
Java Programming

CS405PC: JAVA PROGRAMMING

B.TECH II Year II Sem. L T P C
3 1 0 4

Course Objectives:
 To introduce the object oriented programming concepts.
 To understand object oriented programming concepts, and apply them in solving

problems.

 To introduce the principles of inheritance and polymorphism; and demonstrate how
they relate to the design of abstract classes

 To introduce the implementation of packages and interfaces
 To introduce the concepts of exception handling and multithreading.
 To introduce the design of Graphical User Interface using applets and swing controls.

Course Outcomes:

Able to solve real world problems using OOP techniques.

Able to understand the use of abstract classes.

Able to solve problems using java collection framework and I/o
classes. Able to develop multithreaded applications with

synchronization.

Able to develop applets for web applications.

Able to design GUI based applications

UNIT - I
Object-Oriented Thinking- A way of viewing world – Agents and Communities, messages and
methods, Responsibilities, Classes and Instances, Class Hierarchies- Inheritance, Method binding,
Overriding and Exceptions, Summary of Object-Oriented concepts. Java buzzwords, An Overview of
Java, Data types, Variables and Arrays, operators, expressions, control statements, Introducing classes,
Methods and Classes, String handling.
Inheritance– Inheritance concept, Inheritance basics, Member access, Constructors, Creating Multilevel
hierarchy, super uses, using final with inheritance, Polymorphism-ad hoc polymorphism, pure
polymorphism, method overriding, abstract classes, Object class, forms of inheritance- specialization,
specification, construction, extension, limitation, combination, benefits of inheritance, costs of
inheritance.

UNIT - II
Packages- Defining a Package, CLASSPATH, Access protection, importing packages.
Interfaces- defining an interface, implementing interfaces, Nested interfaces, applying interfaces,
variables in interfaces and extending interfaces.
Stream based I/O (java.io) – The Stream classes-Byte streams and Character streams, Reading console
Input and Writing Console Output, File class, Reading and writing Files, Random access file operations,
The Console class, Serialization, Enumerations, auto boxing, generics.

Java Programming

UNIT - III
Exception handling - Fundamentals of exception handling, Exception types, Termination or resumptive
models, Uncaught exceptions, using try and catch, multiple catch clauses, nested try statements, throw,
throws and finally, built- in exceptions, creating own exception sub classes.
Multithreading- Differences between thread-based multitasking and process-based multitasking, Java
thread model, creating threads, thread priorities, synchronizing threads, inter thread communication.

UNIT - IV
The Collections Framework (java.util)- Collections overview, Collection Interfaces, The Collection
classes- Array List, Linked List, Hash Set, Tree Set, Priority Queue, Array Deque. Accessing a
Collection via an Iterator, Using an Iterator, The For-Each alternative, Map Interfaces and Classes,
Comparators, Collection algorithms, Arrays, The Legacy Classes and Interfaces- Dictionary, Hashtable
,Properties, Stack, Vector
More Utility classes, String Tokenizer, Bit Set, Date, Calendar, Random, Formatter, Scanner

UNIT - V
GUI Programming with Swing – Introduction, limitations of AWT, MVC architecture, components,
containers. Understanding Layout Managers, Flow Layout, Border Layout, Grid Layout, Card Layout,
Grid Bag Layout.
Event Handling- The Delegation event model- Events, Event sources, Event Listeners, Event classes,
Handling mouse and keyboard events, Adapter classes, Inner classes, Anonymous Inner classes.
A Simple Swing Application, Applets – Applets and HTML, Security Issues, Applets and
Applications, passing parameters to applets. Creating a Swing Applet, Painting in Swing, A Paint
example, Exploring Swing Controls- JLabel and Image Icon, JText Field, The Swing Buttons- JButton,
JToggle Button, JCheck Box, JRadio Button, JTabbed Pane, JScroll Pane, JList, JCombo Box, Swing
Menus, Dialogs.

TEXT BOOKS:

1. Java The complete reference, 9th edition, Herbert Schildt, McGraw Hill Education (India) Pvt.
Ltd.

2. Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson
Education.

REFERENCE BOOKS:

1. An Introduction to programming and OO design using Java, J. Nino and F.A. Hosch, John
Wiley & sons

2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
3. Object Oriented Programming through Java, P. Radha Krishna, University Press.
4. Programming in Java, S. Malhotra, S. Chudhary, 2nd edition, Oxford Univ. Press.
5. Java Programming and Object-oriented Application Development, R. A. Johnson, Cengage

Learning.

