b, ap?" where, p> g (B) adi?” ai®*' where, n>o
(€) aab®, ap?*4l where, 54 (d) None of above

Which of the fnllmvinggrmnmmmﬂgcrmte w = aahbb

(a) S=>AB,A~» BB|a,B-» AB|b (b) 848,45 a4/a.8- bB|b
(¢) Both (d) None

A CFLisin CNF if every production is of form S+ 4 0r 8§ ¢ where § isin ¥
{a}Aisinz'a;a,c arein ¥* (b)Aisin 2&B, Carein v
(c)Aisin &8, C arein ¥ * [d}Aisirtz*&B_CareinV
Thcgramnmrhmringpmdmﬁnnas 4 B, where A<V ,Be(V L), is

(a) Type 3 (b) Type 2 (¢) Type 1 (d) Type 0
Tiumanmmnmledbypmdmﬁunnﬂes 8 = aSBe| abe,cB > Be,aB — aa is

(8) a"b"" n<o (b) """ nso

(€) a"b%" p> g (d) a™ % 1

Which of'the Fuﬂo“inglangmgcsisumtmﬁee?

(8) L={a" 1 < n} (b) =ga™ s™ cn, msns 2™}

€) L={a™b"  n=m?) (d) None of the above

(@) whot yey, forall 4. (®) with |z 2n canbe written as uvwxy,
(©) | oxP 1. 2210 wx| (d) all of the above
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20.

21,

22

23.

24,

Which of the following grammars is ambiguous?
(b) S - a| abSh| adb, A -»bS|adAb
(d)all of the above

(a) S 55+8|5+S|a|b
() S -»aB|ab,A— aAB|a, B— ABb|b

Any string of terminals that can be generated by the following CFG

S XY

X —raX|bX|a

Y- Yd Ybla
(a) Has atleast two a
(c) Shouldend ina

(b) Has no consecutiveaor b
(d) Has at leastone b

The grammar {§ —as|bS|a|b} is notequivalent to

(@) (a+5)" (a+b)

(b) (a+b) (a+8)"
Which of the following statements is true?

(€} (a* +b)*  (d) None of the above

(i) A regular set accepted by a deterministic finite automaton with n states is accepted to
final state by a deterministic pda with n states and one pushdown symbol.
(i1) Every regular set accepted by a finite automaton with n states is accepted by a
deterministic pda with one state and n pushdown symbols
(i11) If L is accepted by a deterministic pda A, then it can be shown that L is accepted by
adeterministic pda A which never adds more than one symbol at a time.

(a) (i), (ii) and (iii) (b) (i) and (iii) only
(¢} (ii) and (iii) only (d) (1) and (ii) only
Match the language with the corresponding machine :

Language Machine
(i) Regular language {A) Nondeterministic pushdown automaton
(1) DCFL (B) Turing machine
(iii) CFL (C) Deterministic pushdown automaton
(iv) context-sensitive language (D) (Non) Deterministic finite-state acoeptor
(v) Recursive language (E) Turing machine that halts

| (vi) Recursively enumerable language (F) Linear-bounded automaton

(a)DACFEB (b)DCAFEB
(c)DCABEF (dDCFEAB

The grammar that generates [ —{4" " o/ |n =1,i= 0} is,

(8) S —» adb| Sc, A-> abladb
(c) Any one of the two

(b) S — A| Sc, A-> ab|adb
(d) None of the two.
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26.

27.

28.

30.

Theglﬂmmsrﬂmgemrﬁes L={wew'|weia, b} +} I8,
(2) 8- aSa| bSB| ¢ (b) S — aSa| bSh|acal beh
(c) Any one of the two (d) None of the two.

expressions with a alphabet 0,1} 1s;

(a) S>54+8185|8" () 0]1 | phi| e (b) §>5+5|85" 18" |($)]011]p]e
(c) 5-5+8|85|51(S)|0|1] phi| e (d) none is possible
The CFG for the following language :

The set {0°1"|n> 1}, that is the set of all strings of one or more 0's followed by an equal
number of 1'sis :

(a) § - 051/ 0} epsilon. (b) 5 -»051]01|epsilon
(c) S— 08101 (d) None of the ahove
Which of the following is true

(@) §— aB, B BB|b isambiguous

(b) 8 — 4B|aub. 4 a|Aa, B+ b isunambiguous

() § =aB| ahA-»adB a, B-» ABY b is ambiguous

(d) § —> aSbS) bSaSie is unambiguous

Choose the correet staterents -

(a) some regular languages can't be generated by an CFG
{h}mmcnmrcgulm'languag&sm‘tbegemmdbyan CFG
[c}anymgularlﬁngmgehas not an equivalent CFG

(d}nll?nngmgeacanbegenaatedhyCFG

I{c) 2b) 3 4b) 5@ 6(b) 7(c) 8(d) 9c)  10(c) |
)  12b) 13@) 14() 15() 16(b) 17(d) 18(c)  19d) 20(d) |
2ia) 22(c) 23(a) 24(b) 25(b) 26(a) 27(a) 28(c) 29(c) 30(b) |
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PUSH DOWN AUTOMATA

After going through this chapter, you should be able to understand :

Push down automata

Acceptance by final state and by empty stack
Equivalence of CFL and PDA

Interconversion

Introduction to DCFL and DPDA

& & & & @

6.1 INTRODUCTION

A PDA is an enhancement of finite automata (FA). Finite automata with a stack memory can be
viewed as pushdown automata. Addition of stack memory enhances the capability of Pushdown
automata as compared to finite automata. The stack memory is potentially infinite and it is a data
structure. [ts operation is based on last - in - first - out (LIFO). It means, the last object pushed
on the stack is popped first for operation. We assume a stack is long enough and linearly arranged.
We add or remove objects at the left end.

6.1.1 Model of Pushdown Automata (PDA)

A mode! of pushdown automata is shown in below figure. It consists of a finite tape, areading
head, which reads from the tape, a stack memory operating in LIFO fashion.

e Input Tape
F oS
Reading ___ |
Head
> "
Finite State Control b

FIGURE : Model of Pushdown Automata
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There are two alphabets ; one for input tape and another for stack. The stack alphabet is denoted
by 1 and input alphabet is denoted by 5 . PDA reads from both the alphabets ; one symbol
from the input and one symbol from the stack.

6.1.2 Mathematical Description of PDA

A pushdown automata is described by 7 - tuple (92,18, 4,2 .F) , where
1. @ isfinite and nonempty set of states,

2. g isinputalphabet,

3. T isfinite and nonempty set of pushdown symbols,

4, 5 isthe transition function which maps

From @ x (E  {€}) x I to (finite subset of) O = I'*,

g, € 2, isthe starting state,

b g € I" . is the starting (top most or initial) stack symbol, and

7. F c Q,isthe setof final states.

&

6.1.3 Moves of PDA

The move of PDA means that what are the options to proceed further after reading inputs in
some state and writing some string on the stack. As we have discussed carlier that PDA is
nondeterministic device having some finite number of choices of moves in each situation.

The move will be of two types :
1. Enﬂaeﬁmttmecrfmm'e,anmnnsmnbolisrmdﬁomthempe,itmm,!hehmdisadvmad

and depending upon the topmost symbol on the stack and present state, PDA has number of
choices to proceed further.

2. hﬂwmﬁtypeofmnve,ﬂ:mwtwbulismtmd&mnth:mpe,itmwﬁ,hmdismt
adummdmﬂmempnmmmbolﬁfsmckism.ﬂwmmmstnfsmkismuﬁﬁudwiﬂm
reading the input symbol. It is also knownas an ¢ - move,

Mathematically first type of move is defined as follows.
5(g,a,Z)={(pra Py A Pysy)) s where for 1 < i < n,q, p, are states in
O,ackl, Zeland acl’*.

PDArmdsn.-ninputsymbclamdonestacksmbuwhpmsemmteqandfnrmyvalue(s}ﬂf

i, enters state p, , replaces stack symbol Z by string &, €T * , and head is advanced one cell on

the tape. Now, the leftmost symbol of string «, is assumed as the topmost symbol on the stack.

Mathematically second type of move is defined as follows.

EEQ,E,Z:] ={_(,F":#1}1{}’2:“])»-"{?"!“]}} ,mt‘ﬂf l ‘S I £ '“1QI .Pl a.'l'ﬂsmill
O,ael, Zel,and o, el *.
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PDA does not read input symbol but it reads stack symbol Z in present state g and for any
value(s) of i, enters state p, , replaces stack symbol Z by string @, = I' #, and head is not

advanced on the tape. Now, the leftmost symbol of string &, is assumed as the topmost symbol
on the stack.

The string o, be any one of the following :

e, =< inthis case the topmost stack symbol Z, , is erased and second topmost symbol
becomes the topmost symbol in the next move. It is shown in figure (a).

aw a b X T b e
h
o N —
Z Z
. i1
Zy |:> I '
—=q| . 1 o -

FIGURE(a): Move of PDA

2. a, = ¢ e I ,inthis case the fopmost stack symbol Z,,, is replaced by symbol c. Itis

3.

shown in figure(b)
- a- b U - b L]
| Zi e i [
zZ N —z |
£y I_) f'
— q

FIGURE(b): Move of PDA

@, = ¢,Cq...€,, »in this case the topmost stack symbol Z,, isreplaced by string c¢,... ¢,
It is shown in figure(c).
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: a|bl| 1 b
| u_h_—_'-l—.} 7 Ti=::> ::I
—q i LD, =t <
[ i :z‘

FIGURE(c): Move of PDA

6.1.4 Instantaneous Description (ID) of PDA

LetPDA M = (Q.2.T.5.q,, Z,F) , thenits configuration at a given instant can be defined by
instantaneous description (ID). An ID includes state, remaining input string, and remaining stack
string (symbols). So,an D is (¢.x,¢) , where ge Q xe ¥, a el *.

The relation between two consecutive IDs s represented by the sign }—~ 1

We say (¢,ax,28) |zp.%.@B) if § (g.a,2) contains (p,a), where Z,f,ae[*,a
maybenullora X, p,g €0 for M

The reflexive and transitive closure of the relation |- is denoted by [37
Properties :
1. 1£(q.%a)|5(p.€,@), where @ € T*,x € * ,and p,q € Q, thenforall y X *.

CRONS TS EOR

& IF {ﬂ'-x}’-ﬂ}lﬁ(ﬁ-hﬂ}, where @ eT*x,yeL*, and p,qg €@, then
{Q,I.ﬂ]I%{F,E.ﬂL and

3.1 (@xa)Ape f), where @ fel*xeZ*, and pgeQ, then

(g, x0ce ?)!',%(P,E,ﬂﬂ, where y eI *
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6.1.5 Acceptance by PDA

Let Mbe a PDA, the accepted language is represented by N(M). We defined the acceptance by
PDA intwo ways.

1. Let M =(QIT.4, q,,7Z,,F),then N(M) is accepted by final state such that
N(M F{Wi%.ﬂﬂ]lﬁ(g;.ﬂﬁ] , where ¢ e 0, weZ*Z,, fel'*, and
g, €F}

It is similar to the acceptance by FA discussed earlier. We define some final states and
the accepted language N(M) is the set of all input strings for which some choice of moves
leads to some final state,

2. LetM =(Q.E,I'8,q.,Z,4),then N(M) is accepted by empty stack or null stack such
that N (M )= {wigqe,w.Z,)|5{p.c.c) where p € O, w eE*}

The language N(M) is the set of all input strings for which some sequence of moves
causes the PDA to empty its stack.

Note : Ifacceptance is defined by empty stack then there is no meaning of final state and it is
represented by ¢ .

Example : consider a PDA A =({g,.9,.9;}.la,c}.{a.Z,}.8,90.Z,.{q,}) shown in
below figure. Check the acceptability of string aacaa.

a, £y, aZy a,a, €

a,a, aa
FIGURE : PDA accepting {a"ca" :n2z 1}

Note : Edges are labeled with Input symbol, stack symbol, written symbol on the stack
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Solution :
The transition function § isdefined as follows :
g0 Zs) = {(d0.0Z0)} »
8(gq.a,a) ={(gy,0a)},
8(gy,c,a) = {(g,,a)}
&(q,,a,a) ={(g,,€)}, and

&g, ,24) = (g2, 24 )}
Following moves are carried out in order to check acceptability of string aacaa :

(g, aacaa +zn)|'{?0~mm-“zu}
—gy.caa,aaZ ,)
—(q,,aa,aaZ y)
~qy,a,aZ ;)

—g,.6.Z4)

—(g:.€.2,)

Hence, (q§,.aacaa Z, Ai‘{ﬂ'zﬁnzn} "
Therefore, the string aacaa is accepted by 7.

6.2 CONSTRUCTION OF PDA

In this section, we shall see how PDA’s can be constructed.

Example 1 : Obtein a2 PDA to accept the language L(M) = { wCw"| we(a+b)*} Where
" isreverse of W,
Solution:

Itis clear from the language L(M) = { wOw"} thatif = abb

then reverse of w denoted by j* will be j* - pp, and the language L willbe ¢, "
i.e., abbChba which is a string of palindrome.
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So, we have to construct a PDA which accepts a palindrome consisting of a's and b's with
the symbol C in the middle.

General Procedure :

To check for the palindrome, let us push all scanned symbols onto the stack till we encounter
the letter C. Once we pass the middle string, if the string is a palindrome, for each scanned input
symbal, there should be a corresponding symbol ( same as input symbol) on the stack. Finally, if
there is no input and stack is empty, we say that the given string is a palindrome.

Step 1 : Input symbolscanbeaorb.
Let g, bethe initial state and 2, be the initial symbol on the stack. In state ¢, and whentop

of the stack is Z,. whether the input symbol is a or b push it on to the stack, and remain in g, .
The transitions defined for this can be of the form

ﬂqﬂiﬂt zl.'p] - {qﬂr ﬂzﬂ}

8(qp. b, Zy) = (Gy. by)
Once the first scanned input symbol is pushed on to the stack, the stack may contain either
aorb. Now, in state g, , the input symbol can be either a or b. Note that irrespective of what is

the input or what is there on the stack, we have to keep pushing all the symbols on to the stack,
till we encounter C. So, the transitions defined for this can be of the form

&gy, @, @) = (g, 9a)
8(qy, b, a) = (g, ba)
8(qg, @, b) = (qy, ab)
&gy, b, b) = (qq, bb)

Step 2 : InputsymbolisC
Now, if the next input symbol is C, the top of the stack may be aor b. Another possibility is

that, in state g, , the first symbol itself can be C. In this case w is null string and Z, will be on the
stack. Inall these cases, the input symbol is C i. e., the symbol which is present in the middle of
the string. So, change the state to ¢, and do not alter the contents of the stack. The transitions
defined for this can be of the form

0(g9.C.Z24)=(4,:%,)

3(q,,C,a)=(g,.a)

8(gy,C.0)=(g;.0)

Now, we have passed the center of the string.
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Step 3 : Input symbolscan be aorb.

To be a palindrome, for each input symbol there should be a corresponding symbol ( same
as input symbol ) on the stack. So, whenever the input symbol is same as symbol on the stack,
remain in state g, and delete that symbol from the stack and repeat the process. The transitions
defined for this can be of the form

5(qy, a,d) = (9, €
g bib) = (g, €

Step 4 : Finally, in state g, , if the string is a palindrome, there is no input symbol to be scanned
and the stack should be empty 1. e., the stack should contain Z,. Now, change the state to ¢, and
do not alter the contents of the stack. The transition for this can be of the form
gy, & Zy) = (g1.4,)
So, the PDA M to accept the language L( M) = {wCw"| w e{a,b) * } is given by
M =(Q.L.I6,494.Z,,F)
Where  Q={g.q.q}; E={a,bC}: I'={abZ}
& » 1s shown below,
d(gq, 8. Z5) = (g4, aZy)
8(gy. b, Zy) = (gq. bZ;)
&gy, a, a) = (gq. aa)
&(gy. b, a) = (gy, ba)
Jfﬂurﬂ.ﬁ] = {G'q. ab)
8(qq. b, ) = (gq. bb)
8(q0.C.25)=(q,.Z4)
d(g4,C,a)=(q,,a)
d(g4.C\b)=(q,.b)
5(?!- a, a) = (g, €
5(q. 5,8 = (g9, 9
8(q. s %) = (g1, &)

gy € Q is the start state of machine.
Z, I istheinitial symbol on the stack.
F ={g,} isthe final state.
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To accept the string :
The sequence of moves made by the PDA for the string aabCbaa is shown below.
Initial ID
(qﬁl' ﬂﬂbC'bn'a. zﬂ] }' {qlh Mml Ezﬂ]

- (9o, bCbaa, aaZy)
- (gs. Chaa, baaZ,)
= (g.baa baaZ,)
= i:q“f.ra,:mz,:,}
I- (g1,0,02,)
I- (g1.5.2y)
oo le e dy)
( Final Configuration )
Since 4, is the final state and input stringis < in the final configuration, the string aabChasa
is accepted by the PDA .

To reject the string :
The sequence of moves made by the PDA for the siring asbCbab is shown below
Initial ID

(90, aabChab, Z;) (499, abChab, aZy)
|'_ [qﬂr m'bﬂ!'- Mﬂ]
= (g0, Chab, baaZ,)
I_ [q‘:- bﬂbl bﬂazﬂ}
F (g, ab, aaZ,)
- _I:‘h- b, ﬂzﬂ]

( Final Configuration )

Since the transition 5(g,, b, 2) isnot defined, the string aabCbab is not a palindrome and
the machine halts and the string is rejected by the PDA.

Example 2 : Obtain a PDA to accept the language £ = { 4" ") nz |1 } by a final state.
Solution :

The machine should accept n number of a's followed by n number of b's.
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General Procedure :

Since n number of a's should be followed by n number of b's, let us push all the symbols on
to the stack as long as the scanned input symbol is a. Once we encounter b's, we should see that
for each b in the input, there should be corresponding a on the stack. When the input pointer
reaches the end of the string, the stack should be empty. If stack is empty, it indicates that the
string scanned has n number ofa's followed by n number of b's.

Step 1 : Let g, be the start state and 2; be the initial symbol on the stack. As long as the next
input symbol to be scanned is a, irrespective of what is there on the stack, keep pushing all the
svmbols onto the stack and remainin g, . The transitions defined for this can be of the form
5{ qﬂ:ﬂlzn} - [t]'m azo]
d(gg.a.a) = (gg, aa)
Step 2 : Instate ¢, , if the next input symbol to be scanned is b and if the top of the stack is a,
change the state to ¢, and delete one b from the stack. The transition for this can be of the form
5{?{!:!’-:“} = [‘h- E}

Step 3 : Once the machine is in state g, , the rest of the symbols to be scanned will be only b's
and for each b there should be corresponding symbol a on the stack. So, as the scanned input
symbol isb and if there is a matching a on the stack, remain in g, and delete the corresponding
a from the stack. The transitions defined for this can be of the form

'J{Qtrblﬂ} - (*i"]- <)

Step 4 : Instate g, , if the next input symbol to be scanned is e and if the top of the stack
is Z,. (it means that for each b in the input there exists corresponding a on the stack) change the
state 1o g, which is anaccepting state. The transition defined for this can be of the form
8(q.e.%) = (4.9
So, the PDA to accept the language L={g" b"|n21} isgivenby M =(0.L,T,8,94,2¢.F)
where 0= {g;, 91, 92} E={a, b}; T={aZ}
& : isshown below.

6(gg.9,24)=(gg.aZ )

& (qp. a, @) = (qp, aa)

(g0, b, @) = (g, ©
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&g, b, a) = (g, ©
(g, & %) = (q;, ©
g, €0 isthe start state of machine
Z, T isthe initial symbol on the stack
F ={g,} isthe final state.

To accept the string :
The sequence of moves made by the PDA for the string aaabbb is shown below.

[nitial ID

(gq, asabbb, Z) - (g, aabbb, aZy )
I (qp, abbb, aaZ,)
- (g, bbb, asaZ,)
I (4, bb, aaZy)
= (@ boaZy)
|- (q1.€, Zy)
F (g2, &%)

( Final Configuration )

Since g, isthe final state and input string is € in the final configuration, the string aaabbb
is aceepted by the PDA.

To reject the string :
The sequence of moves made by the PDA for the string aabbb is shown below.
nitial ID
(gq,0abbb,2,) = (ge, abbb,aZy)
= (g, bbb, aaZ,)
I“ {‘h " bbr ﬂzn]
|_ {'?1 ] E'l ZII:I }
( Final Configuration)

Since the transition &(q,,b, Z,) is not defined, the string aabbb is rejected by the PDA.
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Example 3 : ObtainaPDA to accept the language L(M) = { wiw e(a +b) and n_(w) =n,(w)}-

solution :

The language accepted by the machine should consist strings of a's and b's of any length.
Only restriction is that number of &'s in string w should be equal to number of b's . The order of
a's and b's is irrelevant. For example aaabbb, ababab, aababb etc. are all the strings in the

language L{M).

General Procedure :

The first scanned input symbol is pushed on to the stack. From this point onwards, if the
scanned symbol is same as the symbol on to the stack, push the current input symbol on to the
stack. If the input symbol is different from the symbol on the top of the stack, pop one symbol
from the stack and repeat the process. Finally, when end of string is encountered, if the stack is
empty, the string w has equal number of a's and b's, otherwise number of a's and b's are different.

Step 1: Let ¢, be the start state and Z, be the initial symbol on the stack. When the machine
isinstate g, and when top of the stack contains Z,, scan the input symbol  eitheraorb ) and
push it on to the stack. The transitions defined for this can be of the form.

0( g0, @, Zy) = (g0, aLyp)

o qo, b, Zg) =gy, bp)

Step 2 : Once the first input symbol is pushed on to the stack, the top of stack may contain
either a or b and the next input symbol to be scanned may be a or b, If the input symbol is same
as the symbol on top of the stack, push the current input symbol on to the stack and remain in

state g, unl;.r,Oﬂm“isc,popmelmnmiﬁumihemmumsiﬁonsdeﬁmdfurmismnb:
of the form 3( gy, a, @) =(gp, aa)

&( gy, b, B) =g, bb)

8 go. a, B) =g, €

8(gq, b, @) =(gp. ©

Step 3 : Instate g, , if the next symbol to be scanned is ¢ (empty string) and top of the stack
is Z,, it means that for each symbol athere exists a corresponding b and for each symbol b, there
exists asymbol a. So, the string w consists of equal number of a's and b's and change the state to
gy . The transition defined for this canbe of the form

g, & Zo) =@, %)
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So, the PDA to accept the language 1= {w|n,(w)=n,(w)} isgivenby M = (Q.,%,I8,40.Z;,F)
where  O={q g }; E={a,b};T={a,b 7%}
4 ; isshown below
0(gy.a,Z5)=(g4,aZ )
G(qysb.Z)=(g4,6Z ;)
é(qq.a,a)=(gq,aa)
G(qq:b.b)=(g,.5b)
8(gq.a,b)=(g5.2)
8 (qy. b, a) =(g5, 9
G(q0+5:29)=(q1:Zy)
g, € Q is the start state of machine.
Z, eI isthe initial symbol on the stack.
F ={q,} isthe final state.
To accept the string :
The sequence of moves made by the PDA for the string abbbaa is shown below.

Initial ID
(gq, abbbaa,Z,) F (gy, bbbaa, aZy)
}" [‘lh- Ml zﬂ}
- (g0, baa, bZy)
= (gq. aa, bbZy)
l- [‘?lh a, bzﬂ}
|- [qﬂl €, zﬂ]
s (g, & Zy)
( Final Configuration)
Since ¢, is the final state and input stringis < in the final configuration, the string abbbaa
is accepted by the PDA.
To reject the string :
The sequence of moves made by the PDA for the string aabbb is shown below.
Initial ID
(Gas aabbb, Zy) 1 (Fa, abbb, aZ,)

1"' [qlh M. MZD}
- (‘fl:h bb, aZ,)
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oy (gqo- by Zy)
I (‘-?ui = bZB}

Since the transition &(g,, €b) is notdefined, the siring aabbb is rejected by the PDA.

Note : To accept the language by an empty stack, the final state is irrelevant, the next input
symbol to be scanned should be ¢ , and stack should to be empty. Even Z, should not be then
on the stack. So, the PDA to accept equal number of a's and b's using an empty stack, change
only the last transition in example 3, The last transition

5ge, & Zy) = (91.4y)
can be changed as
g, & &) = (4,9
So, the PDA to accept the language £ = {w|n,(w) =n, (w) } by an empty stack is given by
M=(0, E, T8 45 Zy. €
where Q= {45, q); E={a, b}; T={a b %)
5 +isshown below & (g,, a,Z;) = (qq, aZy)
S(qg. b, Zy) = (qq, bZy)
& (g, @ @) = (gq, aa)
8 (qy, b,B) = (g, bb)
& (gp, a,b) = (gg,€)
&(gqg, b,a) = (gg.©
§ (gp. & Zy) = (g1.9)
gy € @ is the start state of machine.
Z, €T isthe initial symbol on the stack.

F ={¢}.
Note that PDA is accepted by an empty stack.
The sequence of moves made by the PDA for the string aabbab by an empty stack is
shown below.
Initial ID
(9o, aabbab, Zy) - (gq. abbab, aZy)
i- {‘i"n: bﬁﬂ:ﬁ. mzﬂ}

f= (4o, bab, aZg)
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[-L'i"u. ﬂbi Z{.}

= (ga b aZy)

%" [‘?ﬂ}- L= zﬂ.}

F (g1 & €

( Final Configuration)
Since the next input symbol to be scanned is e and the stack is empty, the string aabbab is

accepted by an empty stack.
Note : g, is not the final state. Stack is empty .

Example 4 : Obtain a PDA to accept a string of balanced parentheses. The parentheses
to be consideredare(,) . [.].

Solution :

Note1 : Some of the valid stringsare: [ () ()([ 1)), []1[]1 O
and invalid stringare: [) ()[1,) ( [)

Note 2 : e (null string ) is valid

Note 3 : Left parentheses can cither be'("or'[' and right parentheses can eitherbe') 'or']'.

Step 1 : Let g, be the start state and Z, be the initial symbol on the stack. The state g, itself
is the final state accepting < (an empty string).

Step 2 : In the state g, , if the first scanned parentheses is '( or [, push the scanned symbol on
to the stack and change the state to g, . The transition defined for this can be of the form
§(qe.G20) = (g4:(Zy)

] [‘fﬂtL Zy) = {‘hr [ZI]]
Step 3 : If at least one parentheses either '(' or [" is present on the stack and if the scanned
symbol is lefi parentheses, then push the left parentheses on to the stack. The transitions defined
for this can be of the form

d(g,00) = (g.(()
§(q.01) = (g.([)
§(g.L0) = (g.10)
8(q,L1) = (4. 10)
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Step 4 : If the scanned symbol is")' and if the top of the stack is ‘(' pop an element from the
stack. Similarly, if the scanned symbol is' ] "and if the top of the stack is ' [ pop an element from
the stack. The transitions defined for this can be of the form

8agp) () ={(q. 9
g, 1) =(g. ®)
Step 5 : When top of the stack is Z,, it indicates that so far all the parentheses have been
matched. At this point, on e - transition, the PDA enters into state g, and all the steps from
stepl are repeated . The transition for this can be of the form
(g1, €, Zy) = (90: Zy)
So, the PDA to accept the language consisting of balanced parentheses is given by
M =(Q,E,T,8,q0.,%¢:F)
where  Q=1{qo. @ }} Z={G(HL 15 F={(L %}
& : is shown below .
3qo. (, Z) = (g1, (&)
8(q0. [, Zy) = (g, | %)
8(g,, ( () = (& (()
g () = (g, ()
8(gi. () =1(g. [()
(g, [.[) =g [[)
dig.h()=(q,.€)
(q,.L0 ) =(q,.€)
5(g,e.2,)=(q5.Z4)
gy € Q is the start state of machine.
Z, € T isthe initial symbol on the stack.
F ={qo} -
Note that even ¢ is accepted by PDA and is valid.

To accept the string :
The sequence of moves made by the PDA for the string [ () () ([]) ]is shown below.
Tnitial ID
(g, TOOY DL Z) F o OO DL [Z)
F g )OO D L[Z)
F ol OUD) [4)
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T T T TTTTT

(g U1 (1Z)
(@. (D) (%)
g, [1)L([Z%)
(g, DLIIZY
(@, )1 ()
(g, L [Z)
(g, & Zy)

(90, & Zy)
(Final Configuration )

Since the next input symbol to be scanned is eand the stack is empty, the string [ () () ([ 1) ]is

accepted by the PDA.

Example 5 : Obtaina PDA to accept the language L = [ wjw e (a, b)*and n,(w) >m,(w) } .

solution :

Note : The solution is similar to that of the problem discussed in example 3 in which we are
accepting strings of a's and b's of equal numbers. When we encounter end of the input i. e., «
and top of the stack is Z,, it has equal number of a'sand b's . But, what we want is a machine to
accept more number of a's than b's. For this, only change to be made is that when we encounter
<( i. e., end of the input), if top of the stack contains at least one a, then change the final state to
g, and do not alter the contents of the stack. The transition defined remains same as problem
shown in example 3, except the last transition. The last transition is of the form
J(gqg.e a) =(q,a)

So, the PDA to accept the language L= {win, (w)>n,(w)}
is givenby M =(Q.X,I.5,¢0,Zq.F)
where O=1{gy, ¢} : E=(a b}, T={ab )
& : is shown below.
8 (qy. @ Zy) (99, aZy)
8(qp, by Zy) = (gq.bZ,)
5 (g, a, @) = ({gg,aa)
8(qs b, B) = (go.bb)
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é {49, a, b) = (dps &)
dgg, b,8) = (9p.9)
8(¢gp. & a) = (g.a)

qo € Q is the start state of machine ; Z, T’ is the initial symbol on the stack.
F = {q,}is thefinal state.
Note : Onsimilar lines we can find a PDA to accept the language
L={w|wela,b)*and n (w)< n,(w))
i.e., strings of a's and b's where number of b's are more than number of a's . To achieve this only
change to be made in the above machine is change the final transition.

5(gy, & a) = (g, 2)
o

5(q0, & &) = (9, b)

So, the PDA to accept the language L ={wlwe(a,b)*and n_ (w)< n,(w)}
iﬁgﬂ'ﬂlb}’ M ={Q!£!rr£t'?u:sz}
where Q={qq}; Z={ab}; T={abZ};
& : is shown below .
dlgp,a Zy) = (g9, aZy)
(g, b Zy) = (4o, bZy)
S(gp, 8, a) = (gp. aa)
&(qq, b, b) = (gq. bb)
5(qy.a, B) = (gy. €
5(gg, b @) = (g5, ©
(g, & b)) = (g,.b)
go € © isthestart state of machine ; 2, € I isthe initial symbol on the stack
F ={q,} isthe final state.

Example 6 : Obtain a PDA to accept the language I, = {a"b™"|n21}.
solution :

The machine should accept n number of a's followed by 2n number of b's,
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General Procedure :

Since n number ofa's should be followed by 2n number of b's, for each a in the input, push
twoa's onto the stack. Once we encounter b's, we should see that for each b in the input, there
should be corresponding a on the stack. When the input pointer reaches the end of the string, the
stack should be empty. If stack is empty, it indicates that the string scanned has n number of a's
followed by 2n number of b's .

Step 1 :Let g, be the start state and 7, be the initial symbol on the stack. For each scanned
input symbol a, push two a's on to the stack. The transitions defined for this can be of the form
8 (g0, 9, Zy) = (gy» @aZy)
d (40, 9, @) = (qo, caa)
Step 2 : In state g, , if the next input symbol to be scanned is b and if the top of the stack is a,
change the state 1o ¢, and delete one b from the stack. The transition for this can be of the form
8 (qp, b, @) = (4, €
Step 3 : Once the machine is in state g, , the rest of the symbols to be scanned will be only b's
and for each b there should be corresponding symbol a on the stack. So, as the scanned input
symbol is b and if there is a matching a on the stack, remain in g, and delete the corresponding
a from the stack. The transitions defined for this can be of the form
(g, b, a) = (g, ©
Step 4 : Instate g, , if the next input symbol to be scanned is ¢ and if the top of the stack is Z,,
(it means that for each b in the input there exists corresponding a on the stack) change the state
to ¢, which is an accepting state. The transition defined for this can be of the form
dlgy. & Z) = (g;, ©

So, the PDA to accept the language L={a"F" |n 21}
isgivenby M =(Q.E,T',6,40.Z.F)
where Q=1{g, 49, a:}; E={ab}; T={a Z)

& : is shown below.
0 (qy, a, Zg) = (gy, @aZy)
8 (gy, a,a) = (g, aaa)
8 (g;, by a) = (g, &
dlgy, b,a) = (g, 9
dlg, & 4) = (g3, ©
gy € ¢ isthe start state of machine ; #, < I' is the initial symbol on the stack.
F ={q,} isthe final state.
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To accept the string :
The sequence of moves made by the PDA for the string aabbbb is shown below.
Initial ID
(qg, aabbbb, Z;) (G abbbb, aaZ,)
(g0, bbbb, aaaaZ,)
(qo: bbb, aaaZ;)
(g, bb, aaZ,)
(g b, aZy)
g, & Zy)
F o olg & Z)
( Final Configuration)
Since g, is the final state and input string is ¢ in the final configuration, the string aabbbb
is accepted by the PDA.

T T T T

To reject the string :
The sequence of moves made by the PDA for the string aabbb is shown below.
Initial TD
(g0, aabbb, Zg) - (go, abbb, aaZy)
(4o, bbb, aaaaZ,)
F (gy, bb, aaaZy)
F  (go. b aaZy)
= (g, & aZy)
( Final Configuration)

Since the transition &(g,, & a) isnot defined, the string aabbb is rejected by the PDA.

Example 7 : Obtain a PDA to accept the language L = { ww” | w e (a+5)*} .
solution :

Itisclear from the language 1(M)={ ww™} thatif w=apb
then reverse of w denoted by ,,® will be ® . pag
and the language L will be ,,,,® i.e., abbbba which is a string of palindrome.

So, we have to construct a PDA which accepts a palindrome consisting of a's and b's. This
problem is similar to the problem discussed in example 1. Only difference is that in example 1, an
extra symbol C acts as a pointer to the middle string. But , here there isno way to find the mid
point for the string.
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General Procedure :

To check for the palindrome, let us push all scarmed symbols onto the stack till we encounter
the mid point ( Remember that there is no way to find the midpoint). Once we pass the middle
string, to be a palindrome, for each scanned input symbol , there should be a corresponding
symbol  ( same as input symbol) on the stack. Finally, if there is no input and stack is empty.
we say that the given string is a palindrome.

Step 1: Let g, be the initial state and Z, be the initial symbol on the stack. In state g, and
when top of the stack is Z,, whether the input symbol isa or b push it on to the stack, and remain
in g, . The transitions defined for this can be of the form

th-l:ll d, Zﬂ] L [q;- a-zﬁ]
0(go. b Zy) = (go, bZy)

Once the first scanned input symbol is pushed on to the stack, the stack may contain either
aorb. Now, in state g, , the input symbol can be either a or b. Note that irrespective of what is
the input or what is there on the stack, we have to keep pushing all the symbols on to the stack,
till we encounter midpoint ( But, there is no way to find mid point. We continue this process till
we encounter mid point through our common sense ).

So, the transitions defined for this can be of the form

&gy, a,a) = (go, a2)

gy, b, a@)  =(qq ba)

J[q{ll ﬂt b] = ':an ﬂb}

5{'?0- bl 'b} = {Q'n- bb]
Step 2 : Now, once we reach the midpoint, the top of the stack maybeaorb. Tobca
palindrome, for each input symbol there should be a corresponding symbol ( same as input
symbol) on the stack. So, whenever the input symbol is same as symbol on the stack, change the
stateto ¢, and delete that symbol from the stack. The transitions defined for this can be of the
form &gy, @, @)  =(4), €)

5[‘.?4]- br b] o {'ﬂ- E—]
Step 3 : Now, once we are in state g, , it means that we have passed the mid point. Now, the
top of the stack may be a or b. To be a palindrome, for each input symbol there should bea
corresponding symbol ( same as input symbol) on the stack. So, whenever the input symbol is
same as symbol on the stack, remain in state g, and delete that symbol from the stack. The
transitions defined for this can be of the form

g, a,a) =(q, @

J(Q]_l- bi b]' - {'l?h E}
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Step 4 : Finally, in state g, , if the string is a palindrome, there is no input symbol to be scanned
and the stack should be emptyi. e., the stack should contain Z,. Now, change the state to g,
and do not alter the contents of the stack. The transition for this can be of the form

8y & Zy) =(g. &)
So, the PDA M toaccept the language ~ L(M) ={ ww" | w e(a,b) *}
is given by M =(Q.E.I',8.94.Z4, F)
where Q«{gy, 9, 92} T={a,b}; T={abZ)}
&:isshownbelow. &g, a, &) = {(qo, aZy)
&gy b Z9) = (qu, bZy)
& (g0, @ @) = (qo, aa)

& (gg» b, @) = (qq, ba)
8 (g5, @, B) = (g, ab)
5{‘1'1]- b: b] 5 {'qu- bb:l

§(gq.a,0)=(q,.€)

(g, b. B) = (4. ©

d(g. a.a) = (4. €

5(g, b b)) = (q. 9

dg, e Zy) = (g2, &)
gy © isthe start state of machine ; Z, el is the initial symbol on the stack.
F = {g,) isthe final state.

Note that the transitions numbered 3 and 7, 6 and 8 can be combined and the transitions
can be written as shown below also .

Flgna Zy) = (g0 ak)

8(q0, b Zy) = (g0, BLy)
8(gg,a, @) = { (g, aa) (g1, &)}
§lgg. b a) = (g, ba)

5(qs,a b) = (qo, ab)

5(qe.b. ) = (g bb) (g1, 9}
(g2, 8) = (4.9

S(q,b,b) = (g€

S(g.6 2Zy) = (ga.Zy)
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Note that once the following transitions are applied
d(go,a,0) = {(g,.9a ). (q,,€)}
8(gp.b. 8) = { (go.08), (g;, &)
if the input symbol is same as the symbol on top of the stack, the machine may push the
current symbol on to the stack, or it may pop an element from the stack. At this point, the
machine makes appropriate decision so that if the string is a palindrome, it has to accept . This
machine is clearly a non - deterministic PDA ( in short we call NPDA).

To accept the string :
The sequence of moves made by the PDA for the string aabbaa is shown below.
Initial ID
{gq, aabbaa, Z) - (gg. abbaa, aZy)

T {‘IW'H’"‘]-MZG]
F (qq, baa, baaZy)
PDA nowpopsan aa, aaZ,)
element instead of a, aZy)
pushing
(e s Z)
(g2, & Zy)
( Final Configuration )
Since g, is the final state and input string is e in the final configuration, the string aabbaa
is accepted by the PDA.

Example 8 : Construct a PDA which accepts the set of strings over {a. b} with equal
number of a's and b's such that all a's and b's are consecutive.

Solution :

We construct PDA M, which accepts given language by

(a) Empty store, and

(b) Final state
(a) By empty Store :

Let M = ({gy). {a.B}, {a, b, 24}, 8,44, Zo #) . Weknow that the given language contains all
the words over {a, b} that have equal number of consecutive a's and b's. So, the given language
L={a"b":nz0}v {b"a": n20}.

We use stack either to hold a's to match with b's or b's to match with a's.
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Transition function § is defined as follows :

(qg.a,Zy) = {(g0,0Z,)}, (To store first a on the stack)
(qq.a,a) ={(q,9a)}, (To store remaining a's on the stack)
8(qg.b, Z5) = {(ga.0Zy)), (To store first b on the stack)
(g, b,b) = {(qq,bD)}, (To store remaining b's on the stack)
d(gy,b,a)={{g,.)}, (To match input b with a on the stack in case of
L={a"h:nz0
8(gq-a,b)={(g,2)}. (To match input a with b on the stack in case of
L={"a":n20})

0(g0.2.Z, )=1(q0 £)} (To make the stack empty)

(b) By final State : Let M =({q,.q9,}.{a,b}{a,6.2,}.6.405.25:4q 1)
8(gy.,Z,) ={(g5.0Z,)}, (To store first a on the stack)
8(gp.a,@) = {(gy,9a)}, (To store remaining a's on the stack)
5(qsb.Z5) = {(90,bZ4)}, (To store first b on the stack)
8(qqy.b,8) = {(q,,b0)}, (To store remaining b's on the stack)
8(gy.b.a) = {(gs)}, (To match input b with @ on the stack)
d(gq.a,b) = {(go8)}- (To match input a with b on the stack)
o(qoeZy)={(gs.Zo)} (To reach the final state)

Example 9 : Construct a PDA, which accepts L = {a"c¢"b":m,n=1}.

Solution :  Supposc PDA M =({g,}.{a,b}.{a,b,Z,}.8.q4.2,4) accepts L.

We have restriction imposed on the number of @’s and b's that it should be equal but not on
the number of ¢'s. S0, PDA stores all a's on the stack and when ¢'s encounter, then keep the
stack unchanged and when b's encounters then matches with a's stored on the stack.

& isdefined as follows

8(go,a,Zy) =1{(g,,9Z,)} (To store first a on the stack)

8(gg,a,a) = {(gg,aa)} (To store remaining a's on the stack)

8(gq.c,a) = {(g.a)}, (To read all ¢'s on the input tape and keep stack
contents unchanged)

8(go,b.a) = {(geE)} s (To match input b with a on the stack)

8(g05:Z4) = {(q02)} (To empty the stack)
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Example 10 : Construct a PDA M, which accepts L = {a"b"c"d":m n2 1}

Solution :

We construct M by using the grammar of given language I.. But, if we see the format of language
L, then it is clear that each word of language L contains number of @'s in the starting whichis

equal to the number of d's at the end. In the middle the number of b's is followed by an equal
number of ¢'s. So, all the starting a's and following &'s are loaded on to the stack. Now, stack will

contain b's at the top and a's at the bottom (LIFO) and on the input tape =4~ remains. Afier this
PDA M matches the number of ¢'s with b's and d's with a's. This is shown in the below figure.

LetPDA M = ({g,.9,}.1a.b}{a,b.2,}.8,4..2,.49,}) and § isdefined as follows

8gg,a,Zy) = {{gg.aZ,)} (To store first a on the stack),
8(gy,a,a)={(gq.aa)} (To store remaining a's on the stack),
8(gg.b.a) = {(gq.ba)} (To store first b on the stack and keeping stack
contents unchanged ),
(g0, b.b) = {(gq,bb)} (To store remaining b's on the stack),
5(qg ¢, 8) = {{40.€)} (To match ¢'s on the tape with b's on the stack),
8(ggsd,a)={(qqy.&)} (To match d's on the tape with a's on the stack), and
8(ge.645) = (g .20 )} (To reach the final state)
Inpur tape Stack

lim... abb... bee... cdd.. . d¥ 8 ...
[

=

b
$aa... abb... bec.... cdd... dh £ ... _‘.f__
i
| .
a_-.-.

$aa... abb. . bee...cdd... dW R ...
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Example 11: Let M = ({ p,¢},{01},{Z,,X}, §,p.Z,.$) beaPDAwhere § is given by

following transitions,
S(pZo) = { p.XZ )},
dlpelo)={pel.
d(pl,X)={(p,XX)}.
d(g.1,X )={(g.€)} .
d(p0,X)={(gq.X)} and

5(9.0,24) = {( psZ)}
(a) What is the language accepted by this PDA by empty store ?
(b) Describe informally the working of the PDA.

Solution :

T -

Let Ry:G(p).Zo)={( p.XZ o )} »

Ryd(pe.Zy)={(pe),

RyS(pl,X)={(p.XX )},

R,5(q,1,X)={(gq.€)} .,

R85 (p,0,X )={(g,X )} ,and

Rg:8(q.0,Z¢)={( psZo)}

From the given transitions, we analyze the following things.

Using R, terminal 1 is stored as X' on the stack in the state p .

Using R, , with no input PDA makes the stack empty in the state p .

Using R;, remaining 1's are stored as X's on the stack in the state p .

Using R, , input 1's are matched with X's stored on the stack in state q.

Using R,, PDA reads 0 and moves to the state ¢ while maintaining X on the stack.

Using R,, PDA reads 0 on the tape and moves to the state p while maintaining
Z, on the stack.

So, PDA reads 1's on the tape and loads these on to stack as X's (R, and R,). WhenOis

read in state pthen movestothe state g(R, ) . Inthe state ¢ , 1's on the tape are matched with
X'sonthe stack (R,) and when 0 is read on the tape then PDA changes its stateto p(R;) .In
the state p ifno input is remaining on the tape and Z, is on the stack then PDA makes the stack

So, the accepted language L = {1"01°0:n 2 0} .
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Example 12 : Let 0 = ({g;, ¢,}.{a,b}.{a.b,Z}, &,q,,Z,¢) beaPDA accepting by empty
stack for the language which is the set of all nonempty even palindromes over the
set {a, b} . Below is an incomplete specification of the transition 5. Cemplete the
specification. The top of the stack is assumed to be at the right end of the string
representing stack contents.

1. 8(g¢,a,2) = {(gp.Za )}
2. 6(q,b,Z) =1{(q,.2Zb)}
3. 0(go3,@) =eus inavney
4. 6(gy.b.b) =....c...,

5. 5(g,,a,a)={(q,€)}
6. 5(g,.b,b)=1(g,)} and
1. 8(q,5.2) = {(g,:€)}
Solution :
Let the set of even palindromes over {a, b} is L, then
L = {e aa, bb, abba, baba, agaa, bbbb, ...}
[f'we find the mid of a palindrome then left is the mirmor image of right and right is the mirror image
of the left. So, deciding the mid point is the problem here, We design a DPDA for given set,
In the given example either terminal symbol is stored on the stack to be matched later on
after the mid point or if the corresponding match is there then PDA popped the stack symbol.
In the given transitions using (1) and (2) PDA loads a or b symbol on the stack, using (5)
and (6) PDA matches the input with stack symbol and using (7) PDA makes the stack empty.
So, if more a or b symbols are there then PDA will use (3) and (4) and in these either symbol will
be loaded on the stack and remain in the state ¢, or matched with the same symbol and moved
to state g, .
So, (3) and (4) solve the non-determinism problem to select the mid point into the palindromes.
So, transitions are given below.
1" 5{'?[[‘1""!2}':{{?#1'2&}}!
5(q0:0,2) = {(q,,2b)}
5(gg,4,a) = {(gq,0a (¢, £)}
d(qo,b,b) = {(gy,0b),(q,,€)}
d(gy.a,a)={(g,)}
d(gy.b,b) = {(g,.€)} and

5{41,6,2} - {{'qIIE”

o B LB R
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6.3 DETERMINISTIC AND NONDETERMINISTIC PUSHDOWN AUTOMATA

In this section, we will discuss about the deterministic and nondeterministic behavior of pushdown
automata.

6.3.1 Nondeterministic PDA (NPDA)

Like NFA, nondeterministic PDA (NPDA) has finite number of choices for its inputs. As we
have discussed in the mathematical description that transition function § which maps from
0 % (L v {e}) = I to (finite subset of ) @ = I' *, A nondeterministic PDA accepts an input if
a sequence of choices leads to some final state or causes PDA to empty its stack. Since, sometimes
it has more than one choice to move further on a particular input ; it means, PDA guesses the
right choice always, otherwise it will fail and will be in hang state.

Example : consider a nondeterministic PDA M =({q,}.{a.b}.{a,b,2}.6.4,.7 ¢#), for the
language I = {a"b" : n = 1} ,where § isdefined as follows :

8 (4g-€:Z) = {(gq. ab), (gg,aZb)} (Two possible moves forinput e onthe tape and Zon the stack),

5(?ﬁ+ﬂ.#}=uﬂn-ﬁﬂrm '5[5'01&1&}={{q1}|5”
Check whether string w = agabb is accepted ornot ?
Solution : Initial configuration is (g,,aabb, Z) . Following moves are possible :

= (gq, aabb,ab) ~= (g,.abb.b) —= §

[‘qih dﬂbb, z] ye—
(g aabb,aZb) —= (g,.abb,Zh)
(go,abb,abb) (qy-abb,aZbb)
(g, ,bb.bb) {mebr Zbb)
{qﬁibrb)
{gs.bb,abbb) (qq,bb,aZbbb)
(74.5.€)

¢ ¢
Hence, w = aabb is accepted by empty stack.
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One thing is noticeable here that only one move sequence leads to empty store and other don't.
In other words, we say that some move sequence(s) leads to accepting configuration and other
lead to hang state.

6.3.2 Deterministic PDA (DPDA)

Deterministic PDA (DPDA) is just like DFA, which has af most one choice to move for certain
input. APDA M = (Q,%,1,8,4,,£,, F) isdeterministic ifit satisfies both the conditions given
as follows :

1. Foranyg & Q,a e(Tw {E}};.and Z €I, & (g, a, Z) has at most one choice of move.
2. Forany ge Q,and 7 e 1, if 8(g,& Z) is defined i.e. 8(g, ¢ Z) # ¢, then

8(g,a,2) = ¢ forall s e T
Example : Consider a DPDA M = ({g.9,}, {a,c}, (@, Zy}, 6,95, Zo,¢) accepting the
language {a"ca" ;n =1}, where § is defined as follows :

5{@",&,2615 {[qﬂ-r'azl]]}
d(gq,a,a) ={(gq,aa)},
d(qy.c.a) =1{(q,.a)},
d(q,a,a) ={(q,.€)}, and ‘F(QLIElzﬂ}z {(QE-E)}
Check whether the string w = aacaa is accepted by empty stack or not 7
Solution :
We see that in each transition DPDA has at most one move. Initial configuration is
(gy.aacaa, Z,) . Following are the possible moves.

(qu.aacaa,Zy) —»(gy,acaa,aZ,) - (qy,caa,aaZ ;) ~» (qy,0a,6aZ ;)
+

(9),€,€) « (q,,6,2Z,) + (q,,a,aZ,)
Hence, the string w = aacaa is accepted by empty stack.

As we have discussed in earlier chapters that DFA and NFA are equivalent with respect to
the language acceptance, but the same is not true for the PDA.

For example, language L ={ww ":w e (a U b)*} isaccepted by nondeterministic PDA,
can not by any deterministic PDA. A nondeterministic PDA can not be converted into equivalent
deterministic PDA, but all DCFLs which are accepted by DPDA, are also accepted by NPDA.
So, we say that deterministic PDA is a proper subset of nondeterministic PDA. Hence, the
power of nondeterministic PDA is more as compared to deterministic PDA.
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Procedure to find whether PDA is deterministic or not

Let M =(Q.E,.6.9,.Z,.F) beaPDA. The PDA is deterministic if
1. &(g, a, Z) hasonly oneelement.
2. If #(g, & Z) isnotempty,then &(qg, a, Z) should be empty.

Both the conditions should be satisfied for the PDA to be deterministic. If one of the conditions
fails, the PDA is non - deterministic.

Example 1 : Is the PDA to accept the language L(M) = {w Cw™ | w e(a-+b)* }is
deterministic or not 7
Solution :

o, @, Zg) = (go, ady)
gy, by Z5) = (g0, bZy)
Hgg, @, a} = (4o, aa)
(g, b, @) = (go. ba)
d(qy, @, B) = (gq. ab)
qg, b, B) = (gp, bB)
0(q,.C.Z24)=(q,,Z,)
5(g,.C.a)=(g.a)
d(g4,C.b)=(4,,b)
o(g. a,a) = (4. 9
gy, 8,8) = (¢, ©
8g, & Z) = (g &)

The PDA should satisfy the two conditions shown in the procedure to be deterministic.

1. &(g, e, Z) hasonly one clement : Note that in the transitions, foreach ¢ €0, a € £ and Ze T,
there is only one component defined and the first condition is satisfied.

2. Thesecond condition states that if 5(q, € 2) isnotempty, then (g, a, Z) should be empty
i.e., ifthereisan - transition, (in this caseitis & (¢,, & Z;)). then there should not be
any transition from the state g, when top of the stack is Z, which is true.

Since, the PDA satisfies both the conditions, the PDA is deterministic.
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Example 2 : Is the PDA corresponding tothe language L ={a" b "|n =1} by afinal staleis

deterministic or not 7
Solution :

The transitions defined for this machine are
J{Eﬂs i, zﬂ} - [-Q'n- ﬂzﬂ]

5(q0, a @) = (qp, aa)
) (?ui bs- ﬂ} o {lh U E]
& {Iﬂ i b’l ﬂ} - [q‘t'r E}

(g, & Zy) = (g2 9
The first condition to be deterministic is 5(¢, a, Z) should have only one component. In this
case, foreach ¢ = 0, a e Land 7 T, there exists only one definition. So, the first condition is
satisfied.

‘To satisfy the second condition, consider the transition
8(q,, & Z,) = (4, ©)
Since the transition is defined, the transition 5(q,, a, Z,) where a £ should not be defined
which is true. Since both the conditions are satisfied, the given PDA is deterministic.

Example 3 : Isthe PDAto acceptthe language L{M) = {wiw e(a+b)* and n(w)=n(w) is
deterministic or not 7
Solution : The transitions defined for this machine are
&go.a, ) = (qo. azy)
ﬂqu-'bu Zy) = (g5 bZ,)
&lgg,a, @) = (g, aa)
&(go.b, B) (. bb)
&qy,a, B) = (gp. &
5(qp.by @) = (g5, 9)
Maps Zy) = (9, %)
The first condition to be deterministic is &(g, a, Z) should have only one component. In this
case, foreach g €0, a € X and zd-,&naexistsnniyomcnmponmi.ﬁa,ﬂmﬁrstmmﬁﬁnnis
satisfied.
To satisfy the second condition, consider the transition
8(go, & Zo) = (@, Zy)
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Since this transition is defined, the transition &(g,, @, Z,) where a « £ should not be defined .
But, there are two transitions

8(qg, a, Zy) = (Gg, aZy)

Sqg, b, Z5) = (4, bZy)
defined from g, when top of the stack is Z, . Since the second condition is not satisfied, the given
PDA is non - deterministic PDA.
Example 4 : Give adeterministic PDA for the language L = {a"ch™ :n 21} over

the alphabet £ = {a, b, ¢} . Specify the acceptance siate.

Solution :
I-"ﬂ-DPDA M = {{Qa-!q'brqlr }i {Er bi 'c}s {a: zﬂ}i Erq‘n zl‘ iq‘r}} Wﬂﬂﬁmwl-
We analyze that in the given L, in each word, double of number of @'s at the starting is equal to the
number of b's at the end and no restriction apposed on the ¢ in relation with the number of 's or
b's. So, one a is read on the tape and stored as aa on the stack and when b's encounted then
matched with a's on the stack.

In state ¢, all &'s are read and stored on the stack and when ¢ is read then DPDA moves in
the state g, and inthe state g, , b's are read on the tape and matched with a's on the stack. When
no symbol is on the tape then DPDA moves to the final state g 1 .

The transition function § is defined as follows:

8 (qq, 0, Zy) = (9., aaZ,)} (To store the first a as aa on the stack),

8 (g,,a,a) = {(g,, aaa)} (To store the remaining a's as double on the stack),
8 (g, €, @) = {(g;, a)} (To read ¢ and move to state ¢, ),

8 (g5 b, @) = {(gy, &} (To match the b's and @'s stored on the stack), and
8 (qs, & Zy) = g7+ Z3)} (To reach the final state)

The acceptance state is ¢; and DPDA Mis shown inbelow figure.

a, Zy, aaZ, b,a, €

7y G 8 & Zyy 2y @

a, @, aaq

FIGURE : PDA accepting {a"ch™ :n =1}
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6.4 ACCEPTANCE OF LANGUAGE BY PDA
The language can be accepted by a Push Down Automata using two approaches.

1. Acceptance by Final State : The PDA accepis its input by consuming it and then it enters
in the final state.

2. Acceptance by empty stack : On reading the input string from initial configuration for
some PDA, the stack of PDA gets empty.

6.4.1 Equivalence of Empty Store and Final state acceptance

Theorem:
If M, =(0Q,.2.T,8,,p,.Z,,¢) is a PDA accepting CFL L by empty store then there
exists PDA M: ={Q::Err;| rgl.! F:rz.‘s{qf}} “inchacccptsf,b}fﬁnalstam

Proof :
First we construct PDA M, basedonPDA A4, and then we prove that both accept L.

Step 1 : Construction of PDA M, based on given PDA M,

£ issame for both PDAs. We add a new initial state and a new final state with given PDA .

So, @y =0, vip,vg,}

The stack alphabet T", of PDA v, contains one additional symbol Z, with T, .

S0, T, =T,u {Z,;}
The transition function &, containsall the transitions of given PDA. u, and two additional transitions
(R and Ry) asdefined as follows:

Ry:8y3(pa.s.25)={(p1, 2, Z,)},

R,:6,(q,a,2)=6,(g,a,Z) forall (g4, Z) in Q, x (£ U {e}) x T

(the original trensitions of 4, ), and
Ry:6,(9,6,2,)=1{(q,.€)} forall ¢ € O,

By the R, , m, moves fromitsinitial ID (p,,e, Z,) to theinitial IDof &, By R;, u, usesall the
transitions of , after reaching the initial ID of », and by using Ry a4, reaches the final state qr.
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The block diagram is shown in below figure.

€.23:21 2, €, Z;,4
—{p; } o D4 M,

FIGURE : Block diagram of PDA w,

Step 2 : The language accepted by PDA A, and PDA M,

The behaviorsof M, and A, are same except the two by e -movesdefinedby Ry and R;.
Letstring w « L andaccepted by M, , then

{Fhwizi}“&r(Q|ElE} WhquE Q'l (R.ea“"l}
For M, the initial IDis (p,,w,Z,) and it can be written as (p,,e we Z,). So,

{pz,EWE,ZI)IT“ (pysw,2,2,) (This initial ID of M, )
|- (9.€.2,) (by R, and Result 1)
kT;T{fI;-E-ﬂ] ael; By Ry)

Thus, if M, acceptsw, then A, also accepts it.

Itmeans L(M,)c L(M,) (Result 2)
Letstring w L andaccepted by PDA M, , then

(pnewezy) | (Pow4iZ4,) By Ry) (Result 3)

i (9.€,2) (By Ry) (Result 4)

E(ﬂ;.iﬂ) ael; (By R;)
Note : The Result 3 is the initial ID of A4, . The Result 4 shows the empty store for M, if
symbol Z, is not there.
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For M,,theinitial IDis ( p,, w,2,)
SG. {Fn“’-z|} 'j?";fl?'-EmE}.W]Ereq © Ql {B}'Rﬁult]&ﬂdﬂﬂtﬂt'l]'[hus,lf M?mpls
w, then M, also acceptsit.

It means, L(M,)< L(M,) (Result 5)

Therefore, L= L(M,)=L(M,) (FromResult2and Result5)
Hence, the statement of theorem is proved.

Example: Consider a nondeterministic PDA M, =({q,} {a.b}, {a,b,5}, &,49,,5,¢4) which
accepts the language [ = {4"b" : » > 1} by empy store, where § is defined as follows :
9(g,<,5) = {(gq,ab), (g4,a86)} (Two possible moves),
8(gy,a,a)={(go.€)}, and  F(qy,5,8) = {(g,€)}

Construct an equivalent PDA. M, which accepts L in final state and check whether string
w = aabb 1saccepted ornot ?

Solution : Following moves are carried out by PDA. M, in order to accept w = aabb
(9q,2abb,S)|— (g4, aabb,aSh)

— (g,,abb,Sb)
—(q,,abb,abb)
"_"( "In L] b'b ] bb )

—(qy.5.b)

_{qﬁrE!E}

Hence, (4,,aabb,5) |- (;.€,)
Therefore, w = aabb is accepted by M,.
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Construction of PDA ), based on given PDA M,
LetPDA M, =(0,,E,1,,8;, p3.Z5.1q,}) , where
0, =19.9,.p;1: £ = {a, b}
T, = {a.b,S,Z,},and transition function &, is defined as follows:

8;(ppeiZy)=1(4,52,)} (Using ;)
d,(g.€,8) ={(q.ab).(g,a5b)} (Using &)
5,(g,a,a) = {(q,€)} (Using R;)
05(q,b,b)=1(gq.€)} (Using R;)
5,(g,.€,Z,)=1{(q, )} (Using Ry )

Following moves are carried out by PDA M, in order to accept w = aabb
(p,,aabb,Z,)|\— (g,aabb,S5Z,)

— (q.aabb,aShZ )

— (g,abb,SbZ ,)

—(q,bb,bbZ )
—(g.b,bZ,)

—(q.€, Z,)

_"W_,r:E: Z,)

Hence, (P, aabb, Z,) |- (4,.€.Z1)
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The PDA M, isshown in below figure .

e, 8, aSh b, b e

e'lz :Sz e, f L
(O : ;‘ )
ﬁs,aﬁ@{,a,e

FIGURE : PDA M, accepting {a"b" : n 2 1}

6.4.2 Equivalence of Final state and Empty Store acceptance

Theorem :

If M, = (Q,.E.T, 8,90, Z,, F) isaPDAaccepting CFL L by final state then there exists
PDA M, =(0,.%,T, 85,44, Z;, ¢) Whichaccepts L by empty store.

Proof :
First we construct PDA M, based on PDA A, and then we prove that both accept L.

Step 1 : Construction of PDA A, based on given PDA M,
%, [, initial state g, and initial symbol on the stack Z; are same for both PDAs. We add a
new state with given PDA M, . All final statesof PDA M, are converted into non-final states.
So, 0, =0,V {E} (where E is new added state)
The transition function &, contains all the transitions of given PDA M, and additional transitions
(R; and Ry) defined as follows:
R, :8,(q,a,2)=d,(g,a,Z) forall (g.a,2) in Q, x (£ w {e}) xT;
(the original transitions of M, ),
R,:6,(p,e,a)={(E,a)} forall pe Fand a el *,and
R,:8,(E,e,a)=1{(E,c)} forallg e r *and E € Q,
By R;,PDA M, usesall the transitions of M, and reaches the final state if acceptability is there.
By Ry, M, reaches state E and after reaching state E, by R, erases all the stack symbols.

R; provides a loop incase of stack is not empty. The block diagram is shown in
below figure.
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B 0,

——= PDA M,

FIGURE : Block diagram of PDA M,
Step 2 : The language accepted by PDA A/, and PDA M,
The behaviorsof PDA M, and PDA M, are the same except the two e -moves defined in
Ry and R;y.
Letstring w ¢ L and accepted by PDA M, ,then
(90:%:20) |- (a7, &) ,where g7 € Fand g e ¢ (Result1)
For PDA M., ,the initial ID is (gq, w, Zp)-

S0, (40:%,Z0) |- (a,.€,@), where ¢, € 0, and ae T *  (By &, andResult 1)

T;T{E-:-Esa] (B}’ Rz_]'
%(E.E,E) (By R;)
Thus, if M, acceptsw, then M, also accepts it.
Itmeans, L(M,)c L(M)) (Result 2)

Letstring w e I andacceptedby M,,then
For PDA M., the initial ID is (gg, w, Zp) . So

{qutwlzu} IF-I‘{Q_;’:'E1“} for some quQ?ﬂ.ﬂdg.E r'» [Rﬂll]'t.'i)
IM;- (E,e,a) (By ;)

i (B,e.€) (By R3)
For M,,theinitial ID is (gq, w, Z)-

SO.{?Q#“!ZQ}‘T&'{QILE:R]|WM quEQ] and-a [ r‘ [B}'REIIHJ)
Thus, if M, acceptsw, then M, also acceptsit.
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Ttmeans L(M,)< L(M,) (Result 4)

Therefore, L = L(M,)=L(M,) (From Result2and Result4)
Hence, the statement of theorem is proved.
Example :

Consider aPDA M, =({g0,91. 2} lac}, 12,2, }.81,90. Zoo 03 }), convert it into PDA M, whose

acceptance is by empty store, Check the acceptability of string w = aacaa .
The transition function 5, is defined as follows :

5| (gp.a,Z,) = {(‘i'mﬂ'zu-]} ’
8y (go.a,a) ={(go,0a)},

8, (g0,0,0) = {(q,,a)}
8,(g,a,a)={(q,,)}and

8{g1,5,Z,) ={{9:,. 2y}
Solution :

Following moves are carried out by M, in orderto check acceptability of string w = aacaa

(go,aacaa Z,) |— (q,,acaa,aZ,)
— (4y.caa,aaZ,)
—(4y,aa,aaZ,)
—(g,,a,aZ;)
—(9,,€,2,)

—(q2,€,Z,)

Hence, (g,.aacaa Z,) Et (9:.6.2;)

Therefore, PDA M, accepts the string aacaa .

The transition function &, for M, is defined as follows :
& (90,a,Z4) = {(gq,aZ, )} (Using R, ),
0:(qo,a,a) = {(40,aa)} (Using &, ),
8, (@o.c.a) = {(gy.a)} (Using Ry ),
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0, (gy.a.a) = {{g,.€)}
6, (9y.6.24) = {(43. 25}
&, (q,.8.2)={(E.a)}
8,(g;.5.¢) = {(E,c)}
8,(97.5.Z,) = {(E,Zy)}
3, (E,e,a)={(E.€);
&y (E,&,¢) ={(E,&)]
8, (E,e,2Zq)={(E,€)}

(Using Ry )
(Using &y )
(Using R, )
(Using R,)
(Using &)
(Using R;)
(Using Ry ). and
(Using Ry)

Following moves are carried outby M, in order to check the acceptability of the string w = aacaa

(qo-aacaa Zy) |- (g, acaaaZ,)
%(qo,ma,mzﬂ)
— (g,,aa,aaZ,)
—(g,,a,aZ,)
—(g1,8:aZ,)
—(9,.€.2,)
—— (E, &, Zg)

o= {'E! =" E}

Hence, (9o.aacaa, Z,) |5~ (E,€,€)

6.5 PUSHDOWN AUTOMATA AND CFL

6.51 PDA FROM CFG

It is quite easy to get a PDA from the context free grammar. This is possible only froma CFG
which is in GNE. So, given any grammar, first obtain the grammar in GNF and then obtain PDA.
The steps to be followed to convert a grammar to its equivalent PDA are shown below.



PUSHDOWN AUTOMATA 6.41

1. Convert the grammar into GNF

2. Let g, bethe start state and Z, is the initial symbol on the stack. Without consuming any
input, push thcmtmbolﬂommhcmckanddmmethemtnqr.mmm&r
this can be

5{'?1!! E.Z,;} '{4’1, Rzn}
3. Foreach production of the form

A= oo
mtroduce the transition  &(g;, a. 4) =(g,, @)

4. Finally, instate g, , without consuming any input, change the state to g, which isan accepting
state. The transition for this can be of the form

Mg & L) =(gr. Zp)

Example 1 : For the grammar

S5 - aABC

A - aBla

B - bApb

C > a Obtain the corresponding PDA
Solution :

Let g, be the stari state and 2, the initial symbol on the stack.
Step 1 : Push the start symbol S onto the stack and change the state to g, . The transition for
this can be of the form

g0, & Zy) = (g1, 5Z,)
Step 2 : For each production 4 -» g introduce the transition

3y, a,4) =(g),a)
This can be done as shown below.
Production Transition
5(g, a,8) = (g, ABC)
3qy, a, 4) = (g, B)
gy, a, 4) =(g,. &)
&g, b, B} = (g, A)
(g, b, B) = (g, €
(g, a,C) =(q, ©

-

"I7[5[" |2 e

Ol |w > > v
AL R LAEAE
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Step 3 : Finally in state g, , without consuming any input change the state 10 g, which is an
accepting state
i.e., gy, & Zo) =@y Z)
So, the PDA Misgivenby M = (Q.E,I',8.44.Z,,F )
where O={g0, 9.9} L={ab}; TI={548CZ%)
§ : is shown below.
8(qn, & %) =g, S&)
8(qy, a, 5) = (g,, ABC)
&gy, a, 4) = (g, B)
&gy, a, A) =(q, ©
5(q, b, B) =(g;, A)
&(gqy, b, B) =(qy, ©
8(g, a,C) =(q, 9
5gy, & Zy) =g+ Zg)
g, € @ isthe start state of machine; Z, T is the initial symbol on the stack.
F ={q ,} isthe final state

Note that the terminals grammar G will be input symbols in PDA and the non - terminals will be
the stack symbols in PDA.
The derivation from the grammar is shown below

S = aABC
= aaBBC
= asbBC
= aabbC
= aabba

The string aabba is derived from the start symbol S. The same string should be accepted by PDA
also. The moves made by the PDA are shown below.

Initial ID

(gy, aabba,Zy) |~ (gy, aabba, SZy) By Rule 1
- (g, abba, ABCZ;) By Rule2
|- (4, bba, BBCZ;) By Rule3
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= (g ba, BCZy) By Rule 6

- (g, a.CZy) By Rule 6

g, & Zy) By Rule 7

= (g7, & Zp) ByRule8
( Final Configuration )

Since g is the final state and input string is < inthe final configuration, the string aabba
is accepted by the PDA.

Example 2 : Construct PDA M equivalent to the CFG § — 08B, B —» 15|05 |0 and check
whether 10000 is in N(AM) or not ?

Solution : LetPDA u = ({gy}:1a,b},{5,B,01},6,4,,5,¢), § be defined as follows :

8(q9£,5) = {(4,,08B)} (For the production § —» 0BB),
8(q0&,8)={(g,,15)} (For the production B — 15),
8(q,&.8) ={(q,.,08)} (For the production B - 0s),
(q9,5.8) = {(g,,0) (For the production 8 — 0),
8(q0.0,0) = {(g,.8)} (For terminal 0),

3(qq.l1) = {(g4.€)} (For terminal 1)

For string w =010000,M has following moves:
(40,010000 ,5)|-(g,,010000 053 )

(g,.10000 ,BB)
~(4,10000 ,ISB )
—(44,0000 ,$B)

~(4,,0000 ,0BBB )

—{(4,,000 ,BBB )
|— (4,000 088 )

[(90.00 .858)



6. 44 FORMAL LANGUAGES AND AUTOMATA THEORY

-—{qn,ﬂ_ﬂ,ﬂ_ﬂj
4 4.,0,B)
—(4,.0.0)

—{(q0:€+€)

Hence, 010000 e N(M).
6.5.2 Construction of CFG from Given PDA

As per our discussion, the CFG and PDA has a strong relationship. As we have seen in the
previous section that we can construct a PDA from given CFG., Similarly we can obtain aCFG
from given PDA.

Theorem : If M =(Q,Z,T,48,9,,Z,,¢) isa PDAwhich accepts the language L, then there is
aCFG G = (¥ ,T,P,5) suchthat I(G) g N(M) = L.

Proof: ¥ = (S)1v{lp.Z2,9]:p.qeQ@ and Ze I'}), T issame for both P includes the
following productions :
P, :§ = [qq,Z.q] isinPforevery g € O
B :[p,2,q] - aisinPforevery p,ge Q,aeT u (€} ,and Z e T suchthat
8(p,a,Z) = {(g,©)},and
B : [P, Z, gm1] = alqy, By, 42) (92, B2, 43) - [4ms Brs Gm+1] 18 in P forevery
7,9, € Q,ae(Tu{e)),and Z, B, e I',where | < j < m such that
8(p,a,Z) = {(q1, BiBy...By)}
If m = 0,then [p, Z, q1] = a
Example 1: Consider the PDA M = ({q,,9,},{a.b},{a.Z,}, 8,44, Z,,¢) accepting the
language [ = {a"b™a" :m, n = 1}, which has the following transition function.
8(qp-a,Z;) ={{gp.9Z,)},
§(g9.9,a) = {(4,.aa)},
& (qu.ba) ={(g,,a)}
8 (g:b,2) = {(41.0)},
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d(gy.a,a)={(q,,€)}, and

d(q,.5,Z¢) ={(g,€)}

Constructa CFG G which generates the same language,
Solution : LetCFG G=(V,T,P,S), where

V=196 Z0,90):190:Z,, @il la. 2.9, )04, vZor @, 1,190, 9.9, 195,09, 9, Llgy.a.90):[4y,9.4,1. 5}
{ NOTE : The number of states are two and stack symbols are two, then number of combination

of thesein tripleformis 2 x 2 x 2 = 23 = g).
L = {a. b}, Sis the start symbol , and P consists of following production rules :

Using construction rule A :
S = [g0.24.9,] and § = [q,.2,.4,]

For transition &(g,.a,2,)=1{(gy.0Z,)}:

[90:Z0:90] > al@5,2.9,119¢.Z,.9, ]
(90,Z,.95] > algy. 2,9, 1141, Z;.9,]
(90-Z5. 01 )->a[0.4,90 1190, Z5,41]
l99:Z0s0:]1>alge, 2.4 1191, Zp. 4]

For tramsition & (g,.a.9)= {(g,,2a)} :

[90+a.90] = alqp.a.941(90, 9,45
[40-9.90] — algs.4,9,1[9;.a,9,]
[90.9.9,1 > algq. 2.5 1[45,9, 4]
[90:9,9,] > algqe.2,9,1[9;.a,4,]

For transition & (g,,b,a)=1{(g,.a)} :
[90:a.90] > blg;.a,4,)
190:a.9,1->blg,.a,4,]

For transition 4 (q,,b,a)={(g,.a)} *
[91.a.90]1 > blgy.a,9,]

[g1.0.9,] > blg).a.q;]

For transition &(g,.a.a)={(g,,e)} *
[91.2.q,] > a

For transition & (g,,¢,2,) = {(g;.€)} 2
[49::Z4.9,] >

(Using construction rule 7)
(Using construction rule 7, )
(Using construction rule 2)
(Using construction rule 7)

(Using construction rule £;)
(Using construction rule /)
(Using construction rule A )

{Using construction rule #)

(Using construction rule 7))
(Using construction rule )

(Using construction rule 7;)
(Using construction rule £5)

(Using construction rule 2, )

(Using construction rule P; )
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Example 2 : Construct CFG G for the PDA given as follows :
5(qq.8,.Zy) = ((90,9Z,)}
8(gq,a.a) = {(gy,aa)}
8(qg,¢,a) = {(gg.a)}
O(qy.b,a) = {(gq£))

5(go&sZy) = {(q02)}
Solution :

LetG=(V, T.P.5), ¥V ={[a¢: 2,90 90,0, 951} » £ = {a, b}, P consists of following
production rules :

8190+ 70+ ]:
For transition &(g,.a,Z,) = {(g,.aZ, )}
[@9s Zos G >4 [90-0.90 ] 905 20> G0 ]
For the transition 5(q,,a,a) ={(g,.aa)}
[9s+a:00]1— alg0,2.90] [90:9:95]
For the transition §(g,,c,a) = {(g,.a)}:
[95:a:95] > €[0.4:45]
For the transition 6(g,.b,a) = {(g,5)k
[90,a:90] 2 &
For the transition §(g,.5,Z;) = {(g¢.€)}:

[q'ﬁizﬂ?qll] =¥

Example 3: Let M = ({gq, 9, },{a.b}.{c.Z,},6.9,,Z,.4) isaPDAand § is defined as follows:
8(qe:a,Zy) = {(gacZo)}
8(qp»a,c) = {(go.c€)}
8(qg.byc) = ()}
8(¢y,b,¢)={(q:, €} »
8(g.e4) =g, £)},

d(g,2.Z,) = (g€}
Construct CFG G generating N(M).
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Solution :

oo

let G=(V,T,P,58),where
V' contains elements from the set

{Si‘i’usﬂ's‘iu}-[‘i"nt"-'ﬂi'l”*i'n-zuf%Hfa‘mzuv'i‘tu‘fpﬂ's‘iﬂu{‘i"]-fs‘i“uf: (g11Z0.3: 191,205,901

E = {ab},

§ is the starting symbol, and

P includes the following production rules,
For variable §

FiS = 1g4,Z,,9,], and

Py = [go.Zy.01]

For variable [g,,Z,,q,] using transition &(g,,a,Z,) = {(9.¢Z, )}
PAg90.Z0.90 1> al90,¢,9] [90:2 4,9, ] and
Pigo.Ze.901>alg0.0,9, 191,20 .40

For variable [g,,Z;,q,] P{4,.Z,,9,] 2 dlqq.¢.q0) [99:Z¢, 4, ]and
Flgo: 209 1> algy.c.q, 101 25.91]

For variable [g,,c,q,] using transition 6(g,,a,c) = {(g,.ce)}:
F{qq,¢.95 }>algq.c.9,1[9.¢,4,], and

Filge.c.90] —dlgy.0.4,119,.¢,95)

For variable [g,.c,4,]:

Fyi[gy.c,9,] > algs,¢,90][45.c,4,] and

FAotlgo.e.q > dgg.coql [9,.0.9,]

For variable (g,,¢.¢,] using transition &(g,,b,c) = {(q,.€)}:
Fuigo.c.qi]l > b

For variable [g,, Z,. 4] using transition &(g,.6.2,) ={(q,)}
Py191.Z4.9,}>¢

For variable [g,,c,¢,] using transition 8(g,.2,c) = {(¢,,€)}:
Pyigy.c.9;]>e

For variable [g, +€.;] using transition g be)={(q€)}
Flgc.q;]1 > b
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We have no production for the variable [g,,Z,.q,] and [q,,¢,q,]. So, these are discarded
with their associated productions.

So, now we have following productions.
B = [g9.Z5,95)

PyS = [g4.24.4;];
Pig0,Z5,9) > dg0.¢,9:1q0. Z0. 00 )
Piigo. Zo, 1] >alqo,¢.90l(de: Zo 1 )
Filge. 1> algy.0 a1, 25,01,
Pigy.c.q0] = algs.c.9,11g0.,9, ],
Flge.coq > algo.,901l90:6411
Po: lgo. e, 1 aldo,6. 41906411
Pyilgg.eiqi] > b
PylgnZg.ailoes

Pl.‘t—{‘ftrcs‘?;] —FE,

Rylgy.coqy)l > &

In Production P,,and F,, variables [g,,Z,,q,] and [g,.c,q,] have right and left recursion
respectively but have no terminating production i.e. no terminal from these variables, So, all
the productions that include these variables including 7, and P, are discarded.

Now, we have following productions included in P':

Pyi§ = (g0, Zp.q1]s

Filge, Zo, i > algocqi )@ Zoo i1y

Polqe.evqi] - dlgg.eqyllaneqd s

Bilgacoqp]l— by

P14y:Z9.4,] ¢,

Pylgr.e.q e

Pilgneqil—2 b
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Theorem : Let L, bea context - free language and [, be a regular language. Then show that
L, n L, is context - free.

Proof :

Let M, =(Q, %, T, 8, gy, Z, F;) beanNPDA which accepts L, and M, =( P, L.T, &,.4,, F>)
be a DFA that accepts L,. We construct a pushdown automaton M =(0,2.,1'.4,4,.2.F)
which simulates the parallel action of M, and A, , whenever asymbol isread from the input
string, jy simultaneously executesthe move M, and M, .

Let@:gxp, gs = (90, o) » ﬁ':ﬂxFI

and define § suchthat, ((g;.p,).x)e 4((g,,p,)a.b), ifandonlyif,

(s, x) € &{q,, a,b) and 5,(p ,a)=p,
In this , we also require that if g ¢, then p; = p; . In other words, the states of jyare labeled
with pairs (¢,, p,) , representing the respective states in which M, and M, can be after reading
a certain input string, It is a straightforward induction argument to show that,

{[%,PHJ,W,Z] h ((QFTPR}J]'F
with g, E'F"I Bndpl EF?.

ifand only if, @2 pr@* and 5(p,, w) = p, .

Therefore, a string is accepted by M' if and only if it is accepted by M, and M, thatis, ifitisin
M) LMy)=1n L.,
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REVIEW QUESTIONS

Q1. What is PDA ? Explain.
Answer :
For Answer refer to Topic: 6.1, Page No:6.1.
Q2. Obtzin a PDA to accept the language L(M) = { wCw"| we(a+b)*} where
® is reverse of W .
Answer :
For Answer refer to example - 1 , Page No : 6.6.
Q3. Obtain a PDA to accept the language L = { a" 5"| nz 1} by afinal state.
Answer :

For Answer refer to example - 2, Page No : 6.9.

Q4. Obtain a PDA to accept the language L( M) = { wiw e(a+b) and n, (w) =ny(w)} -
Answer :
For Answer refer to example - 3 , Page No : 6.12.
Q5. Obtain a PDA to accept a string of balanced parentheses. The parentheses
tobe consideredare (. ) , [.].

Answer :

For Answer refer to example - 4, Page No : 6.15.
Q6. Obtain a PDA to accept the language L = { wiw  (a, b)*and n,(w) >n;(w) } -
Answer :

For Answer refer to example - 5, Page No : 6.17.
Q7. Obtain a PDA to accept the language L = {a"6™"|n 21} .

Answer :
For Answer refer to example - 6 , Page No . 6.18,
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Q8. Obtain a PDA to accept the language L = { ww" | w e(a+b)*) .
Answer :
For Answer refer to example - 7, Page No : 6.20,
Q9. Construct a PDA which accepts the set of strings over {a, b} with equal
number of a's and b's such that all a's and b's are consecutive.
Answer :
For Answer refer to example - 8 , Page No : 6.23.

Q10. Construct a PDA, which accepts L = {a"c™s":m,n > 1} .
Answer :
For Answer refer to example - 9 , Page No : 6,24,

Q11. Construct a PDA M, which accepts [ ={a"b"c"d":mnz 1}
Answer :
For Answer refer to example - 10 , Page No : 6.25.
Q12 Let M = ({ p,g).{01}.{Zy, X}, 8.p.Z4.4) beaPDAwhere § is given by
following transitions.
5(pAZy) = {( P AZ o)},
G(peZy)={(pe),
o(p,, X) = {( p,XX )},
(g1, X )={(q.€)} .
o(p.0.X) ={(q,X)},and

0(q,0,2,)={(p.Z,)}
(a) What is the language accepted by this PDA by empty store ?
(b) Describa informally the working of the PDA.

Answer ;

For Answer refer to example - 11, Page No : 6.26.

Q13. Let 0 = ({40, 9,}.{a,b}.{a.b.Z}, &,4,,2 ) be a PDA accepting by empty stack for
the language which is the set of all nonempty even palindromes over the set {a, b} . Below is

an incomplete specification of the transition 5. Complete the specification. The top of the
stack is assumed to be at the right end of the string representing stack contents.
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1. §(g,.0.2) = {(4q.2a)}

2. 8(gysb.2) = {(94,20)}

L F(gps@:2) =veaviraney

4. 6(qq.b0.b) =auins

§. d(gy.a.a)={(q, &)}

6. 5(a,.b,b) = {(g,.€)) and
1. 8(q,&.2) = {(g:.€)}

Answer :
For Answer refer to example - 12 , Page No : 6.27.

Q14. Distinguish between NPDA and DPDA.
Answer :
For Answer refer to Topic : 6.3 , Page No: 6.28.

Q15. Is the PDA to accept the language L(M) = {w Cw" | we(a+5)* }is deterministicor not ?
Answer :
For Answer refer to example - | , Page No : 6.30.

Q16. is the PDA corresponding to the language L={a"b"|n>1} by afinal stateis
deterministic or not 7
Answer :
For Answer refer to example - 2 , Page No : 6.31.

Q17. Isthe PDA to accept the language L(M) = {wiw e (a+5)* and n,(w) =ny(w) is
deterministic or not 7
Answer :
For Answer refer to example - 3 , Page No : 6.31.
Q18. Give a deterministic PDA for the language L = {a"cb™ :n 2 1} over
the alphabet £ = {a, b, ¢} . Specify the acceptance state,
Answer :
For Answer refer to example - 4 , Page No : 6,32
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Q19.1f M, = (0,,%,T,,6,,p,.Z,,$) isaPDA accepting CFL L by empty store then
thereexists PDA M, =(0,,Z,T',,8;, p,,Z,,{q,}) whichaccepts L by final state.
Answer :
For Answer refer to Topic : 6.4.1 , Page No: 6.33.

Q20. Consider anondeterministic PDA M, = ({g,}, {a.b}, {a,b,5}, &,4,,5.¢) whichaccepts
the language £ = {a"b" : n>1} by emptystore, where § is defined as follows :

3 (qy,5,8) = {(gq.ab), (g9,a5b)} (Two possible moves),
5(90:“:“}={.{‘Ih‘!)]‘:m & (gq.b.b) = {{gy,€)}
Construct an equivalent PDA M, whichaccepts L in final state and check whether siring
w = gabb is accepted or not 7
Answer :
For Answer refer to example , Page No : 6.35.
Q21. If M, = (Q,,%,T, 4,, Gor £9, F) 15aPDA accepting CFL. L by final state then
thereexists PDA M, = (Q,,%,T, 8,,44, Z,, ¢) whichaccepts L by empty store.

Answer :
For Answer refer to Topic : 6.4.2 , Page No: 6.37.

Q22. ConsideraPDA M, =({gy.9, 823, {a.¢). (0,25 }.8,.90. 25, 15} ). convert it into PDA. M,
whose acceptance is by empty store. Check the acceptability of string w = aacaa.
The transition function 4 is defined as follows :
G{eu.a.zu}ﬂ[th'ﬂzﬁ}}f
8, (4o-a,a) = {(gg,aa)},
3, (gp\e,a)={(g,,a)}
8y (g1.a,a) = {(g,.€)}and

(41,6, 2;) ={(91,Z)}
Answer :

For Answer refer to example, Page No : 6.39.
Q23. Explain procedure to construct PDA from CFG
Answer :

For Answer refer to Topic : 6.5.1, Page No : 6.40.
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Q24. Forthe grammar

S —» aABC

A - aBla

B — bApb

C - a Obtain the corresponding PDA
Answer :

For Answer refer to example - 1 , Page No : 6.41.
(Q25. Construct PDA M equivalent to the CFG § —» 08B, B — 15|05 | 0 and check whether
010000 is in N(M) ornot?
Answer :
For Answer refer to example - 2 , Page No : 6.43.
Q26. Explain procedure to construct CEG from PDA.
Answer ;
For Answer refer to Topic : 6.5.2, Page No : 6.44,
Q27. Considerthe PDA M = ({gy, ¢}, {a,b}, {a.Z,}. 8,4, Z,,#) accepting the
language [ = {a"b"a" :m,nz1}, which has the following transition function.

8(gg,a,2Zy) = {(gy,aZy)}s

8(gq,a,a) = {{gq.aa)},

8(go,bya) = {(g1, @)},

&(g,,b,a) = ((g,,a)}.

6(q,,a,a) = {(g,,€)}, and

8(q,.6.Zy)={(g1,€)}

Construct a CFG G which generates the same language.
Answer :

For Answer refer to example - 1 , Page No : 6.44.

Q28. Construct CFG G for the PDA given as follows :

8(gg.a,2Zy) = {(qa,9Z,)}
5{?5-"31“) o [{"j"mm}]
8(go.cya) = {(99,2)}
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E{Ii'q.-b. 'HJ ae {{ QME}}

0(gp&,.Z9) = {(go.€)}
Answer ;

For Answer refer to example - 2 , Page No : 6.46.
Q29. Let M = ({9q.9,1{a,B},{€,24},8,40,20 #) isa PDA and § is defined as follows:

0(qoa,Zq) = {(90:¢Z,4)} »
8(qqsa,c) = {(ggycc)}
5(qo,0,¢) = {(4,2)},
5(qp,b,¢)={(q,, €)),
6(q,&.)=1{(q,£)},
6(q,€.24) = {(g,8)}
Construct CFG G generating N(M).
Answer :
For Answer refer to example - 3 , Page No : 6.46,

Q30. Let I, be acontext- free language and L, be a regular language. Then show that
L, n L, is context - free.
Answer :
For Answer refer to Theorem , Page No : 6.49.
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OBJECTIVE TYPE QUESTIONS |

Choose the correct statements
(a) the power of NPDA and DPDA are same

(b) the power of DFA and NDFA are different
(c) the power of DFA and NDFA are almost same

(d) None of the above
A PDA behaves like an FA when the number of auxiliary memory it has is
(a) 2 or more (b) O (c) 1 ormore (d) none

A=(fan g9 labe) lab Zgh By Zp.lar))is a PDA, where ¢ is defined as
5(q0,8,Z0)={(q0,2Zp)}. 8(q0,5.Z0)={(g0.5Z0)}
8(q0,a,a)={(qo, aa)}, 8(q0,b, a)={(g0,0a)}
B(qo, a,b)={(qn, ab)}, 8(q0,5,0)={(q0,bb)}
8(qo, ¢ a)=1lqy, )}, 8(gp, &, ) ={{a, B}, Bgp. & Zo)={(gy. L1}
8(q),a,a)= 8(q;,b,b)={(g1,)}
8q),5 Zo)={(g . Zo)}

Match the ID that the PDA is in after the strings listed on the LHS are processed by the
PDA.

(i) abcba (A)  (qo.e.babaZp)

(i) abeb (B) (q1.€.0Zp)

(iif) acha (C) (gy.ba.aZp)

(iv) abab (D) (a5.€.Zp)
(@DCAB ) DCBA
(c)DBCA (HHABCD

A pda s said to be deterministic if -

(a) 8(g.a,2) is either empty or singleton or 8¢, Z) ¢ implies &4,a.2)=6

(b) 5(q.a.2) is either empty or singleton & &g.,2) =¢ implies 8(g,,2)=4

(c) 8(g.a,2) is either empty or singleton & 8(¢.<.Z) # ¢ implies ¥(¢.a.2)=¢

(d) 8(q,a.2) is either empty or singleton or 8(g,e.2) =¢ implies 5(¢.4,2) # ¢

Let Ld be the set of all languages accepted by aPDA by final states and Le the sct of all
languages accepted by empty stack. Which of the following is true?

(@) LgoL (b) Ly=Le

(c) Both (d) None of the above.
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6.

10.

11.

12.

13.

Pushdown automata can recognize ——

(a) all regular languges, some nonregular languages, all context-free languages, and all
non-context -free languages.

(b) all regular languages, some nonregular languages, all context-free languages, and some
non-context - free languages.

(c) all regular lJanguages, all nonregular languages, all context-free languages.

(d) all regular languages, some nonregular languages, all context-free languages.
Giventwo PDAsM & M':

where M =(S,%,T,8,g9,Z, F) and M = (S 51,3, ¢, 2', F )

Which of the following conditions hold if L(M)=L(M").

(i) There is a one-to-one correspondance between accepting computations of M and M’
(ii) If M hasno A —moves, then M'hasno A —moves ; If M is unambiguous, then M' is
unambiguous,

(iii} Forall pe 5, all acZU{s} ,all z e, if (¢, y)ed8'(p,a,Z) then g<>qp' and | y|=<2
(a) Only (i1). (b)Only (i) & (ii)

(c) Omly (i) (d) All of the above,

Running time of a finite automata (like NPDA) for an input string of lengthn is

(2) Can be anything depending on the automata  (b) Exponentialinn

{¢) Polynomialinn (d)Linearinn

Which of the following is false :

(a) Every CFL corresponds toa NPDA

(b) Ever NPDA corresponds toa CFL

(c) Both (a) and (b)

(d) None

Which of the following languages not is accepted by a NPDA

(a) o" p2" (b) wew” (c) ww (d) ww'

Let 1; be the set of the languages accepted by a NPDA and L, be the set of context free
languages. Then :

(8) Ly () 4=1L, (¢) Licip (d) none
If L is N(M) for some PDA M, the Lisa

(a) Regular grammar (b) Context sensitive language

(c) Context frec language (d) none.

IfL is N(M) for some PDA M, then Lisa :
(a)RE (b) DCFL (¢) CFL (d) none
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14,

15.

16.

17.

18.

19.

Every regular set accepted by FA with n states is accepted by a DPDA with

states and n pushdown symbols

(@)n ()1 (c)2 (d)none

A regular set accepted by DFA with n states is accepted to final state by a DPDA with n

states and at least pushdown symbols

(a)3 () 1 (©)2 (dnone

Match the following :

(a) Type 0 grammar (2) A grammar G =(V,T,5.P) in which all productions in P are
oftheform 4 ¥ where 4ev and x e (v un)’

(b) Type | grammar (b) A grammar G =(V.T,5.P) inwhichall productions in P

are ofthe form xe ywhere  ye(rur)* and
yewur)' and |xj< y|

(c) Type 2 grammar (c) A grammar G =(V,T,5.P) inwhich all productions in P are
oftheform xe y where ye (vt and wW(F(N*

(d) Type 3 grammar (d) A grammar G =(V,T,5,P) in whichall productions in P
arc ofthe form feq and de qB where ;¢ r*and 4,8V

Which one of the following is true about PDA's

(@) 8:5x(Tufe)=x = S=I"

(b) PDA has an auxillary memory in the form of a stack.

(¢) PDA is represented by 7-tuple (S, 2.I.35,g9. Z. F)

(d) all of the above

If for 2 language L we can find a RE then definitely (choose most appropriate) :
(a) we can draw DPDA for L (b) we can draw NFDA for L

(c) we can't draw NPDA for L (d) none.

Which of the following doesn't hold (in ID of pushdown automata) ?
(@) If (g.x,WL) = (1,6 Uthen (g,x. W)= (1..2)
(b) If (g.x.#) (1, Z)then (g.x.WU) > (. p.U)
(¢) If (g, %.W) = (1,5, Z) then (g, x W) — (t,€ Z)
(d) If (. x.) = (1,5 Z) then (g.x,#) = (t,5.Z)
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20.

21,

22.

23.

24,

25,

26.

For Pushdown Automatas, which of the following is true.
@) i (g,x.a)| (¢, & y),the forevery ge* (o x ap)|-(¢'.e.vP)

I:b} bil {q.x.a) |. —{g..e,78), then fﬂfﬂﬂq ¥ Ef*{m;xﬁa)l :{‘Hsl'-ﬁ}

(c)Bothaandb.
(d) Only one outofaorb
For Pushdown automatas, which of the following is true.

@ g (g, x.0)| (¢, & y),theforevery per*, (4 xaB) —(¢,=.7)

(b} i (g, .t.-:l]. [ =(ey e ) s then rﬁfﬂ\'ﬂ'ﬁf PEE‘I{QHIHE}I :{qz_ylﬁ}

(c)Bothaand b,

{d) Only oneoutofaorb

If 5 is the number of states in NDFA then equivalent DF A can have maximum of
(a) P -1states (D) 58 states  (c) S-1 states (d) S states
The language (ww"} is

(a) Accepted by a NPDA not by a DPDA
(b) Accepted by a DPDA not by a NPDA

{c) Cannot say.

{d) None

Which of the following can not be accepted by Deterministic PDA
(@) d"¥'nz1wd"™ m=z1 (b) wew

(€) " BPn=1 (d)none

A PDA A is deterministic if :

(i) 8(g.= 2) # ¢ implies 8(g,a,2)=pVae Z (ii) 5(g.a,2) is

(a) singleton (b) empty

(c) either(a) or (b) (d)none

Which of the following statements is false ?

(a) The class of sets accepted by pushdowm automata properly includes the regular sets.
(b) Inherently ambiguous languages can be modeled LR grammars.

(c) A language is CFL iff it can be accepted by a Non deterministic PDA.

(d) A language is LR iff it can be accepted by a Deterministic PDA.
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27.

28.

29,

30.

31.

32.

33.

A pda is said to be deterministic if :

(a) 8(g.a,2) is cither empty or singleton or & (¢,€.2) # ¢ implies 8(g,a,Z) 2 ¢
(b) 8(g.a,Z) is either empty or singleton & (g.€,Z) = ¢ implies Hg.a,2)#¢
(¢) 8(g,a,2) is either empty or singleton & &g, Z) # ¢ implies 8¢.a,Z)=¢
(d) 8(q,a,2) is cither empty or singleton or (g,,Z) = & implies &(¢q,4,2) #¢
Which of the following is accepted by an NPDA and not DPDA

(a) String ending with a particular alphabet

(b) All strings in which a given symbol is present atleast twice

(¢) Even palindromes (j.e. palindromes made up if even no of: symbols)

(d) None

Giventwo PDAsM & M':

where  M=(Q.L1, 8.9p.%).F) and
MZ{QrE-F- d'.q,'.2,', F'}

Which of the following conditions hold if L(Af)=L(M").
{i}Thmisaam-m-ﬂnccmrmpundambctwemmpﬁngmmpumﬁumofM and M'
(ii) If M has no e—moves, then M'hasno —moves; If M is unambiguous, then M'is

unambiguous,

(iii) Forall pe@',all aufe}, all Zer, if (¢,))e8(p.a,Z), then g <>¢'0 and | y|=<2

(@) Only (i) (b) Only (i) & (ii)
(c) Only (i) (d) All of the above.

For Deterministic Context Free languages, which of the following hold?
(i) The complement of a DCFL is a DCFL.

(i) Let I be a DCFL and R is a regular set. Then L/R isa DCFL.

(iii) DCFL's are closed under intersection with a regular set.

(@) (i), (i) and i) (b) 3 and (i)

(c) (i)and (iii) (d) None of the above.
Complement L is:

{a)RL (b)deterministic  (¢) CFL (d)None
Lly s

(a)RL (b) deterministic () CFL (d)None

If L, & Lyare two deterministic languages Ly« Ly is
(a) RL (b) deterministic  (¢) CFL (d)None
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34. Let A=({gy,9:.9,}{a.b.c}, (a,5,Z,},6,90, Zo,{g,})is a PDA, where ¢ is defined as
&(gq.a,Zy)=1(q0,aZ)}, Blgg, b, Zg)=1(g0,bZp)}
Hap, a,a)={(qq,aa)}, 5(qq,b, a)={(gp,ba)}
8(qg. a,b)=1{(qg, ab)}, 5(qg.b,b)={(qq,bb)}
F(gg.c,a)={(g,,@)}, 8(gy,c.0)={(g;.0)}, (g0, 0. 2o )=1(4y> Z, )}
b(gy.,a,a)= 8ig;,b,)={(g;,€)}
dlgy.<, Zp)=1(3s.Zp)}

Then
(a) AisNPDA but not DPDA (b) AisaNPDA
(¢) AisaDPDA (d) none

ANSWER KEY

166) 2() 3() 40 5 6 7.0 8 9% 10.()
11.(b) 12.(c) 13.c) 14.(b) 15.b) 16.a-c, b-b,c-a, dd  17.d) 18.(a)

19.a) 20.c) 21.() 22.(b) 23.@) 24.a) 25.c) 26.c) 27.(c) 28.(c)
29.(c) 30.4¢) 31.(d) 32.(b) 33.(c) 34.(c)
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7

TURING MACHINES

After going through this chapter, you should be able to understand :

Turing Machine
Designof TM
Computable functions

Enumerable languages
Chureh's Hypothesis & Counter machine
Types of Turing Machines

7.1 INTRODUCTION

The Turing machine is a generalized machine which can recognize all types of languages viz,
regular languages ( generated from regular grammar ), context free languages ( generated from
context free grammar ) and context sensitive languages (generated from context sensitive grammar).
Apart from these languages, the Turing machine also accepts the language generated from
unrestricted grammar. Thus, Turing machine can accept any generalized language. This chapter
mainly concentrates on building the Turing machines for any language.

7.2 TURING MACHINE MODEL

The Turing machine model is shown in below figure . It is a finite automaton connected to read -
write head with the following components :

. Tape
. Read - write head
. Control unit
Tape
Lo Jagfap].  Io]olb]...1 |

Read-write Head

Control
Uit

FIGURE : Turing machine mode!
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Tape : It isatemporary storage and is divided into cells. Each cell can store the information of
only one symbol. The string to be scanned will be stored from the left most position en the tape.
The string to be scanned should end with infinite number of blanks.

Read -write head : The read - write head can read a symbol from where it is pointing to and
it cam write ito the tape to where the read - writehead points to.

Control Unit: The reading /writing from / to the tape is determined by the contrel anit. The
different moves performed by the machine depends on the current scarmed symbol and the
current state, The read - write head can move either towards left or right i.c.. movement can be
on both the directions. The various moves performed by the machine are :

1. Change of state from one state to another state
2. The symbol pointing to by the read - write head can be replaced by another symbol.
3. The read - write head may move either towards left or towards right.

The Turing machine can be represented using varous notations such as
. Transition table
. Instantangous description

7.2.1 Transition Table

The table below shows the transition table for some Turing machine. Later sections describe how
to obtain the fransition table.

f ] =

& Tape Symbols (I _!'
States a L b X Y B
s (g X, B) - - (g5, ¥, R} -

o | @en | @nb| - | @BB | - 1
% @b | - @ X0 | @bhh | - ]
% . - b o= @ LR | GeER
% i - o ; .

|
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Note that for each state g, there can be a corresponding entry for the symbol in . In this table
the symbols a and b are input symbols and can be denoted by the symbol 3. Thus £ T
excluding the symbol B, The symbol B indicates a blank character and usually the string ends
with infinite number of B's i. e., blank characters, The undefined entries indicate that there are no
- transitions defined or there can be a transition to dead state. When there is a trausition to the

dead state, the machine halts and the input string is refected by the machine. It is clear from the
table that

G:QxTie(dxTx{LR})

where O= {qo.91.92, F1.gs k7 T={a b}

I'={a, b X,Y,B}

gy 18 the initial state; Bisaspecial symbol indicating blank character

F ={g,} which isthe final state,
Thus ,a Turing Machine M can be defined as follows.
Definition : The Turing Machine A =(0Q,2.I',8,q,.8.F) where

() is set of finite states

i3 set of input alphabets

I' is set of tape symbols

& istransition function @ <o (Q xU'={L,R})

g, 13 the initial state

B is a special symbol indicafing blank character

F < is setof final states.

7.2.2 Instantaneous description (ID)

Unlike the ID described in PDA, in Turing machme (TM), the 1D is defined on the whole string
{ not on the siring to be scanned)) and the current state of the machine.

Definition :

AnIDof TM isastringin aqf, where q is the current state, o # is the string made from tape
symbols denoted by ri.e., @ and A ¢ I'*. Theread - write head points to the first character of
the subsiring £. The initial I is denoted by g where q is the start state and the read - write
head points to the first symbol of o from left. The final ID is denoted by afiqR where g F is
the final state and the read - write head points to the blank character denoted by B.
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Example : Consider the snapshot of a Turing machine
Tapa
[a; 1o las[ag Grlas|ae o [og] o |

Read-write Head

* Control
Uit

In this machine, each 2, T (i.e. each ¢ belongs to the tape symbol). In this snapshot, the
symbol a, i under read - write head and the symbol towards Jeft of g, 1.€., ¢, isthe current

state. Note that, in the Turing machine, the symbol immediately towards left of the read - write
head will be the current state of the machineand the symbol immediately towards right ofthe
state will be the next symbel to be scanned. So, inthis case an [ is denoted by

Oyt Qg i s e
whete the substring  ,a,ase, towards left of the state 4, is the lefi sequence, the
substring a,a;a,;..... towards right of the state g, isthe right sequence and g, is the currant state
of the machine. The symbol «, is the next symbol to be scanned.
Assume that the current ID of the Turing machine is aa,0,0,9;aag0;0...... 85 Shownin
snapshotof example. '
Suppose, there is a transifion &(g,, 65) = (g2, &, B)

Temeans that if the machine is i state ¢, and the next symbot to be scanned is a; , then the
machine enters into state g, replacing the symbol a; by & and R indicates that the read - write
head is moved one symbol towards right. The new configuration oblained is

@yl @5 By 3 @i tigene e

This can be represented by a8 MOVE 88 0,a,0,4, 4, 3:0501Tyonn |~ Ay 3380, b g3 8507050

Similarly if the current TD of the Turing maching is a,a,a;0, §,a5050:d5.-.-
and there is 2 fransition

§{gs. as)=(g;,6,L)
means that if the machine isin state g, and thenext symbol to be scanned 1S «, , then the machine
enters into state g, replacing the symbol as by ¢, and L indicates that the read - write head is
moved one symbol towards feft. The new configuration obtained is

O Bgy §y By Ul llig.m.ene
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This can be represented by a mOve as  a\a,aya,@r@sagoy @y |+ 4033418461868 3.
This configuration indicates that the new state is g, , the next input symbol to be scanned
is g, . The actions performed by TM depends on
1. The current state,
2. The whole string to be scanned
3. The current position of the read - write head
The action performed by the machine consists of
1, Changing the states from one state to another
. Replacing the symbol pointed to by the read - write head
Movement of the read - wriie head towards left or right.
7.2.3 The move of Turing Machine M can be defined as follows

wa d

Definition : let M =(Q.21,5.9,.8.F) be a TM, Let the ID of M be
Y PO PR - 0 N whete a, =T for 15 jsn-1, g =0 is the current state and a, as
the next symbol to scanned, If there is a transition &g, o) =(p. b B)

then the move of machine Mwill be ayaqay. 8y, §80) eei@, §— @)@y Gy PP ypainlly

If thereis a transition dlg, @) ={p. 5, L)
then the move of maching M will be

7 V- S0 TR SUY- 1. JNF PRROURY. SO Bl 10 - MRS Uy - JORY - PO Pt - o

7.2.4 Acceptance of a language by TM
The language accepted by TM is defined as follows.

Dafinition :

Let M ={(Q.2.0.8,q,,8,F ) bea TM. The language L{M) accepted by M is defined as
L{M)= [wigyw|- *a; p &, Where wel* pe F and ¢, oy, 6 T}
i.e., st of all those words win 3+ which causes M to move from stari state g, to the final
state p. The language accepted by TM is called recursively enumerable language.

The string w which is the string to be scanned, should end with infinite number of blanks.
Tnitialty, the machine will be in the start state g, withread - wrile head pointing to the first symbol
~ ofwitom left. After some sequence of moves, if the Turing machine enters into the final state and
halts, then we say that the string w is accepted by Turing machine.
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7.2.5 Differences bhetween TM and PDA
Push Down Automa :

1. A PDA is a nondeterministic finite automaton coupled with a stack that can be used to stare
a string of avbitrary length.

2. 'The stack can be read and modified only at its top.

1. A PDA chooses its next move based on its current state, the next input symbol and the
symbol at the top of the stack.

4. There are two ways in which the PDA may be allowed to signal acceptance. One is by
entering an accepting state, the other by emptying its stack.

5. D consisting of the stute, remssining input and stack contents {o describe the "current condition”
of a PDA,

6. The languages accepted by PDA's either by final state or by empty stack, are exactly the
comtext - free lanpuages.

7. A PDA languages lie strictly between regular languages and CSLs.

Turing Machines :

1. The T™ is an abstract computing machine with the power of both real computers and of
other mathematical definitions of what can be computed.

2. TM consists of a finite - state control and an infinite tape divided into cells.

T™ makes moves based on its current state and the tape symbol at the cell scanned by the

tapehead.

The blank is one of tape symbaols but not input symbaol.

TM accepis its input if it ever enters an accepting state.

The languages accepted by TM's are called Recursively Enumerable (RE)} languages.

Instantaneous description of T describes current configuration ofa T by finite - length sinng.

Storage in the finite control helps to designa TM for a particular language.

A TM can simulate the storage and control of a real computer by using one tape to store all

the locations and their contents.

i

W

D

7.3 CONSTRUCTION OF TURING MACHINE (TM)

In this section, we shall see how TMs can be copstructed.
Example 1: Obtain a Turing machine to accept the language L = {0 "1" {n211] .

Solution : Note that n number of (s should be followed by n number of 1's. For thislet us
take an example of the string w = 00001111 . The string w should be aceepted as it has four zeroes
followed by equal number of 1's.
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General Procedure :

Let g, be the start state and let the read - write head points to the first symbol of the string to be

scanned. The general procedurs to design TM for this case is shown below !

1. Replace theleft most 0 by X and change the state to g, and then tove the read - write head
towards right. This 1s because, afierazerois replaced, we have to replace the comresponding
1 so that number of zeroes matches withnumber of 1's.

9 Search for the lefimost 1 and replace it by the symbol Y and move towards Jefl (so as to
obtain the lefimost 0 again). Steps 1 and 2 can be repeated.

Consider the situation
NXOOYY11
+
o

where first two (s are replaced by Xs and first two 1's are replaced by Ys. In this situation, the
read - write head points to the left most zero and the machine is in state g, With this as the
configuration , now let us design the TM,
Step 1: Instate g;, replace 0 by X, change the state to ¢, and move the pointer towards
right. The transition for this can be of the form
gy, ) =gy . X, R
The resulting configuration is shown below .
XYY
T
T
Step 2 : Instate g, , we have toobtainthe lefi - most 1 and replace itby Y. For this. letus move
the pointerto point to leftmost one. When the pointer is moved towards 1, the symbols encountered
may be 0 and Y. Irrespective what symbol is encouniered, replace 0 by 0, Y by Y, remuin in state
g, and move the pointer towards right. The transitions for this can be of the form
8(q;.0)=(g,,0.R)
(g, Y )=(gq,,¥ . &)

When these transitions are repeatedly applied, the fol lowing configuration is obtained.

XXX0YY11

T
&y
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Step 3 : Instate g,, il the input symbol to be scanned isa 1, then replace 1 by Y, change the
state to g, and move the pointer towards left. The transition for this can be of the form

8i(g,1)=(g,.7.L)
and the following configuration s obtained.
I0YYYH

y

2
Note that the pointer is moved towards left. This is because, a zero is replaced by X and the
corresponding 1 is replaced by Y. Now, we have to scan for the left most ( again and so, the
pointer was move towards left.
Step 4 : Note that to obtain lefimost zero, we need to obtain right most X first. So, we scan for
the right most X. During this process we may encounter Y's and 0's . Replace Y by Y, 0 by 0,
remain in state g, only and move the pointer fowards left. The transitions for this can be of the

form d(g,.Y =g Ys4)
8(a,:0)=(g:.0,L)
The following configuration is obtained
XEXOYYYL
3
dz

Step 5: Now, we have obtained the right most X. To get leftmost 0, replace ¥ by X, change
the state to ¢, and move the pointer towards right. The transition for this can be of the form
6{'?2 ¢ }E{‘?ﬁ AR
and the following configuration is obtained
XXXOYYY]
e

Now, repeating the steps 1 through 5, we get the configuration shown helow :
OXYYYY

dy
Step 6 : In state g, . if the scanned symbol is Y. it means that there are no more 0's. [fthere are

no zeroes we should see that there are no 1's. For this we change the state to g, replace YhyY
and move the pointer towards right. The transition for this can be of the form
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5':‘5"5=Y}={q‘5 rF?R)
and the following configuration is oblained

ARNXEYYYY

-

da
Instate g, , we should see that there are only Y's and no more 1's. So, as we can replace Y by Y
and remain in g, only. The transition for this can be of the form
(g5, )={¢:.F K}
Repeatedly applying this tamsition, the following configiration is obtained .
AXOYYYYB

4

L
Note that the string ends with infinite number of blanks and 50, in siaie g, if we encounter the
symbol B, means that end of string is encountered and there exists n number of 0's ending withn
number of 1's. So, in state g, , on input symbol B, change the state to ¢, , replace B by B and
move the pointer towards right and the string is accepted. The transition for this can be of the

form 5(q5.8)=(g,.B.R)
The following configuration is obtained
XXXXYYYYRB
i
dy

So, the Turing maching to accept the language [ ={a" ¥*| 021}
is given by M =05 8q,.8.F)
where
O=iqp g a0z}t E={01}; T={0L XY, 8}
gy € (2 15 the start state of machine; 2B = U isthe blank symbaol.
F ={q4,} isthe final state.
& 18 shown below.
gy, 0) = (g, X, R}
d1(g:.0)=(g,,0,R)
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8q.¥)=(q,.¥ R}
(g, 1) ={g2.¥,L)
5(q,.T)=(gs.Y.L)
8(44,0)=(g,,0,L)
F(ga X )=(ge. X, 1)
§{gq.Y)=10gs.Y.R}
G{q;,¥)=(g;5.Y.R)

§(q;,B)={(g4.B.R)
The transitions can also be represented using tabular form as shown below.

! )
§ Tape Symthols ()
States 0 1 X y B
@ | @xn | - » @nthB) | -
n @08 | @rD| - | @R -
% (a0 L) | - T W@ X B | @D | -
g - ] = - - (g3, Y. R) _ (g, B, R)
% : | ¢ . [ » =
! | |

The transition table shown above can be represented as transition diagram as shown below :

YIYR Y.L
R oL

To accept the string :

The sequence of moves or computations {[Ds) for the string 0011 made by the Turing machine
are shown below :
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Initial ID

g 0011 |- Xg,011 | - X Og,1t
= Xg 0¥ - gy XO¥]
| Xg, 0¥1 = XXg ¥l
- XX¥ql - XYY
L X XYY b XXg TY
|- AxYgY - XXF¥ys
|- XXYYBg,

{ Final ID}

Example 2 : Obtain a Turing machine to accept the language L (M) ~ { 0" 1"2" {nz 1}

Solution : Note that n number of 0's are followed by nnumber of 1's which in tum are followed
by n number of 2's. In simple terms, the solution to this problem can be stated as follows :

Replace first n number of (s by X's, next nnumber of 1's by Y's and next n number of 2's by
Z's. Consider the situation where in first two s are replaced by X's , next immediate two 1's are
replaced by Y's and next two 2's are replaced by Z's as shown in figure 1(a}.

XX00YY11ZZ222 XXXOYY11ZZ222 XHXOYY112222
1 1l t
o i i
(a) (b) (c}

FIGURE 1 : Various Configurations
Now, with figure 1{a). & as the current configuration, let us design the Turing machine. I
state g, , if the next scanned symbol is 0 replace it by X, change the state to ¢, and move the
pointer towards right and the situation shown in figure | (b) isobtained . The tramsition for this can
be of the form

d{g,.0)=(g,. X .R)

Instate ¢, wehave to search forthe leftmost 1. Itis clear from figure 1(b) that, when we
are searching for the symbol 1, wemay encounier the symbols 0 or Y. So, replace 0 by 0. Y by
¥ and move the pointer towards right and remain in state ¢, only, The transitions for this can be
of the form §{g,.0¥=(g,.0,R)

d{g,.¥)=(gq,,¥.R)
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The configuration shown in figure 1{c} is obtained. Instate g,, on encountering 1 change the
state fo g, . replace 1 by Y and move the pointer iowards right, The transition for this can be of
the form

8 (g, Ay=(q..V.R)
and the configuration shown in figure 2(a) is obtained

KXHKOYYY 122 XKXXOYYY1Z722 HEXOYYY1ZZZ2
1 1 t
g2 ES ds

(2) () (©)

FIGURE 2 : Various Configurations
In state g,, we have to search for the Jeftmost 2. 1t is clear from figure 2(a) that, when we
are searching for the symbol 2, we may encounter the symbols 1 or 7. So,replace 1 by 1, Zby
7 and move the pointer towards ight and rerain in state g, only and the configuration shown in
figure 2(b)is obtained. The transitions for this can be of the form
Fig.,1)=(g;.1.8)
8{g..,Z2)=(g:,2.R)
Instate g,,onencountering 2, change the state to g, , replace 2 by Z and move the pomter
towards left. The transition for this can be of the form
8{q,.2)=(g:,2,L)
and the configuration shown in figure 2(c) is obtained, Once the TMis instate g, it means that
equal number of 0's, 1's and 2's arc replaced by equal pumber of X's, Y's and Z's respectively.
At this point, next we have o search for the rightmost X to get lefimost 0. During this process, it
is clear from figure 2(c) that the symbolssuch as Z's, 1,5, Y's, 0's and X are scanned respectively
one after the other, So, replace Z by Z, 1 by 1. Y by Y, 0 by 0, move the pointer towards left and
stay in state g, only. The transitions for this can be of the form
8(g3.2)=(g4.2.L)
d{gy1)=(aq;.01,L)
8igs.¥ )=(g,.Y.L)
§(g4.0)=(g:.0,%)
Only on encountering X, replace X by X. change the state 10 g, and move the pointer
towands right to get leftmost 0. The transition for this can be of the form
gy, X y={q. &, R)
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i o . ———

All the steps shown above are repeated till the following configuration is obtained.

t
) ¥y

In state g, . if the input symbol is Y, ii means that there are no (s . If there are no s we
should see that there are no 1's also. For this to happen change the state to g, , replace Y by X
and move the pointer towards tight. The transition for this can be of the form

Fl(ga.Y d=lg,.Y . R)

In state g, search foronly Y's, replace Y by Y, remain in state ¢, only and move the pointer

towards right. The transition for this can be of the form
S(gaJ 1=(g,,F R}

Instate g, ,ilwe encounter Z, it means that there are no I s and 80 we should see that there
are no 2's and only Z's should be present. So, on scanning the first Z, change the state to g, ,
replace Z by 7 and move the pointer towards right. The transition for this can be of the form

&g 4.2 V={gs.&.R)

But, in state ¢, only Z’s should be there and no more 2's. So, as long as the scanned symbol
is 7, remain in state g, , replace Z by Z and move the pointer towards right. But, once blank
symbol B is encountered change the state io ¢,, replace B by Band move the pointer towards
tight and say that the input string is accepted by the machine, The transitions for this can be of the
form #g;.2)=(g,.2.R)}

8(gs,.B)=(q,,8,R)
where g, s the final state.
S0, the TM to recognize the language £ ={0"1"2" | n 21} isgivenby
M =(0,5,F.8.4q,8.F)

where
G =1¢o.d1:42.02:F4:935:8s) > E={0,12}
r=40,12 X ¥, Z B}: g, isthe initial state
B is blank character F={g }isthe final staie

5 is shown below using the transition table.
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T
States | 0 1 2z X X B ]
4. 19, %GR | 7z...R |
o |a:OR | ¥R| | lg¥R | o
g | g,.L.R g, g, LR
g |40k | g.llL g 2L g YL | q.XR ]
{4 ] q, Lok |q, . YR
a, a, LR ! L | g5 2. B)
The fransition diagram for this can be of the form
YIYR ZEZR

MR 1R omL

Example 3 : Obtaina TMtoaccept the language 1 = {w | w = (0 +1)*} containing the substing 001.

Solution : The DEA which accepts the language consisting of strings of (‘s and 1'shavingasub
string (01 is shown below :

The ransition table for the DFA is shown below
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1 T
- 0 1
SR | | g, e
g, | 4 g,
4 4, 4
© | @ i @
We have scen that any | e whi

chis m::cpwd by a DFAis regular As the DFA processes

the input string from left to right in only one direction, TM also processes the input string in only
ong direction (untike the previous examples, where the read - write header was moving in both
the directions), For cach scanned input symbol ( either O or 1), in whichever state the DFA was
in, TM also enters into the same staics on same input symbols, replacing 0 by (and ! by 1 and
the read - write head moves towards Tight. So, the transition table for DFA and TM remains
same ( the format may be different. It is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of 0's and 1's with a substring 001 is shown

below R b i -
0 | 1 B =
s, | ¢OR s LR | -
5 Lo ﬂ‘r R '&;; -i:- R =
‘?2 qzl[}!R EE] ]"R ...... b
g, = Q,JLR Q;!]:R ﬁ'nsﬂvR““-
|94 e
The TMis given by

where

M =(0.ET,8.q,,8,F)

O={4qy 4,:¢::9,: 9.} ¢
T={0,1}; §- isdecfined already

g, istheinitial state: B blank character
F={ g, }isthefinal state

The transition diagram for this is showm below.

E={0, 1}
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Example 4 : Obtaina Turing machine to accept the language containing strings of 0's
and 13 ending with 011.

Solution : The DFA which accepts the language consisting of strings of 0's and 1's ending

withthe string 001 isshown below

The transition table for the DFA is shown below :

3 0 1
Gy d, 4y
4, 4 g,
dy d ¢,
4. ; i

We have seen that any language which is accepted by a DFA is regular. As the DFA processes
the input string from left to right in only one direction, TM also processes the input string in only
one direction. For each scanned input symbol ( either 0 or 1 ), in whichever siaie the DFA was
in, TM also enters into the same states on same input symbeols, replacing () by O and 1 by 1 and
the read - write head moves towards right. So, the transition table for DFA and TM remains
same { the format may be different. It is evident in both the fransition ables). So, the transition
iable for TM to recognize the language consisting of (s and 1's ending with a substring 001 is

shown below



TURING MACHINES

§ 0 i B
4 ,.0.R l s | e =1
q, LR | 4. LR -
g, g,,0, R g,- L. R -

4 R | g LR | 4.BR
g, i - ] - y

The'l'MlsgiVEmhy A =[Q,E,F,(i,1?u,|q1f}

where

O=1{g,, a,.4..49,} : Z=i1}  [={}1}
5 — is defined already

g, istheinitial state ; B does not appear

F={ g, } isthe final state
'The transition diagram for this is shown below :

Example 5§ : Obtain a Turing machine to accept the language
L={wiwis evenand L= {4a, b} }

Solution :

The DFA to accept the language consisting of even number of characters is shown below.
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The transition table for the DFA is shown below :

l, f 8| b
&% |4 g
9 4, 9,

We have seen that any language which is accepted by a DFAis regular. Asthe DFA processes
the input string from left to right in only one direction, TM also processes the input string in only
one direction. For each scanned input symbol (either a or b), in whichever state the DFA was in,
M also enters into the same states on same input symbols, replacing aby aand b by band the
read - write head moves towards right. So, the transition table for DFAand T™M remains same
{the format may be different), So, the transition table for TM 1o recognize the language consisting
of a's and b's having even nurber of symbols is shown below :

& a b B
PR PP S BTy
Ry R
I AN . -
The I'™ is given by

M =(0,5.1.8.90.8,F)
whire

Q={ .49 ¥ L={a b} 1 [={a b
5— isdefined already ; g, istheinitial state
B docs not appear ; F={ g, } isthe final state

The transition diagram of TM is given by
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Example 6 : Obtaina Turing machine to accept a palindrome consisting of a's and b's of any length.
Solution : Letus asswe that the first symbol on the tape is blank character B and is followed
by the string which in tum ends with blank character B. Now, we have to design a Turing machine
which accepts the string, provided the string is a palindrome, For the string to be a palindrome,
the first and the last character showld be same, The second character and last bad one character
inn the string should be same and so on. The procedure to accept only string of palindromes is
shown below. Let gl be the start state of Turing machine.

Step 11 Move the read - write head to point to the first character of the string. The transition
Tor this can be of the form Fl{gq..8)=(gq.8.R)
Step 2: In state g , if the first character is the symbol a, replace it by B and change the state
to g, and move the pointer towards right, The transition for this can be of the form
F{g,a)=(q,,B.R)
Now , we move the read - write head to point to the last symbol of the string and the last

symbuol should be a . The symbols scanned during this process area's . b's and B. Replace a by
a, b by b and move the pointer towards right. The transitions defined for this can be of the form

d{g.,a)=(q,.a,R})
{gz.b)=0g,.0.R)
But, once the symbol B is encountered, change the state to g, , replace B by B and move the
pointer towards left. The transition defined for this can be of the form
d(g.,By=(g5,8.L)
Ini state ¢, , the read - write head points to the last character of the siring. If'the last character
is &, then change the state to ¢, , replace a by B and move the pointer tewards lefi. The transitions
defined for thiscan be of the form

d(q5.a)=(gq4.B.L)
At this point, we know that the first character is a and last character is also a. Now, reset the
read - write head to point o the first non blank character as shown in step3.

In state g, ,ifthe last character is B ( blank charscter), it means that the piven string is an odd
palindrome. So, replace B by B change the state to g, and move the peinter towards right. The
transition for this can be of the form

di{g,,B)=(g,.8,R)
Step 3 : Wike firstcharacter is the symbol b, replace it by B and change the state from g, to g,
and move the peinter towards right. The transition for this can be of the form
d(g.0)=(q:,8.R)
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Now, we move the read - write head to point to the last symbol of the string and the last
symbol should be b, The symbols scanned during this process are &'s, b's and B. Replaceaby a,
b by b and move the pointer towards right, The transitions defined for this can of the form

8(g5,0)=(q4.4.R)
J(Q'Elb)={q5?ﬂ:-ﬁ]

But, once the symbol B is encountered, change the state to g, , replace B by B and move

the poinfer towards left. The transition defined for this can be of the formn
] (QE !B}F(Q-&:E :-'F—‘}

in state ¢, , the read - write head points to the last character of the string, [f'the last character
is b, then change the state to ¢, replace bby B and move the pointer towards left. The transitions
defined for this can be of the form

8(g5.8)=(q,.8.L)

Atthis point, we know that the first characteris b and last character is also b. Now, reset the

read - write head to point to the first non blank character as shown instep 5.

In state g, If the last character is B ( blank character ), it means that the given string is an
odd palindrome. So, replace B by B, change the state to ¢, and move the pointer towards right.
The transition for this can be of the form

d{gs.8)=(q;,8.K)
Step 4 : In state g, ifthe first symbol is blank character {15), the given siring iseven palindrome
and so change the state 1o ¢, , replace B by B and move the read - write head towards right. The
transition for this can be of the form

8(g,.B)=(g+,8,R)

Step 5: Resettheread - waite head to point to the first non blank character. This can be done
 as shown helow.

If the first symbol of the string is a, step 2 is performed and if the first symbol of the string is
b, step 3 is performed. After completion of step 2 or step 3, itis clearthat the first symbol and the
last symbol match and the machine is currently in state g, - Now, we have to reset the read - write
head to point to the first nonblank character i the string by repeatedly moving the head towards
left and remain in state g, . During this process, {he symbols enco untered may beaorbor B
( blank character ). Replace aby a, b by b and move the pointer towards left. The transitions
defined for this can be of the form S(g,ay=(gs.a,L)

&{E’:J?)EKE.LJ}WL)
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But, if the symbol B is encountered , change the state to g , replace B by B and move the pointer
towards righi. the transition defined for this can be of the form

6{q,.B)=4(q,.8,R)
Adfter resetting the read - write head to the first non - blank character, repeat through step 1.
So, the TM to accept strings of palindromes over { a,b } isgivenby M =(Q, £, &, ¢,,8.F)
where Q= {g,,9,. 4,2 6,, 4, 4:-9:: 4, }  T=la B} ; T={ah BY; g, isthe initial state
B is the blank character; F={ ¢, }; 5 is shown br:lowm:ingﬂwtransiﬁ.ﬂ_n tahle

e ! :

T 2 b B
fi‘:- " o » g,.B, R
ie 7., B, R ¢.B.R | 4,B,R

L 4@ g:»8 R bR | g,BL

% | BT T BR

T a wml | @bl | a,BK

| % 7., 8R 2.0R | 4.BL

| | ; BT 2..B.R

The transition diagram lo accept palindromes over { a, b }is given by

BB.R

The reader can trace the moves made by the machine for the strings abba, aba and asba and {s
left as an exercise.
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Example 7 : Constructa Turing machine which accepis the language of aba over £-{a,} .

Solution : ThisTMisonlyforL={aba}
We will assume that on the input tape the string "aba’ is placed like this

a b Ja B [ Bl .
[

T
The tape head will read out the sequence upto the B character if'aba' is readout the TM will
halt after reading B.

The triplet along the edge written is { input read, output to be printed, direction)
Let us take the transition between start stateand g, is( a, a, R ) that is the current symbol

read from the tape is a then as a output a only has to be printed on the tape and then move the
tape head to the right. The tape will look like this

a b a B Bl .. o
T
Again the transition between g, and ¢, is(b, b, R). That means read b, print b and move
right. Note that as tape head is moving ahead the states are getting chanped.

a | b a B E B
T.

The TM will accept the language when it reaches to balt state. Halt state is always a accept
state for any TM. Hence the transition between ¢, and halt is (B, B, S). This means read B, print
B and stay there or there is no move left or right, Eventhough we write (B. B, L) or (B, B, R}
it is equally correct. Because afier all the complete input is already recognized and now we
simply want to enter into a accept state or final state. Note that for invalid inputs such as abb or
ah or bab ..... there is either no path reaching to final state and for such inputs the TM gets
stucked in between, This indicates that these all invalid inputs can not be recognized by our TM.

The same TM can be represented by another method of transition table
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! a b E

| Start (g,.0.8) - -

| 4 : {g..5. R} .
4. ; (9..a.R) - -
% 1 - . (HALL B, S)
HALT : . 2

Inthe given transition table, we write the triplet in each row as
{Next state, output to be printed, direction }
Thus TM can be represented by any of these methods.

Example 8 : Designa TMthat recognizesthe set L= [0*1"|»n 2 0}.

Solution : Here the TM checks for each one whether two ('s are present in the left side, [fit
match then only it halts and accept the string.

The transition praph of the TM s,

FIGURE : Turing Machine for the given language L= {(F1"|nz 0}
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Example 9 : Design Turing machine to recognize the palindromes of digits {0, 1} Give its state
transition diagram also.
Solution : The construction is made by defining moves in the following manner.
i, The machine scans the first input symbaol  either D or 1 ), erases (but remembers)it,
writes a blank symbol in place and changes state {g, or g, .

i Ttscansthe remaining part without changing the tape symbol until it encounters b. It then
moves the read / write head a step left. Ifthe rightmost symbol tallies with the lefimost
symbol, the rightmost symbol is erased. Otherwise T. M. halts. The read/write head
moves to the left until b is encountered.

fi. The above steps are repested after changing the states suitably.

The transition table 12 shown below.

Present State Tape Symbols
0 1 b
5 2, bRy, 1’ :f;;‘i'th | bRy,
q, ORg, 1Rg, bLg,
q, i 0Rg. IRq, hig,
¢, "; bLg, - bRy
q. = big, bRg, i
d 0lq, | LLg, bRy,

The transition diagram is shown in below figure.,

0,0, R
L1LR

FIGURE : Transition State Diagram for the Palindromes
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Example 10 : Design a Turing machine that accepts [ = {a"binz 0} .
Solution : The fﬂgic that we use for the Turing machine to be constructed is,

"The Turing machine will remember lefimost a, by replacing it with B, then it moves the tape head
right keeping the symbols il scans as itis, until it gets rightmost b, it remembers rightmost b, by
replacing it with B, and moves the tape head left keeping the symbols it scans as it is till it reaches
the B, on getting B, it moves the tape hoad one position right and repeats the above cycle if it gets
a. If it gets B instead of a, then itis an indication of the fact the string is of the form 4+, hence
the Turing machine enters into the final state. Therefore, the moves of the Turing machine are
given in below table .

a b B
| e (g, B, R) (@ BB
a | (g, R) (g,B. B) (7., B, L)
¢, {g,,B,L)
¢ (g,.a.L) {g,.0,L) (4,.5, R}
d,

TABLE : Moves of the Turing Machine for the given language

Therefore, the Turing machine M =({g,,¢;,¢,.9:.24 bia.b}.{a.b.B}.6 gy, Bdq, }) - where is
given above.
The transition diagram corresponding to the above Table is shown inbelow figure.

FIGURE : Transition Diagram for the above Table
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Example 11 : What does the Turing Machine described by the 5 - tuples,
{Qﬂ:ﬂ: in ,.i, R):(gﬁ !] i .'Dr r)'il':ql] s B"'q! ,..B,_R} X

{";L busq; _..ﬂ., R}l {QH -uL"_FuIs R} w (QL!E!'I'?E 5Bi'ﬂr} DD When gf‘JEI‘I a bh sn'ing
asinput ?

Solution : The transition diagram of the TM is,

FIGURE : Transition Diagram for the given TM
The TM here reads an input and starts inverting (s to 1's and 1's to 0's {ill the first 1.
After it has inverted the first 1, it read the input symbol and keeps it as itis till the next 1.
After encountering the 1 it starts repeating the cycle by inverting the symbol till next 1, ¥t halis
when it encounters a blank symbol,

7.4 COMPUTABLE FUNCTIONS

A Turing machine is a language acceptor which checks whether a string x is accepted by &
lanpuage L. In addition to that it may be viewed as computer which performs computations of
functions from integers to integers. In traditional approach an integer is represented in unary, an

integer ;=0 isrepresented by the string ¢ .
Example 1 1 21s represented as g2 . Ifa function has k argaments, i, éy.........%; , then these
integers are initially placed on the tape separated by 1's,as 0' 102 1 ... 10% .

{f'the TM haits { whether in or not in an sccepting state) witha tape consisting of 's for some m,
then we say that £(i,. iy,......i, ) =m , where {'is the function of k arguments computed by this
"Turing machine.
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Example 2 :
Consider a function in C.
intsum {intx, inty, intz}
{ int s ;
S=EX+Y+Z;
retums;
}
Suppose this function is mvoked using statement,
c=sum(2,3,4);
After invoking sum ( ), ¢ will have the value 9. The same computation can be performed by
Turing machine also. Initially, the Turing machine will have the arguments of sum{ ) ... 2,3, 4 0n
its tape as shown in figure (a).

-
w
4

(a) Before Computation
This Taring machine performs the sum of these avgiments. After some moves it halts with the
tape containing value 9, as shown in figure (b).

(b) After Computation
FIGURE : Elements on Tape to Compute Sum

Note that a Turing maching may compute a function of one argument, a function of two arguments
and so on. The Turing machine given in figiwe can perform sum of two arguments or three anguments
or in general sum of any finite number of argurents,
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1f TM M computes function fof k arguments i then fueed not have a value for ail different
k - tuples of iNtegers i,. iy, v fg i Fip, iy wveene iy ) is defined forall, 4., . then wesuy (isa
otal recursive finction, otherwise we say fis partial recursive finction. Total recursive fumctions
are analoguss to recursive language because they are computed by TM that always halts, Partial
recursive function are analogues to recursively emmmerabie languages. Because they are computed
by TM that may or may not halt. Examples of total recursive functions, al! common arithmetic
functions on integers, such as multiplication ete, are total recursive functions.

Example 3 : Construct Turing machine to find proper subtraction m - n is defined to be
m - n for mzn and zero form <n.

Solution : The T™M M ={ {gpdr wngob 10, 1}, (0, 1, B}, &, ¢,, B, ) defined befow, started
with g7 7 ¢» onits tape, halts with g~ o its tape. M repeatedly replaces its leading 0 by blank,
then searches right for a 1 followed by 2.0 and changes the 0 to 1. Next, Mmoves left until it
encouniers a blank and then repeats the cycle. The repetition ends if

i  Searchingright fora 0, M encounters a blank. Then, the n0'sin o™ 10* have all changed to
I'sandn+ 1 ofthe m ('s have been changed to B. M replaces the n+ 1 I's bya O and
n B's leaving m - n 0's on its tape.
i, Beginningthecycle, M cannot find a0to change to a blank, becanse the first m 0 is already
have been changed. Then 7= m. Som - n=0. Mreplaces all remaining 1'sand 0's by B.
The function § is described below.
1. (g0, O = (g, B, R)
Begin the cycle, Replace the leading O by B.
2. 8g,0=1(3,,0 R
&g =14, 1, )
Search right, looking for the first 1.
3. 5(1?1@5} o= 'f:fﬁ: 1, R)
5({{2 1{}} = {gjy 11 L}
Search right past 1's until encountering a 0, change that to 1.
4+ 5{‘?3,1:[} = {{j3, i}-, _L}
5{‘?}:[-} i (4’3: ]:r j':l'
5(@31'3} = {ggs B, R}
Move lefi to a blank. Enter state g, to repeat the cycle.
5. 5‘:’?th} ={g,. B, L}
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[

Slg. =194, 8, L)

&g, 0y = (9., 0. L)

85,00 = (g6, 0, R)
Ifinstate g, aB is encountered before a 0, we have situation (i) described above, Enter state
g, 8nd move left, changing all 1's to B s until encountering a'B', This B is changed backtoal,
state g, is entered, and M halts, '
6. 6(qy.1) = (952 B, R)

&(g5,0) = (g5, B, K)

8(gs,1) = (g, 8. R}

&(g:, B) = (g5, B, R)
Ifin state g, a1 is encountered instead of a0, the first block of (s has been exhausted, asin
situation (ii) above. M enters state g, to erase the restof the tape, then enters g and halts.

Example 4 : Design a TM which computes the addition of two positive integers.

Solution: LetT™ M =(Q, {0, 1, #}, 8,5) compulés the addition of two positive integers m
and n. It means, the computed function f(m, n ) defined as follows :

}_x{m-rn{{f mnzl)

Temr=g fin=n=0)

| om the tape separates both the numbers m and n. Following values are possible for mandn.

(#1#......is the input),
2. m=0and p#0 ( H10"# -veoes 15 the Input ),
3. mepandn=0 (31 .. 18 the input), and
4. mzoand n20 { 4071074 ..... is the input )

Several techniques are possible for designing of M, some are as follows:
(2} M appends { writes)m afier nand erages the m from the left end.

(b) M writes 0 in place of 1 and erases one zero from the right or left end . Thisis possible in
case of p 0 OF m=0 only. m=0o0rn=0then 1 is replaced by #.

We use techniques (b) given above. M is shown in below figure.
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Birea, 1 iaveplaced by 0

adverion, 5o evase ane i e = @

FIGURE : TM for addition of two positive inlegers

7.5 RECURSIVELY ENUMERABLE LANGUAGES
Alanenge Loverthealphabet 1 iscalledrecursively enumerable if fhereisa TM Mthataccept every word
in Land either rejects( crashes) orloops for every word inlanguage L' the complement of L.

Accept (M) =1L

Reject (M) + Loop (M) =L"
When TM M is still ranning on some input ( of recursively enumerable languages ) we can never
tell whether M will eventually accept if we let it run for long time or M will run forever ( inloop).

Example : Consider a language(a+b)*bb{a+b)*.

TMfor thislanguageis, (b, 4, R} (s, 8 R)

—m{ Halt

{a,a,R)

FIGURE : Turing Machinefer (a+b)*bb(atb)*

Here the inputs are of three types.

1. All'words with bb = accepts (M) as soon as TM sees two consecutive b's it halts.

2. All strings without bb but ending in b =rejects (M). When TM sees a single b, it enters
state2. If the string is ending with b, TM will halt at state 2 which is not accepting state.
Herce it is rejected.

3. All strings without bb ending in ‘&' or blank 'B' = loop (M) here when the TM sees last ait
enters state 1. In this state on blank symbol itloops forever.
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Recursive Language

Alanguage L over the alphabet ¥ is called recursive if there is a TM M that accepis every word
in L and rejectsevery word in L' i. ¢,

accept (M)=L
reject (M) =1
loop{ M) = 4.

Example :Consideralanguageb(a+b)* . Itisrepresented by TM as

()220 )

FIGURE : Turing Machine forb (a+b)*

This TM accepts all words beginning with b’ because it enters halt state and it rejects all words
beginning with & because it remains in start state which is not accepting state.

A language accepted by a TM is said to be recursively enumemable languages. The subclass of
recursively enumberable sets (1, e) are those languages ofthis class are said to be recursive sets
or recursive language.

7.6 CHURCH'S HYPOTHESIS

According to church's hypothesis, all the functions which can be defined by buman beings can be
computed by Toring machine. The Turing machine is believed to be ultimate computing machine.

"The church's original staternent was slightly different because he gave his thesis before machines
were actually developed. He said that any machine that can do certain list of operations will be
able to performm all algorithms. TM can perform what church asked. so they are possibly the
machines which church described.

Church tied both recursive fimctions and computable functions together. Every partial recursive
function is computable on TM. Computer models such as RAM also give rise to partial recursive
fimctions. So they can be simulated on TM which confirms the validity of churches hypothesis.

Important of church's hypothesis is as follows .
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1. First we will prove certain problems which cannot be solved using TM.

2. [Ifehwrches thesis is true this implies that problems cannot be solved by any computer oramy
programiming languages we might every develop.

3. Thus in studying the capabilities and limitations of Turing machines weare indeed studying
the fundamental capabilities and limilations o any computational device we might even
consrict

It provides a general principle for algorithinic computation and, while not provable, gives strong
evidence that no more powerful models can be found.

7.7 COUNTER MACHINE

Counter machine has the same structure as the multistack machine, but in place of each stack is

acounter. Counters hold any non negative integer, but we can only distinguish between zero and
1100 ZEFO COMMETS.

- Counter machines are off - line Turing machines whose storage tapes are semi - infinite, and
whose tape alphabets contain enly two symbols, Z and B ( blank). Furthermore the symbol Z.
which serves as a bottom of stack marker, appears initially on the cell scanned by the tape head
and may never appear on any other cell. An integer i can be stored by moving the tape head i
cells to theright of Z. A stored numnber can be incremented or decremented by moving the tape
head rightor left. We can test whether a mumber is zero by checking whether Z is scanmed by the
head, but we cannot directly test whether two numbers are equal.

# Rend-only Input | 5

[

Finite

Contral
- E\\\ d,
z BiB ---\ BiBlB
i i

ZthiBl..-|{B|BIB|---

FIGURE : Counter Machine



TURING HMCHFHE%M' 7.33

#and § are customarily used for end markers on the input. Here Z is the non blank symbol on
cach tape. An instantaneous description of a counter machine can be described by the state, the
input tape contents, the position of the input head, and the distance of the storage heads from the
svmbol 7 ( shown here as 4, and ¢, ). We call these distances the counts on the tapes. The
counter machine can only store a count an each tape and tell if that count is zero.

Power of Counter Machines

- Everylanguape accepted by a counter Machine is recursively enumerable.
- Every language accepted by a onc - counter machine is a CFL so a one - counter machine
is a special case of one - stack machine i.e.,a PDA

7.8 TYPES OF TURING MACHINES

Various types of Turing Machines are :

i With muitiple tapes.

il. With one tape but multiple heads,

iil. With two dimensional tapes.

iv. Nondeterministic Turing machines,
Tt is observed that computationally all these Turing Machines are equally powerful. That means
one type can compute the sume that other can. However, the efficiency of computation may
vary.
1. Turing machine with Two - Way Infinite Tape :
This is a T™ that have one finite control and one tape which exiends mfuutely in both directions.

Inpaut Einite AcceptReject
conirol

¥

[N NN N

laps

FIGURE : TMwith infinite Tape

Tt turns out that this type of Turing machines are as powerful as one tape Turing machines whose
tape has a left end.
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2. Multiple Turing Machines :

Input . Eirite AsceplRajoct

wpat _ 1 1 111
i
weez | ] 111

wpes |} 1 111
FIGURE : Multiple Turing Machines

Amultiple Turing machine consists of a finite control with k tape heads and k tapes, each fape is
infinite in both directions. On a single move depending on the state of the finite control and the
symbol scanned by each of the tape heads, the machine can :

1. Change state.

2. Print a pew symbol on cach of the cells scanned by its tape heads.

3. Move each of its tape heads, independently, one cell fo the Iefi or right orkeep it stationary.

Initially, the input appears on the first tape and the other tapes are blank.
3. Nondeterministic Turing Machines :

A nondeterministic Turing machine is a device with a finite contro! and a single, one way infinite
tape. For a given state and tape symbol scanmed by the tape head, the machine has a finite
number of choices for the next move. Each choice congists of a new state, a tape symbol to print,
and a direction of head motion, Note that the non deterministic TM is not pecmitted to make a
move in which the next state is selected from one choice, and the symbol printed and / or direction
ofhead motion are selected from other choices. The non deterministic TM accepts its input if any
sequence of choices of moves leads to an accepting state,

As with the finite automaton, the addition of nondeterminism to the Turing machine does not
allow the device to accept new languages.
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4. Multidimensional Turing Machines : | _ @m@

o ——]

¥

A-dimensional T

FIGURE : Multidimensional Turing Machine

The multidimensional Turing machine has the usual Finite control, but the tape consists of a
k - dimensional array of cells infinite in all 2k directions, for some fixed k. Depending on the state and
symbol scanined, the device changes state, prints a new symbol. and moves its fape head mone of 2k
directions, either positively or negatively, along one of the k axes. Initially, the input is along one axdis, and
. the head is at the lefi end of e input. At any time, only a finite number of rows in any dimension

contains nonblank symbols, and these tows each have only a finite number of nonblank symbols
5. Multihead Turing Machines :

s Fine | AccepyReist
cantral

r’r_‘ﬂ&dl! madiwl“
11 T i1l

wpe
FIGURE : Muitihead Turing Magchine

Ak - head Turing machine has some fixed number, k, of heads. The heads are numbered 1 through
k, and a move of the T™M depends on the state and on the symbol scanned by each head. In one
move, the heads may each move independently left, right or remain stationary.

§. Off - Line Turing Machines : i
e
[ I S e A e

I
e o T i i

FIGURE : Off - line Turing Machine
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Anoff - line Turing machine is a multitape TM whose input tape is read - only. Usually we
surround the input by end markers, ¢ onthe left and § on the tight. The Turing machine is not
allowed to move the input tape head off the région between ¢ and §.

Off - line TM is just a special case of the multitape TM, and is no more powerful than any of the
models we have considered. Conversely, an off - line TM can simulate any TM M by using one
inoreizpe than M. The first thing the off - line TM does is copy its own input onto the exiratape,
and 1t then simulates M as if the extra tape were M's input.

7. Multistack Machines :

A deterministic two - stack machine isa deterministic Turing machine with a read only input and
two storage tapes. If a head moves left on either tape, a blank is printed on that tape,

Multistack machine and counter machines are restricted Turing machines equivalent to the basic
model.

7.9 COMPARISON OF FM, PDA AND TM

Basically have discussed three models viz. finite automata or finite machines {(FM), Pushdown
antomata (PDA) and Turing machine (TM). We will now discuss the comparison between
these models,

1. The finite machine is of two types - deferministic finite state machine and non deterministic
finite state machine. Both of these DFA and NFA accept regular language only. Hence both
the machines have equal power i, e. DFA=NFA.

2. Wehave then leamn push down automata again, pushdown autorata consists of two types of
models deterministic PDA and Non deterministic PDA. The advantage of PDA over FA is
that PDA has a tnemory and hence PDA accepts large class of languages than FA. Hence
PDAhas more power than FA. The non deterministic PDA accepts the lanpuage of context
free grammar power of DPDA is less than NPDA as NPDA aceeptsa larger class of CFL.

3. The class of two stack orn - stack PDDA has more power than one stack DPDA or NPDA,
Hence two - stack / n - stack PDAS are more powerful,

4. Turingmachines can be programmed. Henee TM accepts very very large class of languages.
M, therefore is the most powerful computational model.

TM™M > PDA > FM
TMaocepts regular and non - regular langusges ; context free and context sensilive languages as well,
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REVIEW QUESTIONS

1. Explain Turing machine .
Answer : .
For Answer refer to Topic : 7.2, Page No: 7.L
Q2. Differentiate between TM and PDA.
AAnswer ;

For Answer refer to Topic : 7.2.5, PageNo: 7.6.
Q3. Oblain a Turing machine to accept the language L = {0 "I" [n=2 1},

Answer :

For Angwer refer to example - 1, Page No : 7.6.

Q4. Obtain a Turing machine to acceptthe language £ (M) ={ 0" 1"2" inz 1}
Answer :
For Answer refer to exampie - 2, Page Mo : 7.11.
Q5. Obtaina TM to accept the langnage L ={w |w =(0+1)*} containing the substring 001,
Answer :
For Answer refer to example - 3, Page No : 7.14,

Q6. Obtain a Turing machine to accept the language containing strings of (s
and 1's ending with 011,

Answer :

For Answer refer to example - 4 , Page No : 7.16.
()7. Obtain a Turing machine {o accept the language L ={wiw ir evenand Z= {a,b}}
Answer :

For Answer rafer to example - 5, Page No @ 7.17.
8. Obtain a Turing machine to accept a palindrome consisting of a's and b's of any length.
Answer :

For Answer refer to example - 6, Page No : 7.19.
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Q9. Construct a Turing machine which accepts the language of aba over L ={a,b}.
Answer !
For Answer refer to example - 7, Page No : 7.22.
Q1. Design a TM that recognizes the set L= {0™1"|n = 0} .
Answer :
For Answer refer to example - 8, Pape Mo : 7.25.
Q11. Design Turing machine to recognize the palindromes of digits { 0, 1} . Give its state transition
diagram also,
Answer ;
For Answer refer to example - @, Page No : 7.24.
(Q12. Design a Turing machine that accepts L [a*b" |nz 0} .

Answer

For Answer refer to example - 10, Page No : 7.25.
(Q13. what does the Turing Maching described by the 5 - tuples,

{qﬂ:ﬂ!'f‘fﬁ :-I-:R:L{HI;I-!I:Q':‘“:r:l'b{"?‘mB'lq?_:EuR] 1
(2,0.9,.0, B), (g.1.q,, B) and (4,B.q,,B,R) . Dowhen given a bit string

as input ?
Answer :

For Answer refer to example - 11, Page No : 7.26.
Q14. Write a short notes on computabie funetions.
Answer :
For Answer refer to Topic ; 7.4, Page No : 7.26.
Q15. Construet Turing machine to find proper subtraction m - n is defined to be m -n for
m=n and zero form<mn.
Answer :
Tor Answer refer to example - 3, PageNo : 7.28,
Q16. Design a TM which computes the addition of two positive integers.
Answer ;
For Answer refer to example - 4, Page No : 7.29.
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Q17. Write about recursively Enumerable Languages .
Answer :

For Answer refer to Topic : 7.5, Page No : 7.30.
18, Explain about church's Hypothesis.
Answer ;

For Answer refer to Topic: 7.6, Page No: 7.31.

Q19. Explain about counter machine with & neat diagranm.

Answer ;

“For Answer refer to Topic : 7.7, Page No: 7.32.
Q20. List and explain various types of Turing Machines.
Answer ;

For Answer refer to Topic ; 7.8, Page No ; 733,
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|r|_ OBJECTIVE TYPEQUESTIONS []

1.  Thene.of symbols necessary to simulate anty TM with = symbols & » statesis
{a) dmn+m {h} THiz {G] Bmp + dm {d} m+n
Find the false statemment.
(2} Turing machine is simple mathematical model of general purpose computer.
(b) Turing machine is not capable {o performing any calculation which can be performed
by computer
(¢} We construct Turing machine to accept a given language
(d) We construct Turing machine to carry out some algorithm
3. Whichofthe following classes of Turing machine isnot equivalent to the class of standard
Turing machine?
(@) Non-deterministic Turing machines
(b} Turmg machines with stay option
(¢) Turing machines with semi-infinits tapes
{d) All of these '
4,  Choose the correct statements
{a) Every recursive language is recursively enumerable

B2

(b) Lya" " ™y is recursively enumerable
_{c) Recursive languages are closed underunion
(dyAll
5. ATMismore powerful than Finite state machine because
() it has the capability to remember arbitrary long input symbols
(i) tape movement is confined to one direction
{c) it has no finite state control
{d) none
6.  AnTinite state machine can be considered to be a TM
(a) a finite tape length, rewinding capability and bi-directional tape movement,
{1} a finite tape length. without rewinding and bi-directional movement
{¢) a finite tape length, without rewinding capability and unidirectional tape movement
(d) afinite tape length, with rewinding and unidirectional movement
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7. Twring machines canmove how in memory?
(@) It cannot move. (b} forward and hackward
(&) backward (d) forward
8. Turing machines use what as their memory?
(a) infinite tape (b) finite tape
{c) RAM () ROM
9. Turing machines can do-—----—--
{(a) less than a real computer can do
{b) everything that areal computer can do
{c) more than a real computer can do.
{d) Nothing
10, Turing machines are similar to finite automaton but have —-—
(&) unlimited and read-write memory
{b) finite and read-write memory
{c)unlimited and read-only memory
{d) finite and read-only memory.
11, Compering TM and computers we {ind
{a} They cannot be compared
{b) Both are Equivalent
{c) T™ have more computational power
{d) Computers have more computational power
12, The classof TMs iz equivalent to the class of
{a} Type 3 Grammars (b) Type 2 Grammars
(¢} Type | Gramnmars (d) Type O Grammears
13, The class of unrestricted Janguages corresponds to
(3) FA (b) PDA (e)LBA (d) T™
t4,  Any TM with m symbols &n states can be simulated by another TM with just 2
symbols & less than

() mn states {b) 8mnd states (¢) dmn+8 siates () Bein states
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15.

i6.

iT.

18,

19

20.

Which statement is false?

(d) Turing machine is simple mathematical model of general purpose computer.

() Turing machine is not capable of performing any calculation which can be performed
by computer

(h) We construct Turing machine to accepta given language

(2) we construct Turing machine to carry out some algorithm

By giving Turing machine more complex power we can increase the power of the Turing
Machine '

{(a) Absolutcly False {b} May notbe True
{c) May be True (d) Absolutely True

The definition of Turing machines is robust because.....

(a) Turing machine has nothing to do with robustness.

(b) certain changes (such asmany tapes) result in machines of equivalent power.

(c) turing machines will not crash for any input string,

(d) functional testing of turing machines findsno errors.

A Turing machine compuies by going from one configuration o another, We say that
configuration ¢ yields configuration C if the Turing Machine ean legally move from
Cy to Cy 11 ====--

(&) an infinite nurnber of steps

(b} a yingle step

{¢) a finite number of steps

{d) none of the above

In & Turing machine for a state q and two strings « and » overthe tape alphabet writing
tugr:’, specifies that the current state i3 Qe=-m-

() the tape contents are «v , and the current head location is the first symbol of v.

(b) the tape contents are wv , and the current head location is the first symbol of w.

{¢) the t2pe contents arc #gv, and the current head location is the first symbol of v,

{d) The tape contents are #qv, and the curent head location is the first symbol of u.
Turing machines output accept if they enteran accept state. When do Turing machine
output reject?

(a) Never

(b} When they enter a reject staie

{¢) When they neverend

{d) When they are not in an accept state and halts
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21.

23,

o =

Comsiderthe Tu:ringﬁi L@:lﬁna M described the trangition table.

Present __Vape Symbols .

__State 0 1 X -

@ xRy - | bRy

q2 0bR3 Vg . ¥Ryn E

1 0Ly ' xRys | xRy E

24 0gy 7Ry)

95 xRy | bRys,

7 R R N |
g5 isthe final state.

Refer to the Turing Machine whose transition diagram is given above. What is the final ID
when string 011 is processed?

(a) xygs1 (b) xpgepx {€) xowbgs : (d) mgq1
Consider the transition table of a Turing machine ;

Present State _Tape symbols

b o %

a 1Ly OR,

g2 bRys 0Ly gz

T3 bRys bRgs

7 ORys OR,4 1Ry4

gs 0Lg2

g5 isthe final state.

Computation sequence of siring 00 leads t0?
(8) Brvor (b) bbbh, 50000 (6} bbby 000 (d) bby500
The grammar generated by production rules § -» aSBe | abe, ¢B— Be, aff — aa is
(a) a"B*c ng 0 (b) a®"e" n= 0

{c) a"B"c" n=0 (d) 8" 1> 1
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26.

27

28.

28.
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The grammar generated by production rules § —» A1 Sc,4 -» ab| adb is
(8) "W w=0 and ¢=0 (b) a"B'¢ ,n>0 ande>0

(€} "H'¢ nz0 andc 20 (d) &*b"c ,n=0 andcz0

Consider anew type of turing machine where the head can move left and move right but
cannot stay put, This new type of turing machine is..........

() not comparable.

(b) More powerful than the original Turing maheine

{c) equivalent in power to the original Turing machine

{d)less powerful than the original Turing mahcine

The statement "Standard TM accepts the same languages as are accepted by a stay TM"
3

() Always false. (b} True for all languages
(¢} True only if languages is regular (d) True only if languages isa CFL
Find the false statement

{a)Standard TM is equivalent to linear bounded automata

(b} Standard Turing machine(TM) is cquivalent to multi tape TM
(c) Standard TM is equivalent to non deterministic TM

{d) None

Which of the following is true: Read Write head can move

() to the left of right endmarker in LBA

(b} to the right of right endmarker in LBA

{¢)to the right of left endmarker in LBA

{dto the left of left endmarker n LBA

LBAs

{a) restricted T.M. from both sides {b) unrestrictsd T.ML

(¢} restricted T.M., from one side {d)none

Which automata is associated with Context Sensitive Language? (Give the best answer)
() Linear Bounded Automata (b)yPushdown Automeata

(c) Finite Automata (d) Turing Machine

Refer to the Turing Machine whose transition diagram as given above in question 21,
What is the final ID when string 0011 is processed?

{a) xvgsl (b} xygerx () wxyvbgy {d) xvggl
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Which of the following iz not a variant of the standard Tiring Mahine
{a) Universal Turing Maching (b) Linear Bounded Automata
{c) Pushdown Automata (d} None ofthe above.
Let B be a Linear bounded antomata, Then grammar corresponding to L(B}is
(&) Regular grammar {b) Unrestricted gramimar
(c) Context free language (d) Context sensitive language
The Linear bounded automata is a variant of
(a) Finitz Antomata {b) Turing Machine
{c} Pushdown Automata {d) Nome of these
Non-Deterministic Turing Machines are more powerfial than deterministic Turing Machine
{a) Absolutely Falss {b) May not be True
{c) May be True (d) Absohutely True

36.

‘Many madels of general purpose computation exist. Some are very similar to the original
Turing machine, others can be very different than the original.

All ofthese models are equivalent in power if.......ooveee.

{a) there is no model if everything is equivalent to everyvthing else!

(b) they have unrestricted access to unlimited memory, and satisfy certain reasonable
requiremnents like performing only a finite amount of work in a single step.

(¢) satisfy certain reasonable requirements like performing only a finite amount of work in
a single step.

{d) they have unrestricted access io unlimited memory.

ANSWER KEY |

L) 2{¢) 3@ 4) S 6 T &) 9.d) 104b)
H(d) 124d) 134d)  14.8) 15.d)16.a) 17.(c) 18.8) 19.(d) 20.b)
21.(k) 22.(b) 23.b) 24.b) 25.(a,c)26.(b) 27.(8) 28.(a,c) 29.(a) 30.(a)
3L(b) 32.(¢)334d)  34.b) 35.4a) 36.b)

D  —/— e NI 2
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COMPUTABILITY THEORY

After going through this chapter, you should be able to understand :

» Chomsky higrarchy of Languages

« Linear Bounded Automatz and CSLs
o LR{0})Grammar

« Decidability of problems

« UTMand PCP

« P and NP problems

8.1 CHOMSKY HIERARCHY OF LANGUAGES

Chomsky has classified all grammars in four categories ( type 010 type 3 ) based on the right
hand side forms of the productions.

(a} Type O

These types of grammars are alse known as phrase structured grammars, ard RHS ofthese are
free from any vestriction. All prammars are type () grammars.

Example : productions of types AS —» a8, SB — $h,8 —»e are type 0 production.
(b) Type 1

We apply some resirictions on type O grammars and these restricted grammars are knigwn as
iype | or context - sensitive grammars (CSGs). Suppose a type 0 production pud —» B8

and the production & -» f is resticted such that | zi<|fland fF»<. Then these type of
productions is knowmnas type 1 production. If all productions of a grammear are of type 1 production,
then grammar is known as type 1 grammar. The language generated by a context - sensitive
grarmar is called context - sensitive language (CSL).
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In CSG, thete is left context or right context or both. For example, consider the production
ad > caft . Inthis, ¢ islefi contextand f isright coptextof Aand Als the variable which is
replaced.

The production of type § — ¢ isallowed intype 1if £isinL(G), but 5 should not appear on
right hand side of any production.

Example : productions § — AB.S — .4 -» ¢ aretype 1 productions, but the production
oftype A —» S isnotallowed . Almostevery language can be thought as CSL.

Note : If left or right contexi is missing then we assume thai  is the context.
{c) Type 2

We apply some more restrictions on RHS of type 1 productions and these productions are
known as type 2 or conlext - free productions. A production of the form o > £, where

a, fe(V wE)* is known as type 2 production. A grammar whose productions are type 2
production is known as type 2 or context - free grammar (CFG) and the languages gencrated by
this type of grammars is called context - free languages (CFL).

Example : §—55+ 8,5 85%S, §-»id are type 2 productions.

(d) Type3

This is the most restricted type. Productions of types 4 — g o1 4 — aB|Ba ,where 4, Be¥

and @ £ are known as type 3 or regular grammar productions. A production oftype § - < 15
also allowed, if ¢ is in generated language.

Example : productions § - a8, §— ¢ are type 3 productions.
Left - linear production : Aproductionoftype 4 Ba iscalled left - linear production.
Right-linear production : Aproductionoftype 4 —» af is called right - linear production.

Aleft- linear or right - linear grammar is called regular grammar, The language generated by a
regular grammar is known as regular language.
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s . i e -

A produciion of type A—>w OF 4> w8 00 4> Bw . where w € £* canbe converted into
the forms 4 —q OF A—»aB 0f 4— Ba,where 4.B eV and zeX.

Example : - 10A canbereplaced by productions 4 - 18, where B is anew variable
and B—04.

In general, if 4—> @,a:ay....... 0,a,,, B, then this production can replaced by the following
productions.

A-ra; Bys

B, —ay B,

B, —»ay By,

B,

A
n+l
Similar result is obtained for left - linear grammars also.

8.1.1 Hierarchy of grammars
Type 0 or Phrase structured grammar

U Restrictionsapplied
Type 1 or Contexi - sensitive grammar

lj Restrictions applied
Type 2 or Context - free grammar

i Restrictions applied
Type 3 or Regular grammar

Example : Considerthe following and find the type of the grammar,
{a} §— 4da, A — | Bu, B— abe
(b} S-»aSalc
(¢} S — adS | SBb, AS -» aiS|aS, SB ShSBh
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Solution
(a) Production Type
S - Ag Type 3
A - ¢ Type 3
A ¥ Ba Type 3
B - abc Type 3
So, given productions are of type 3 and hence grammar is regular,
(b
S -  aSa Type 2
= —> ¢ Type 3

Se, given productions are of type 2 and hence grammar is CFG.
Note : We select the higher type and higher type between type 3 and type 2 is type 2 ).

(c) S —  aAS Type 2
S -y SBb Type 2
AS — aAS Type 1
AS - a8 Tyvpe 1
SB - Sb Type 1
SB — SBb Type 1

S0, given productions are of type 1 and hence grammaris CSG
8.1.2 Relation Among Grammars and Languages

Type 0 is the super set and type 1 is contained in type 0, type 2 is contained in type 1, and
type 3 is contained in type 2.

Type 0 Type 1 = Type 2 Type3
8.1.3 Languages and Their Related Automaton

—pr  Turieg Mechine

Lirenr Beonded Aianspton

Fuhudewn Aukoroaian

= Finlte fntomalon

FIGIURE : Languages and their related Automaton
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8.2 LINEAR BOUNDED AUTOMATA

The Linear Bounded Automata (I BA) is a model which was originatly developed asa model for
actual computers rather than model for computational process. A lincar bounded automaton isa
resiricted form ofa non deterministic Tuting machme.,

A linear bounded automaton is a multitrack Turing machine which has only one tape and this tape
is exacily of same length as that of inprut.

The linear bounded automaton (LBA) accepis the string in the similar manner as that of Turing
machine does. For LBA halting means accepting. In LBA computation is restricted to an area
bounded by length of the inpu, This is verymuch similarto programming exvironment where size
of variable is bounded by its data type.

]

[ =

i
a!aiab&hh?

Rightend
marker

i
FIGURE : Linear bounded auiomaton

The LBA is powerful than NPDA but less powerful than Turing machine. The input is placed on
the input tape with beginning and end markers. Tn the above figure the input is bounded
by < and >, ;

A linear bounded antomata can be formally defined as:

LBA is 7 - tuple on deterministic Turing machine with
M={Q,E. T, & qo» Quuuns '?.n;,im} having
1. Two extrasymbols of left end marker and right end marker which are not elementsof 1.

2. 'Theinput fies between these end markers.
3, The TM cannot replace < or > with anything else nor move the tape head left of < or

tightof =.
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Example : We canconsiruct a language [ = {¢" b" ¢"|n = 1} using LBA as follows,

< a a];b b c C b

The input is placed on the input tape which 15 enclosed within left end marker and right end
marker. We will apply the simple logic as : when we read 'a’ convert it to A then move right by
skipping all a's, On encountering first 'b' we will convert it to B. Then move right by skipping all
b's. Om receiving first ¢ convert it to C. Move in lefl direction unless you get A. Repeat the above
procedure and convert equal number of a's, b's, and ¢'s to corresponding A's, B's and C's.
Finally move completely to the rightmost symbol if itis ™' aright end marker,then HALT. The

Y8
BAR) (SR oy o1
(5] ()
ES 18
Lyl

machine will be ;

Simulation : Conuider input aabbee

< aabbee = Movwe right.
< aabbee > Convert to A, move right.
T
< Aabbee = Moveright.
T
< Aabbee > Convert to B, moveright.
T.

< AaBbec > Move right.

A
H



COMPUTABILITY THEORY

8.7

< AaBbec >

T
< AaBbCc >

.ITl.
= AaBbCe >
T

< AaBbCe >
ﬂn

< AaBbCe >

T

< AaBbCc >
i}

< AABDCe =

T
<AABbCe >

T
<AARBBCe>

T
= AABBCe>

2
< AABBCC>
1
<AABBCC>
T
< AABBCC>

-

<AABBCC=

s

Convert to C, move lefi.
Move left

Mowe ledt.

 Moveleft.

Move right.

Convert to A, Move right.

Moveright.

Convert to B, Move right.

Mave tight.

Convert to C, Move left,

Move left continuously by skipping B's.
Move right.

If we get B, we will move right to check whether
all b's and ¢'s are converted to B and C.

if we get right end marker ' then we HALT by
accepting the input aabbec.

Thus in LBA the length of tape exactly equal to the input string and tape head can not move left
of < right of >,
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8.3 CONTEXT SENSITIVE LANGUAGES ( CSLs )

The context sensitive languages are the Janguages which are accepted by linear bounded svtomata.
These type of languages are defined by context sensitive grammar. In this grammar more than
one terminal or non terminal symbaol may appear on the left hand side of the production rule,
Along with ii, the context sensitive grammmar follows following nules :

i. The number of symbaols on the left hand side must not exceed number of symbols on the
right hand side.

ii. Theraleofthe form 4 -3 isnotallowed unless A is a start syinbol. Tt does pot ocour
on the right hand side of any rule.

The classic example of context sensitive fanguage is £ = {a" #” ¢ | n 2 1 } . Thecontext sensitive
grammar can be written as :

5 - aBC

s —r SABC

CA —» AC

BA o AB

C —¥ BC

ah - a4

aB ¥ ab

bB -» bb

bC — be

eC - ce

Now to derive the string aabbee we will start from start symbel :

S eS8 - SABC
SABC mleS —»  aBC
aBCABC rleCA >  AC
aBACBC rule CB — BC
aBABCC nileBA - AB
aABBCC ruleaA —»  aa
aaBBCC ruleaB -» ab
aghBCC riebB — bb
aabbCC mlebC —» be
aabbcC rulecC — [

aahbeoe
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Note : The language o* 5" ¢" where p 2 | isrepresented by context sensitive srammar but it
can not be represented by context free gramimar.

Every context sensilive language can be represented by LBA.

8.4 LR (k) GRAMMARS

Before going to the topic of LR (k) grammar, let us discuss about some concepts which will be
helpful understanding it.

I the unit of context free grammars you have seen that to check whether a particular string is
accepied by a particular granmmnar or not we try to derive that sentence using rightmost derivation
or leftmost derivation. I that string is derived we say that itisa valid string.

Example :

E->E+T|T
TFT—TsF|F
Fid| (E)

Suppose we want to check validity of a string id +id * id . lterightmost derivation is
B E+T
E+T*F
E+T*id
E+ Feid
E+id*id
Fid *id
F+id*id
id + id ®id

H

I T

FIGURE(a) : Rightmost Derivation of id + id * id

Since this sentence is derivable using the given grammar. Itis a valid string. Here we have chacked
the validity of string using process known as detivation.
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The validity of a sentence can be checked using reverse process known as reduction. In this
method for a given x, inorder to know whether itis valid sentence of a grammar or not, we start
with x and replace a substring x; with variable Aif 4-> X, is a praduction, We repeat this
process until we get starfing state.

Consider the grammar,

E—» E+T| T
E-—> T*F|F
F— (E)| i

Letus check the validity of string id + id * id.

F+id * id Replaced F withid since F — id is a production
T+ id * id Replaced F with T using production T > F

E +id * id Replaced T with Eusing productionE — T
-+ F * id Replaced id with F using production F - id
E+T* id Replaced F withusing production T — F

E+T * F Replaced id with F using production F —» id

F + T Replaced T * T with T using production T - T*F
E Replaced E + T with E using production E - E+T

FIGURE(b): Reductionofid+id*id

Hete since we are able to reduce to starting state E, so that id -+ id * id is accepted by the given
PTAMTAT. :

Note : Theremay be different ways of selecting as substring in sentential form. In our reduction
we have used reverse of rightmost derivation shown in Figure{a).

The substring in right sentential form which causes reduction to starting state is knowr as handle
and corresponding production is known as handle production. For exanmpie, in right sentential
form E + T * id of Figure(b) we can cither replace substring T with Fusing T - F or replace
id with Fusing F —» id. I we use the firstreduction, the sentential form will become T+ F * id.
This will not lead to stariing state. Hence here F is not handle. Where as if we reduce, the
sentential form willbe E+T* T which can be reduced to starting state using subsequent recuctions.
Hence here F is ahandle and F — id is handle production.
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Tn reduction process we have seen that we repeat the process of substitution until we getstarting
state. But some times several choices may be available for replacoment. Tn this case we have to
backtrack and try some other substting . For certain gramimars it is possible to carry out the
process in deterministic. { i, e.. having only one choice at each time ). LR grammars form one
such subclass of context free granunars, Depending or the number of look ahead symbolized o
determine whether a substring must be replaced by a non terminal ornot, they are classified as
LR(0), LR(1).... and in general LR(K) grammars.

LR(k) stands for left to right scanning of input string using rightmost derivation in reverse

order { we say reverse order because we use reduction which is reverse of derivation ) using
look ahead of k symbols,

8.4.1 LR(0) Grammar

LR(0) stands for lefi to right scanning of input string using rightmost derivation in reverse order
using 0 ook ahead symbols,

Before defining LR(0) grammars, let us know about few terms.

Prefix Property : A language L.is said to have prefix property if whenever w in L, no proper
prefix of wis in L. By introducing marker symbol we can convert any DCFL to DCFL with prefix
property. Hence Z$ = { w$|w e L} isa DCFL with prefix property whenever wisin L.

Example : Consider alanguage L= { cat, cart, bat, art, car } . Here, we can see that sentence
cartis in I and its one of the prefixes car is alsoisin L. Hence, it is not satisfying property, But
L$ ={cat$,cart$, bat§.art$,car$ }

Here, cart $ is in L$ but its prefix cart or car are not present in L. Similarly no proper prefix is
present in 1. Hence, it is satisfying prefix property.

Note : LR(0) grammar generates DCFL and every DCFL with prefix property has a LR(0)
Erammmar.

LR ltems

An item for a CFG is a production with dot any where in right side including beginning orend. In
case of ¢ production, suppose 4 — < 4. isanitem.
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Example :

Consider the grammar,
S 8
8§ — cdd

A= ale

The ttemns for this granvmar are,

S'—=.5

§-» §.

§— .cdd

¥ cAd

S cdd

£ cdd

A a

A= a,

A—= .

An item indicates how much of a production we have seen at a given point in parsing precess.
Valid Item : Wesayinitem 4 - o . § is valid for a viable prefix ( i e., most possible prefix)

v there is a rightmost derivation § = ddw = & & Fw and da=y.
Frt rm

Example :

& = cdt

A= w
The sentence cart belongs to this grammar,
Sk (14 = comt

The possible or viable prefixes for cart are { ¢, ca, car, cart } forthe prefix ca 4 > a.r. is valid
itern and for viable prefixcar 4 =>ar isvaliditem.
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Computing Valid item Sets

The main idea here is to construct from g given grammar 4 deterministic furite avtomata to recognize
viable prefixes. We group items together into sets which give to states of DFA. The iteins may be
viewed as states of NFA and grouped ttems may be viewed as states of DFA obtained using
subset construction algorithm.

To compute valid set of items we use two operations goio and closure.
Closure Operation

It11s a set of ttems for a grammer G, then closure (1) is the set of items constructed from Thy two
niles

1. Initially, every item I is added to closure (I),
2. If 4— o Bf isinclosure(Dand g 5 is production thenadd ilem g 3 § tol,1fitis
not already there, We apply this rule until no more new items can be added to closare (T).

Example : Forthe grammar,

& = 8
& = pdd

A —= g

& — & issetoloneitem in state I then closure of Lis,
LH: 8 =+
a8 = .cAD

The first item is added using rule 1 and § —» .c4d is added using rule 2. Because ' . 'is

followed by nonterminal S we add itemshaving SinLHS. In § — .edd '."is followed by
tepminal so no new item is added.

Goto Function : Itis writtenas goto { 1, X) whete Tis set of ftems and X is grammimar symbol.

If A-+a. X/ isinsomeitemn setTthen goto (L X)) will be closure of set ofall item A — . X5
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For example,
gt {4, ¢}
closure {5 —¢. Ad)
ie., 8-vcdd

A= a
now let us see how all the valid sets of items are computed for the given grammar in example 1.

Initially 7, will be the starting state, [tcontains only the item §'-». 5 we fincd ity closure to find set
of items in this state for cach state [, and symbol g after'." weapply poto (1, B), goto (£, S)
aridd find its closwure. This constitutes next state 7, . We continue {his process goto (/,,«) untilno
new states are obtained.

Ih: 8=+ .8
8§ .dd
I,: 8-> 8.
I, 8§ c.dd
A~ @
goto ([,, 4)
Iii §S=2cdd

goto (4,.a)

Iy: A= a

goto {I,,d)
'IS ke S"_} M{;n

This process is stopped because all possible complete items are obfained, A complete item s the
one which bas dot in rightmost position.

Ecah item set corresponds to a state of DFA. Hence, the DFA for given grammar will have six
states corresponding to 7, fo [..
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DFA :

FIGURE(a) : DFA whose States are the Sets of Vaiid ltems

Definition of LR(0) Grammar : We say G is an LR (0) grammar if,

1. Its start symbol does not appear on the right hand side of any production and

9. Forevery viable prefix » of (i whenever 4 - a is a corpplete item valid for ¥ . thenno
other complete item nor any item with terminal to the right of the dotis valid for 7.

Condition 1 : For a grammar to be LR(0) it should satisfy both the conditions. The first

condition can be made to satisfy by all grammars by introduction of anew production §'— § is

kown augmenied grammar.

Condition 2 : For the DFA shown in Figura(a), the second condition is also satisfied because

inthe item sets 2, J, and I, each containing a completeiten, there areno other complete items

norany other conflict.

Example : Consider the DFA given in figura(b).

FIGURE(b) : DFA for the given Grammar
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DIFA for srammar,

S§—=L=R
g R
Lo *R
L > id
- L

i 'The first condition of LR{() mammar is satisfied.

ii. Considerstate /, and viable prefixes of L=R {L,L=andL=R } forprefix LR -» L.

is a complete item and there is another item having the prefix Li e, S - L. =R
followed by terminal. Hence, violating second rule. So it is not LR(D) grammar.

8.5 DECIDABILITY OF PROBLEMS

In our general life, we have several problems and some of these have solution also, but some
have not. Simply, we sav a problem is decidable if there is a solution otherwise undecidable.

Example : consider following problems and their possible answers.

1. Does the sun rise in the east 7 (YES)

2. Does the earth move around the sun 7 (YES)

3. What is your name 7 { FLAT )

4. Will tomorrow be a rainy day 7 ( No answer)
We have solutions (answers) for all problems except the last. We cannot answer the last problem,
because we have no way to tel] about the weather of tomorrow, but to some extent we can only
predict. So, the last problem is undecidable and remaining problems are decidable.

So, if a problern can be solved or answered based on some algorithm then it is decidable otherwise

undecidable.
Problem

SBolution . Mo solution

1k 1l

Diesidable Undeoidahie
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—— S = L at?

Tach problem P is a pair consisting of a setand a question, where the question can be applied to
each element in the set. The set is called the domain of the problem, and its elements are called
the instances of the problem.

Example :

Dorain = { Al} regular languages over somealphabet £ .
Instance : L={ w:wisawordover ¢ endinginabb},
Question : Isunion of two regular languages regular 7

851 Decidable and Undecidable Problems

A problem is said to be decidable if
1. Itslanguageisrecursive, or
2. Tthas solution

Other problerns which do not satisfy theabove are undecidable. We restrict the answer of
decidahle problemsto " YES" or "NO" . Ifthere is some algorithm exists for the problem, then
outcome of the algorithm is either "YES" or "'NO" but not both. Restricting the answers to only
"WES" ar "NO" we may not be able to cover the whole problems, still we can cover & lot of
problems. One question here. Why we are restricting our answers to only " YES"or "NO"? The
angwer is very simple ; we want the answers as simple as possible,

Now, we say " If for a problem, there exists an algorithm which tells that the answer is cither
"YES" or “NO" then problem is decidable.”

I{ for a problem both the answers are possibie ; some times "YES" and sometimes "NO",
then problem is undecidable.

8.5.2 Decidable Problems for FA, Regular Grammars and Regular Languages

Seme decidable problems are mentioned below :

1, DoesFA accept regular langnage ?

2. Isthe power of NFA and DFA same 7

3. i, and Z, are two regular languages. Are these closed under following :
(@  Union
{v)  Concatenation
(¢)  Intersection
{d)  Conmplement
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uuuuuuu

()  Transpose
(f). Kleene Closure ( positive transitive closure )

4. Foragiven FAM and string w over alphabet ¥ ,1s w = L{ ) ? This is decidable problem.

5. ForagivenFM.is L(M) = ¢ 7 Thisis adecidable problem.

6. Foragiven FAM and alphabet ¢ ,1s L{3) = £ *? This is a decidable problem.

7. For given two FA M, and M,, L(M,), L(M,} € £*,1s L{M,)=I(M;)? Thisis a
decidable problem.

8. Forgiven two regular languages I, and I, over some alphabet 5 .15 £, £, 7 Thisisa
decidable problem.

8.5.3 Decidable And Undecidable Problems About CFLs, And CFGs

Decidable Problems

Some decidable problems about CFLs and CFGs are given below.

1. If I and I, aretwo CFLsover some alphabet 3, then £, 0L, isCFL.

2. 1f £, and I, aretwo CFLs over some alphabet 3, then £, L, s CFL.

3. IfLisa CFL oversome alphabet 7 .then L* isa CFL,

4. I L, is aregular language, I, isa CFL then L, w1, 1sCFL.

5. If 1, isarcguler language, L, isa CFLover some alphabet 3, then £,~L; isCFL.
6. Forapgiven CFG G is L{G)y=¢ ornot?

7. Foragiven CFQ G finding whether L{(G) is finite or not, is decidable.

8. Foragiven CFG G and astring wover 3, checking whether w e L(G) ornotis decidable.

Undecidable Problems

Following are some undecidable problems about CFGs and CFLs

For two given CFLs [, and L, whether [; ~ L, is CFL ornot, isundecidable.
Forapiven CFL L over some alphabet 3 , whether complement of Li. e E*-TLisCFL or
not, is undecidable.

For a given CFG G, is L{G) ambiguous ? This is undecidable problem,

For two arbitrary CFGs G, and G,, deciding L(G,) r L(G,) = ¢ or not, is undecidable.
5. Fortwo arbitrary CFGs G, and G, , deciding L{G,) < I{G,) ornot, is undecidable.

Fad

R
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8.5.4 Decidability and Undecidability About TM

‘We have considered TM as a most powerful machine that can compute anything, which can
recogiize any language. So, from where undecidability comes and why ? These questions are
really interesting. According to Church - Turing Thesis, we have considered T™ as an algorithm
and an algorithm as a TM . So, for a problem, if there is an algorithm ( solution to find answer)
then problem is decidable and TM can solve that problem. We have several problems related to
computation and recognization that have no solution and these problems are undecidable,

Partial Decidable and Decidable Problems

A TM M is said to partiaily solve a given problem P if it provides the answer for each
instance of the problem and the problem is said to be partially solvable. 1f all the computations of
the TM are halting computations for P, then the problem P is said to solvable.

A TM i said to partially decide a problem if the following two conditions are satisfied.
(&) The probliem is a decision problem, and
(b) The TM accepts a given input if and only if the problem has an answer "YES" forthe
input, that is the TM accepts the language L= { x: xis an instance of the problem, and
the problem has the answer "YES" forx 1.

ATM is said to decide a problem if it partially decides the problem and all its computations
are haiting compulations.

The main difference betweena TM A, that partially solves ( partially decides) a problem
andaTM M, that solves{ decides) the same problem is that A, might reject an input by a
non - halting computation, whereas A4, can reject the input only by a halting computation.

A problem is said Lo be unsolvable ilno algorithm can solve it, and a problem is said o be
undecidable ifit is a decision problem and no algorithm can decide it.

Decidable Problems about Recursive and Recursive Enumerable Languages

As we have discussed earlier that if'a problem has a solution then itis decidable. In this section,
we will discuss some decidable problems about recursive and recursive enumerable languages.

1. The complement of a recursive language L over some alphabet T is recursive.

Proof : We will discuss a constructive algorithm to prove that complement of arecursive language
isalso recursive i. e. recursive languages are closed under complementation.

Aswe know that for all strings - & 1, a TM always halts and rejects those strings that are
aotinl. So, " forall strings w = 1" isalways decidable.
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We construct a TM M, which recognizes the language L, We construct another TM M’ based on
M such that M accepts those strings which are rejected by M. Ji means, if M accepts then M’
does not. M’ rejects those strings that are accepted by M, It means, all strings x ¢ [ are
accepted by M and forall strings w e £ arsejected . So, M also follows same kind of algorithm
~ todecide whethera string 4, ¢ £ ornol Hence, coraplement of recursive language Lie, £*-L
is alsorecursive. The logic diagram of M' is shown in Figure(a).

1
Aocept b Rgjerd
e M |
l Rej-mt e Aitapt
sl -
“-._____‘_-_. M
Figure(a)

In peneral, recursive languages are closed under complement operation.
2. The union of two recursive languages is recursive.

Proof: Let I, and I, betwo recursive languages and Turing machines M, and M, recogmze
£, and [, respectively shown in Figure(b) and Figure(c).

r T
YES ‘ YES
..._.Eil-h- My ) Fﬁ-‘h" M, t
, NG NO
I b s —
Figure(b) Figure{c)

We construct a third TM. A4, , which followseither M, or M, as shown in figure(d).

YES
-4 M, 4 ¥ YES
filF | PRt NG
i
—= X
"My — DO
HO
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TM M, accepis if either M, accepisor M, accepts and rejects if either 14, rejects or M,
rejects . Since, A, and M, are based on algorithms, so M, isalso based o the same kind of
algorithm. Therefore, union of two recursive languages I, and L, isalso recursive. in general,
tecursive languages are closed under union operation.

3. Alanguage istecursive if and enly if its complement s recursive.
4. The union of two recursively enumerable languages is recursive enumerable.

Proof : Let I, and Z, be two recursively enumerable languages and recognized by M. and
A, Turing machines. We construct another TM A1, which accepts either L, or L; . Now, as
we know the problem about recursive enumerable languages that if wisnotin £, and [, then
A, can not decide. So, the problem of recursive Janguages is persistent with A4, also. So,
N(M,) is recursive enumerable langusge and henee £, w L is recursive enumetable languages.
Tn general, recursive enumerable languages are closed under union operation.

5. If z language L over some alphabet x and its complement 7 == L%~ L is recursive
enumerable, thenL and 7 arerecimsive languages.

Proof : We construct two Turing machines M, for Land M, for . Now, we constructa
third TM M, based on A4, and M, as shown in figure{e). TM M, accepis w if T™M M,
accepts and rejectswil Af, accepts . [tmeans, if < I, then wis accepted and if w &L then -
itis rejected. Since , for all w, either w is accepted or rejected, Hence, A4, is based on algorithm
and produces cither "YES" or "NO" for input siring w, but not both. Itmeans, M, decidesall the
stringsover ¥ . Hence, ILis recursive, As we know that complement of a recursive language is
also recursive and hence 7 is also recursive.

i
mmmmmm VS ¥
[ R
H Mf E—— J
i o — s
| p———y_NO :
]
P My e e |- VES
b YES ]
H

Figuréta}
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6. Wehave following co - theorem hased on above discussion for recursive enumerable and
recursive languages.

LetLand T aretwolanguages, where 7 the complement of L, then one of the following
istrue: :

(a) Bothl.and j arerecursive languages

{by Neither L por J isrecursive languages,

(¢) If L is recursive enumerable but not recursive, then 7 isnot recursive emumerable and
vice versa.

Undecidable Problems about Turing Machines

Tn this section, we will first discuss about halting problem in general and then about TM.
Halting Problem (HP)

The halting problem is a decision problem which is informally stated as follows

"Givena description of an algorithm and adescription of its initial argumnents, determine whether
the algorithm, when executed with these arguments, ever halts. The alternative is thata given
algorithm runs forever without halting.”

Alan Turing proved in 1936 that there is no general method or algorithm which can solve the
halting problem for ail possible inputs. An algorithrn may contain leops which may be infinite or
finite in length depending on the inputand behaviour of the algoritha . The amount of work done
in an algorithm usually depends on the input size. Algorithms may consist of various number of
loops, nested or in sequence. The HP asks the question :

Given a program and an input to the program, determine if the program will evenmatly stopwhen
it is given that input 7

(ne thing we can do here to find the sohution of HP. Let the program rim with the given input and
if the program stops and we conclude that problem is solved. But, if the program doesn't stop in
areasonable amount of time, we can not conctude that it won't stop, The questionis: howlong
we can wait ... 7" . The waiting time may be long enough to exhaust whole life. S0, we car not
take it a3 eagier as it seems to be. We want specific answer, either "YES" or "W, and hence
some algorithm to decide the answer.
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The importance of the halting problem lies in the fact that it is the first problem which was proved
undecidable. Subsequently, many other such problems have been described.

Theorem : HP is undecidable,

Proof : This proof was devised by Alan Turing in 1936. Initially, we assume that HP is decidable
and the algorithm ( solution ) for HP is H. The halting problem golution H takes two inputs :

1. Description of TM M i.¢. program P and
2, Input 1 for the program P,

H generates an output "YES" if H determines that P stops on input [ or it outputs "™NO" ifH
determines that P loops as shown in figure(a).

Program P vES
H
A —— NG ¥
Input 1
Figure(a)

Note : When an algorithm is coded, it is expressed as a string of characters . Input is also
coded into the same format. So, after coding, a program and data have ne difference in their
format of representation and 5o, a program can be treated a data sometimes and a data can be
treated as 4 program sometimes. '

So, now H can be modified to take P as both inputs ( the program and its inpul) and H should be
sble to determine if P will halton P as it's input shown in figure(b).

Progrum P

Program P

Y
pi o

Lt

Toput |

Figure{b}
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Let ﬁs construct a new, simple algorithm Q that takes output of H as its input and does the
following :

1. I outputs "NO" then @ cutputs "YES" and halis.
2, Otherwise H's output "YES" causes () to loop forever .

H means, (} does the opposite what 11 does.

We define Q as follows :

FPunction O )
{
if { lunction H{ =" &0")
1
return {"YES";
}
glse
{ . '
while (1); f Loop for ever
1
¥ / End of the function Q

Since, Q is a program, now let us use Q as the input to itself as shown in figure(c).

e B sy e i

#igure[c}
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Now, we analyse the following :
1. If H outputs "YES" and says that Q halts then Q itself would loop ( that's how we
constructed it ),
2. IfH outputs "NO" and says that () loops then Q outputs " YES" and will halts.
Since, in either case H gives the wrong answer for Q. Therefore, H cannot work in all cases
and hence can't answer right for all the inputs. This contradicts our assumption made earlier for
HP. Hence, HP is undecidable.

Theorem : 1P of TM is undecidable. _
Proof = HP of TM means to decide whether or not a TM halts for some input w. We can prove
this following the similar steps discussed in above theorem.

8.6 UNIVERSAL TURING MACHINE

The Church - Turing thesis conjectured that anything that can be done on any existing digital
computer can also be done by a TM. To prove this conjecture. A. M. Turing was able o construct
a single T™ which is the theoretical analogue of a general purpose digital computer. This machine
is called a Universal Turing Machine (UTM). He showed that the UTM is capable of initiating
the operation of any other TM, that is, itis areprogrammable TM. We can define this machine in
more formal way as follows :

Definition : A Universal Turing Machine ( denoted as UTM) is 2 TM that can take &s input an
arbitrary TM T, with an arbitrary input for 7, and then perform the execution of 7, on ts input.

What Turing thus showed that a single TM can acts like a general purpose computer that stores
a program and its data in memory and then executes the program. We can describe UTM asa3

-tape TM where the description of TM, T, and itsinput string x e 4" are gtored initially on the
first tape, 1, . The second tape, +, used to hold the simulated tape of 7, usmg the same format
as used for deseribing the TM, T, . The third tape , ¢, holds the state of T,

i

Ta Bl [
i Elencehptmtiof Ta with Hsingars
Cosnteak .
Uit . R
ol LR 1

i 1 T cvanteaate of Ta




8.26 ___FORMAL LANGUAGES AND AUTOMATA THEORY

To construct a U'TM, we thus require three essentials, viz.,
(i) auniform method to describe or encode any TM into a string over a finite symbol set, 1.
(it) a similar method of encoding any mput string for a TM into a string over |, and
(iii} a set of TM programs (1. e., a sct of instructions for any TV) that describe the TMs basic
cyele of operations.

Encoding an arbitrary TM

Since a TM can have only a finite mumber of configurations defined by { s, a, &5, 4 ), wecan
describe or encode any TM in terms of fixed symbols of universal Turing machine.

Let the internal states ofa TM, 7, . is givenby
S={8s, 8y Spgrerms Sots S ¥
whete 5, is the initial state, and §_ = & , halting state,

Also, let the set of tape symbols be 4={a,, @),....., @, }» Where a, = B, a blank character.

We define the encoding for T,s configurations as follows

Original Code

4]

R
feiey

]
T
s

Z0%
A

We nse the symbol '0' as a separator between each encoded symbol of a configuration.

For example, in the TM for parity checking , we have
S8, 8, B Hand
A={B, 0,1 ED}
therefore, the encoding for the configuration {8, B, D, #, N ) willbe 1101011111011110N.
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Now, suppose that a Turing machine, 7, , is consisting of a finite number of configurations,
denoted by, ¢y, ¢y, €40y €, and let &, &, Tpaeo. €, represent the encoding of them. Then, we
can define the encoding of 1, as follows

PEKE B EE..HE
Here, * and # arc used only as separators, and cannot appear elsewhere. We use a pair of ¥'s to
enclose the encoding of each confipurationof TM, T, .

The case where 3(s,a) is undefined can be encoded as follows :

#E 0708 4
wherethesymbols 7, 7 and 3 stand for the encoding of symbols, s , a and B Blank character),
respectively.

Working of UTM

Given a description of a TM, T, and its inputs representation on the UTM tape, ¢, and the

starting symbol on tape , ¢, the UTM starts executing the quintuples of the encoded TM as

follows :

1. TheUTM gets the current state from tape, ¢, and the current input syrebol from tape ¢, .

2. then, it matches the current state - symbol pairto the siate symbol pairs inthe program listed
ontape. i .

3. ifno match oceurs, the UTM halts, otherwise it copies the next siaie into the current state
cell of tape, r,, and perform the corresponding write and move operations on tape, f; .

4, ifthe current state ontape, 1, isthe halt state, then the UTM halts, otherwise the UTM goes
back to step 2.

8.7 POST'S CORRESPONDENCE PROBLEM (PCF)

Post's correspondence problem is a combinatorial problem formulated by Emil Post in 1946.
This problem has many applications in the field theory of iormal languages.

Definition :

A correspondence system P is a finite set of ordered pairs of nonemnpty strings over some alphabet.
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Let ¥ be an alphabet, then P is finite subset of ©* < £*. Amatch or solution of Pis any
string w =5 such that pairs (u, o), (s 4 ) voiies (W, 0} € P a0d w3y 1, = O,
for some n> 0. The selected paits (my, Uy J(1,,1; Do (2, .0, ) AT N0t necessarily distinet.

Letstrings «,,,, ...., u,aeinUandstrings v, u, ..., v, arein 'V, then

U={th, gy iy} 8V ={ 0, 0y, ..0,} forsomem>0.
PCP is {o determine whether there is any match or not for a given correspondence system.

Theorem : PCF is undecidable
PCPis undecidable just like the HP of Turing machine.

Example 1: A correspondence system 7 = { (b, a), (ba,ba), (bab’, 5} .
Is there any solution for P2

Solution : We represent the P as follows

.1 u; b,
1 b a
55 ba ba
3 bab’ b

Hete, w =5, =ba, u, =bab’, v, =a, v, =ba, 5,=b".

We have asolution w= w; wu 4, = 0, tyuy 0y =bab’ba.

Example 2 : Consider a correspondence svstem P = { ( b, ca), ( a, ab),  ca, a), (sbe, ¢} ).
Find amatch { if any).

Solution : We represent the P as follows

i 1 u." UI‘

| """ 1 b ca

{ 2 a ab
3 abe ¢
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Hete, u, =6, 4, =a, w; =abe, 1y=ca, by =ab, th=c.
Wehaveasolution w=1u, u, = 1, v =abea.

8.8 TURING REDUCIBILITY
Reduction isa technigue in which if a problem A is reduced to problem B then any solution of B

solves A. In general, if we have an algorithm to convert some instance of problem A to some
instance of problem B that have the same answer then it is called Areduces to B.

FIGURE: Reduction

Definition : Let Aand B be the two sets such that 4, B < N ofnatural numbers, Then Ais
Turing reducible to B and denotedas 4 =, B.

if there is an oracle machine that computes the characteristic function of A when it is executed
with oracle machine for B,

Thisis also called as Ais B - recursive and B - computable. The oracle machine is an abstract
machine used to study decision problem, It is also called as Turing machine with black box.
We say that A is Turing equivalentto Band write 4 =, Bif 4 <, Band B<; 4.

Properties :

1. Ewvery setis Turing equivalent to its complement.

2. Everycomputable set is Turing equivalent to every other computable set,
3. A<, Band B<; Cthen 4<; B,

8.9 DEFINITION OF P AND NP PROBLEMS

A problem is said to be solvable if it has an algorithm to solve it. Problems can be categorized
into two groups depending on time taken for their execution.
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1. The problems whose sclution times are bounded by polynomials of small degrec.
Fxample: bubble sort algorithim obtains n numbers in sorted order in polynomial time

P(n) =n* —2n+1 wherenis the length of input. Hence, it comes under this group.

2. Second group is made up of problems whose best known algorithm are non polynomial
example, iravelling salesman problem has complexity of O( »” 2") which is exponential.
Hence, it comes under this group.

A problem can be solved if there is an algorithm to solve the given problem and time requited is
expressed as a polynomial p(n), nbeing length of input sting. The problems of first group are of
this kind. :

The problems of second group require large amount of time to execute and even require moderate
size so these problems are difficult to solve. Hence, problems of first kind ave tractable or easy
and problems of second kind are intractable or hard.

8.9.1 P -Problem

P stands for deterministic polynomial time. A deterministic machine at each time executes an
instruction. Depending on instruction, it then goes to next state which is urHgue,

Henee, time complexity of deterministic TM is the maximum number of moves made by M is
processing any input string of length n, taken over all inputs of length

Definition : AlanguageI is said to be in class Pif there exists a { deterministic ) TM M such
that M is of time complexity P(n) for some polynomial P and M acoepts L.

Class P consists of those problem that arc solvable in polynomial time by DTML

8.9.2 NP -Problem

NP stands for nondeterministic polynomial time.

The ciase NP consists of those problems that arc vetifiable in polynomial time, What we mean

here is that if we are given certificats of a solution then we can verify that the certificate is correct
in polynomial time in size of input problem.
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Example :
Hamiltonian circuit problem, Given a directed graph G=<¥, E >, acertificate wouldbea

sequence <V}, V...V, > of V] vertices. It is easy to verify in polynomial time that

(¥, +¥, +D €E fori=1.2, .....[V| -and () € E agwell using anondeterministic algorithm.
Hernce it isin class NP. There doesnot appear any deterministic algorithms to recognize those
graphs with Hamiltorian circuit. Hence it is not in class F.

A nondeterministic machine has a choice of next steps. Itis free to choose any move that it
wishes and if the problem has a solution one of these steps will lead to solution.

Definition : AlanguageLis inclass NP if there is anondeterministic T such that M is of time
complexity P{n) for some polynomial P and M accepts L.

The difference between P and NP problems is analogousto difference between efficiently finding
aproof of a statement { such as "This graph hias Hemiltondan circuit” }and efficiently verifying a
proof of a statement { "i. e., checking a particular circuit is Hamiltonian™). [tis casier to check a
proof than finding a one,

In other words class NP consists of problems for which solution are verified quickly. P consists
of problems which can be solved quickly.

Any problem in P isalso in NP, butitis not yet known that P = NP, Hence, commenly believed
relationship between P and NP is,

W

e

FIGURE: Relationship betwsen P and NP Problems
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810 NP - COMPLETE AND NP - HARD PROBLEMS

A problem § is said to be NP- Complete prablem if it satisfies the following two conditions.
1. 8§ eNP ¥ and

2. Forevery other problems §, e NP for some =1, 2, n, there is polynomial - time
transformation from S, te S 1.e.everyproblemin NP class polynomial - ime reducible to 5,
We conclude one thing here that if 5, is NP - complete then S is also NP - Complete.

As aconsequence, if we could find a polynomial time algorithm for S, then we can solve all NP
problems in polynomial time, because ail problems in NP class are polynomial - time reducible to
each other,

"A problem P is said to be NP - Hard if it satisfies the second condition as NP - Complete, but
not necessarily the first condition ",

The notion of NP - hardness plays an important role in the discussion about the relationship
between the complexity classes Pand NP, Tt is also often used to define the complexity class NP
- Complete which is the intersection of NP and NP - Hard. Consequently, the class NP - Hard
can be understood as the class of problems that are NP - complete or harder.

Example : AnNP- Hard problem is the decision problem SUBSET - SUM whichis as follows.

" Giiven a set of integers, do any non empty subset of them add up to zero? This is a yes /1o
question, and happens to be NP - complete ™,

There are also decision problems that are NP - Hard but not NP - Complete , for example, the
halting problem of Turing machine, Tt is easy to prove that the halting problem is NP - Hard but
not NP - Complete. Tt is also easy to see that halting problem is not in NP since all problems in
NP are decidable but the halting problem is not ( veilating the condition first given for NP -
complete languages ).

In Complexity theory, the NP - complete problems are the hardest problems in NP class, in the
sense that they are the ones most likely not to be in P class, The reason is that if we could find a
way to solve any NP - complete problem guickly, then you could use that algorithm to solve all
NP problems quickly.

At present time, afl known glgorithms for NP - complete problems require time which 1s exponertial
in the input size. It is unknown whether there are any faster algorithms for these are not.
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5. A Cook in 1971 proved that the Boolean satisfiability problem is NP - Complete. After
Coolds original results, thousands of other problems have been shown to be NP - complete by
reduetions from other problems previously shown tobe NP - complele.

Example : Consider an interesting problem in graph theory known as " Graph isomorphism”.

Two graphs are isomorphic if one can be transformed into the other simply by renaming vertices.
Consider these two problems given as follows

Graph Isomorphism : Is graph G, isomorphic to graph G, 7
Subgraph Isomorphism : Is graph G, isomorphic to a subgraph of graph G, 7

The " Subgraph Isomorphism" problem is NP - complete, but the " Graph fsomarphism” problem

is suspected to be neither in P nor in NP - Complete, though it is obviously in NP. This is an

example of a problem that is thought to be hard, but it is not thought to be NP - Complete.
Following are some other NP - complete and NP - Hard preblems :

{1) The Boolean Satisfiability Problem (SAT }

In mathematics, a formula of propesitional logic is said tobe satisfiable if truth - values can be
assigned to its free variables in sucha way that this assignment makes the formula true. The class
of satisfiable propositional formulacis NP - Complete problem.

Consider the logical operators deflined as follows :

And : Thisisdenoted by “and or1=140=4
A Q=01""v]1 =]
OR : This is denoted by + and Gyul=1y 0=l

1 v1=1, 0y 0=0,and

NOT : Thisis denoted by 'and 0'=1, 1'=0,
Now, congider the expressions

(a) E, =x' v y,wherex, ¥ are variables : either O or 1 So, E, =l1ifx=0ory= 1
Therefore, E, is satisfiable forx=0ory=1.
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(b) E. =(x v ) ~x' ~ 3 ianot satisfiable because every assignment for the variables x
and v will make the value of E,={.

{2) The Travelling Salesman or Salesperson Problem
The problem is defined as follows .

"Given a number of cities and the cost of travelling from one to the other, what is the cheapest
roundtrip route that visits each city and then refrns to the starting city "

The most direct answer would be to try all the combinations and see which cne is cheapest, but
given that the number of combinations of cities is n ! { factorial ), this sohution becomes impractical
for larger n, where n is the mumber of cities.

How fast are the best known deterministic algorithms ?

This probiem has been shown to be NP - Hard, and the decision version of it which is given
below

" " Given the costs of routes between cities and 2 number N, decide whether there exists atour
program for salesman to visit all the cities so that the total cost js less than orequal to N."

The above version of salesman problem is NP - Complete problem.
(3) The Hamiltonian Cycle or Hamiltonian Circuit Problem

Thisproblem isin graph theory to find a path througha given graph which starls and ends at the
same vertex and includes each vertex exactly once.

This is a special case of the travelling salesman problem obtained by setting the distance between
two cities to unity i they are adjacent and infinity otherwise. Like the traveling salesman problem,
the Hamiltonian cycle problem is NP - Complete,
(4) The Vertex Cover Problem
This problem is stated as follows .

" Given a graph G and a natural number K, does there exist a vertex covering for Gwith K

vertices."
This is NP - completa problem.
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10.

1.

12.

13.

14.

15.

Choose which of the following is not correct:

(a) Recursive languages are closed under complementation

(b) Set of recursively enumerable languages is closed under union

(c)Ifalanguage and its complement are both regular, then the language must be recursive
(d) None of the above.

Given the following stalements:

(i) Every monotonic grammar G is equivalent to atype 1 grammar.

(ii) A context sensitive language is recursive.

(iii) There exists a recursive set which is nota context sensitive language over {0, 1}.
Which of the following statements are true?

(a) Al1 (i), (jii) and (iii) (b) Only (i) and (ii1)
(c) Only (ii) and (i) (d) Only (i) and (i1)
Which one is false:

(a) L is recursive then TM halts for every x belongsto L.

(b)If L & Complement L both are recursive Enumerable then L is recursive:

(¢) Complement of a recursive language is again recursive

(d) Every recursive enumerable language is recursive.

The family of recursive languages is not closed under which of the following operations:

(a) Complementation (b) Union

(¢) Intersection {d) None of these.

Any language generated by an unrestricted grammar is

(a) Not recursively enumerable (b) Recursive

(c) Recursively enurnerable (d) None of these.

Let A= set of recursive languages B=set of recursively enumerable languages. Then
(a)4 and B are disjoint sets. (b) A and B are the same set

(c) Bisasubsetof 4 (d) Aisasubsetof B

Which of the following statemenis is true?
(a) A context sensitive language is recursive.

(b) A set X is recursive if we have aalgorithm to decide whether a given element belongs
to X or not.

(c) A recursive set is recursively enumerable.
(d) All of the above.
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16,

17

18.

9.

20.

21

22,

23,
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Theunion oftwo  recursively enumerable languages is:

{&) recursive enumerable (b} recursive

{c)not(b) {d) none

Which of the following properties of recursively enumerable set is not recursively epumerable,
(a) L contains atleast 10 members (by L1, #¢

(©) L#d @ g -3

Which of the following properties of recursively enumerable set isrecursively enumerable.
(@ -35° '

(b) L is recursive

(c) L—L, #6,(L, is the universal language)

(dy L=¢

Universal Languages is;

(a) recursive  (b)decidable

{¢) non-recursively enumerable (d) recursively enumerable

Let L and L' bea pair of complementary languages then,

{a) One of L and is recursively enumerable but not recursive & the other is not recursive
enumerable

(b)Both L and L'arerecursive

(c)Neither L nmor L' isrecursively enumerable

{d} Any one of the above.

Which of the following statements are false:

{a) If a language L and its complement L are both recursively enumerable, then
L {and hence L }isrecursive.

{b) The complement of a recursive language is recursive.

(¢) The union of two recursive langauge is recursive. The union of two recursively enumerable
lanpuages is recursively enumerable. -

{d}None.
The complement of recursiveis: :
(a) can't say (b)recursive (C) non-recursive {d) none.

A problem whose language is recursive is said to be:
{a} can'i say (b) decidable {¢) undecidable (d) none.
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24,

23,

26.

27,

28.

30,

31.

Select the false statemment:

{a) The blank-tape halting problem is undecidable

(b) The Turing Machine Halting problem is Undecidable

(c) The Turing Machine Halting problem is devidable

{dy None of the above.

Which ofthe following staterent is correct?

(a)]f the emptiness problem is undecidable for Type 0 grammars, then it is also undecidable
for Type 3 grammars.

{b)Ifthe emptiness problem is decidable for Type 3 grammars, then it is also decidable for
Type 0 prammars

(¢} Ifthe emptiness problem is decidable for Type 0 grammars, then it is also decidable for
Type 3 prammars.

(d) None of the above. _

The problem of determining that a Turing Machine would halt afier giving a YesNo output

is

{a) Decidable (byUnsolvable {c) Solvable (d) Nong of the above.
Which of the following subset relation does't hold?
(@) Iy < Ly (b) L, c Ly () Loy < Ligs (d) Ly = Ly

Let G be any unrestricted grammar. Then the problem of determining whether or not
L(G) = bis

() Cannot say ) {b) Decidable

(c) Undeciduble (d) None of these.

What can you say about the membership problem for Type 0 grammars?
_ (a) Partially decidable (b) Decidable '

(c) Undecidable . (d) None of the above.

A Lanpuage is said to be recursive if:

(a) it is not recursively enumerable and its complement is not recursively enumerabie.

{b) it is recursively enumerable and its complement is recursively enumerable.

{c) it is not recursively enumerable and its complement 1s recursively enumerable

(d} itis recursively enumerable and its complement is not recursively enumerable.

Let L be a language which is not recursively enumerbale. Then complement of L must be
(&) Not recursive (b) Recursive

(c) Recursively enumerable (d) None of these.
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30,

3.

38,
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40.

41.

42,

What ean you say about the membership problem for Type € grammars?

() Partially decidable {b) Decidable

(c) Undecidable (d) None of the above.

The problem of determining whether ornota TM over {0,1} will ever print the symbol 1,
with a given tape configmation is

{a) Unsolvable (b) Solvable {c) None of these

Given an arbitrary Turing machine T, it is undecidable "whether 7 accepts the empty word
e?

(&) True (b) False

Given a type 0 grammar G and a word w, it is undecidable "whether G generates wi"
{a) True (b)False

Given a Turing Mahine 7 and word w, it is undecidable "whether T halts when the string
w is placed on the input tape?"

(@) True (b) False

Let G be & contexi-sensitive grammar. It is decidable "whether any word x € L(G)?"
{a) True (b) False

Ttisdecidable "whether L(G)is infinite, where G is any context-fiee grammar?”

(&) True (b) False

Itis decidable "whether L(G) = ¢, where G is any context free grammar?”

(&) True (b} False

Ttis decidabls "whether 2 given right-linear grammar ¢ = {N.1j, §;, B} contains any

usehess non-terminals?"

{a) True {b} False

Find the odd man out

() Post Corvespondence Problern.

(b) Blank Tape halting problem

() State-entry problem.

{d) The halting problern of turing machines

Decidability in Decidable and Undecidable Problems refers fo

{2) Those problems whose answer are only either in "yes" or "no"

(b) Existenice of algorithm which takes an instance of the problem and determines whether
the answer to that instance is "yes" or "no”

{¢) Existence of algorithm which generates the set of solutions.

() Unsolvability
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44,
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46.

47,
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49.

Which of the following is decidable?
(a) The problem to decide whether CFG is ambiguous or not.
(b} The modified Post Correspondance Problem

(c) The problem to determine whether a siring is in G or not, where G is unrestricted
STAIIAT.

(d) None of the above.

Which of the following is decidable?

{a) The problem to decide whether CFG is ambiguous or not,

(b) The modificd Post Correspondance Problem

{c) The problem to determine whether a string is in G or not, whete G is unrestricted
grammar.

(d) None of the above.

Which of the following is decidable?

{a) The question whether or not L(A)is finite, whete M 18 a Turing Machine.

{b) The halting problem

(¢) The problem of determining whether or not L(G) = ¢ where Gis wnrestricted grammar,
(d) None of above. '

For post Correspondance problem(PCP) and Modified PCB(MPCP)

() Both are equivalent

(b) Both are unrelated

{¢) If there exists MPCP solution then there is a PCP solution

(d) I there exists PCP solution then there is a MPCP solution

{f we have & procedure to determine whether a given element belongs to a set X or not,
then this set is called......on.

{#) Context-sensitive (b) Complete.

(c) Recursively Enumerable {d} Recursive

If we have an algorithm to determine whether a given element belongs to a sel Xornot,
then this setis called...........

() Context-sensitive (b) Complete.

(c) Recursively Enumerable (d) .Recmsive

If2listsare x = {6, bab’,ba} and y = {b°, ba, a(a)} then solution of PCP problem is:
(2 1,233 (b) 21,113 (©) 21,13 (d) none
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[FPCP is decidable then MPCP is

(a) Can't say (b} decidable
{c) Undecidable {d)none
Which of the following statements is frue?

{a)pep with x = (&%, 0b% ) and v = (", bab” Yhas a solution

(B PCP with {{01,011},(1,10),(111)} has a solution.

(¢) PCP with §(0,10),(120,03),(021,10)} has a solution

{d) None of the above.

Which of the following statemendts is false?

(a) PCP over £ for | £ = 2isunsolvable

(b) PCP with two lists x = (5,bab” ,ba) and y = (b*, ba, a) hasno solution,

(¢) PCP with two lists x = (03.11) and p = (012,10,1%) has no solution.

() None of the above,

What can you say about the membership problem for Typel grammars?
(#) Partially decidable {b) Decidable

(¢) Undecidable (d) None of the above.
PCPis

{2} Sometimes undecidable (b) Decidable

{c) Undecidable {d) None.

Which of the following instances of the Post Correspondence Problem have a viable
sequence?

() {{ab.abb).(ba, aaa),(aa.a}}

(i) {(ah. aba), (haa, aa),(aba, baa}}

(it} £(&, BB, (b, bab),(hab, abb),(abb. babb)}

(a) 1,2 and 3. {byland2only (c) 2only (d) L only

If £, and I, ave any two context free langusges (type 2) over an alphabet  and (2212,
there is no algorithin to determine whether or not

() Ly=1l2 (b) Lz Ly

(¢} L 1 Lp.is acontext free language (d) Ly~ Ia=t
{2) All of the above (f) None of the above
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37.

58.

59,

60,
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62,

63,

The membership problem for Type 0 grammars is 7

{a) Partially decidable {b) Decidable

(c) Undecidable (d) None of the above
PCP is decidable for two set of strings w and v, if

(2) The strings consist of just one character repeated any no of times i.e., input symbol sel
is asigleton

{b) Corresponding strings in w and v are of equal length

(¢} Both the above. '

() It is never decidable.

Which of the following problems Is decidable?

(a) Whether L(M) is finite fora TMM'

() Halting problem of T™M

(c) Whether L(G) is empty for unmestricted grammar G

() None

The statement "halting problem is unsolvable”is

{a)stiil an open question {b) true

(c) false @Al

Inherent ambiguity for CFLs is:

(a) Can't say {b) Decidable () Undecidable (d) none

Ifaproblem A isreducibleto A then which of the following does not hold?
{a) If P issolvablethensois A,

{b) B isatleastashard as .

(¢} If A is non-recursively enumerable then sois 7.

()1 A isunsolvablethensois A

Which of the following problems is decidable :

() s a given CFL equalto 5*? (b)Are 2 Clls the same?

(c) Isthe intersection of 2 CFls empty? (d}) Is a given grammar ambiguous?
{¢) None of the above
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64. Consider, the following modifications of the Post Correspondence Problem :
(i) There is an MPC-Solution if there is a sequence of integers such that
W"Wj,...\'lr‘k'd'l =1 ﬂj.,.UkUh
(ii) There is an MPC-Solution if there is a sequence of integers such that
WM g = U uaigu .0k, Then,

(a) 1 and 2 are un-decidable (b) 1 is un-decidable bui 2 is decidable
(¢} 1is decidable bui 2 is un-decidable (d) 1 and 2 are decidable

—— = it
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