Java Programming

UNIT I:

Object-Oriented Thinking- A way of viewing world – Agents and Communities, messages and
methods, Responsibilities, Classes and Instances, Class Hierarchies- Inheritance, Method binding,
Overriding and Exceptions, Summary of Object-Oriented concepts. Java buzzwords, An Overview of
Java, Data types, Variables and Arrays, operators, expressions, control statements, Introducing classes,
Methods and Classes, String handling.
Inheritance– Inheritance concept, Inheritance basics, Member access, Constructors, Creating Multilevel
hierarchy, super uses, using final with inheritance, Polymorphism-ad hoc polymorphism, pure
polymorphism, method overriding, abstract classes, Object class, forms of inheritance- specialization,
specification, construction, extension, limitation, combination, benefits of inheritance, costs of
inheritance.

Object-Oriented Thinking

A way of viewing world:

To illustrate some of the major ideas in object-oriented programming, let us
consider rst how we might go about handling a real-world situation and then ask
how we could make the computer more closely model the techniques employed.
Suppose an individual named Chris wishes to send owers to a friend named
Robin, who lives in another city. Because of the distance, Chris cannot simply pick
the owers and take them to Robin in person. Nevertheless, it is a task that is easily
solved. Chris simply walks to a nearby ower shop, run by a f l orist named Fred.
Chris will tell Fred the kinds of owers to send to Robin, and the address to which
they should be delivered. Chris can then be assured that the flowers will be
delivered expediently and automatically.

 Agents and Communities

At the risk of belaboring a point, let us emphasize that the mechanism that was
used to solve this problem was to nd an appropriate agent (namely, Fred) and to
pass to this agent a message containing a request. It is the responsibility of Fred
to satisfy the request. There is some method - some algorithm or set of
operations - used by Fred to do this. Chris does not need to know the particular
method that Fred will use to satisfy the request; indeed, often the person making a
request does not want to know the details. This information is usually hidden
from inspection.
An investigation, however, might uncover the fact that Fred delivers a slightly
different message to another orist in the city where Robin lives. That orist, in
turn, perhaps has a subordinate who makes the ower arrangement. The orist then
passes the owers, along with yet another message, to a delivery person, and so
on. Earlier, the orist in Robin's city had obtained her owers from a flower
wholesaler who, in turn, had interactions with the ower growers, each of whom had
to manage a team of gardeners.

So, our rst observation of object-oriented problem solving is that the solution to
this problem required the help of many other individuals (Figure 1.2). Without their
help, the problem could not be easily solved. We phrase this in a general fashion as
the following:

Java Programming

An object oriented program is structured as a community of interacting
agents, called objects. Each object has a role to play. Each object
provides a service, or performs an action, that is used by other members
of the community.

 Messages and Methods

The chain reaction that ultimately resulted in the solution to Chris's problem began
with a request given to the orist Fred. This request lead to other requests, which lead
to still more requests, until the owers ultimately reached Chris's friend Robin. We
see, therefore, that members of this community interact with each other by making
requests. So, our next principle of object-oriented problem solving is the vehicle
used to indicate an action to be performed:

Action is initiated in object-oriented programming by the transmission of
a message to an agent (an object) responsible for the action. The message
encodes the request for an action and is accompanied by any additional
information (arguments) needed to carry out the request. The receiver is
the object to whom the message is sent. If the receiver accepts the
message, it accepts the responsibility to carry out the indicated action. In
response to a message, the receiver will perform some method to satisfy
the request.

We have noted the important principle of information hiding in regard to
message passing - that is, the client sending the request need not know the actual
means by which the request will be honored. There is another principle, all too
human, that we see is implicit in message passing. If there is a task to perform,
the first thought of the client is to find somebody else he or she can ask to do the
work. This second reaction often becomes atrophied in many programmers with
extensive experience in conventional techniques. Frequently, a di cult hurdle to
overcome is the idea in the programmer's mind that he or she must write
everything and not use the services of others. An important part of object-
oriented programming is the development of reusable components, and an
important rst step in the use of reusable components is a willingness to trust
software written by others.

Messages versus Procedure Calls

Information hiding is also an important aspect of programming in conventional
languages. In what sense is a message di erent from, say, a procedure call? In both
cases, there is a set of well-defined steps that will be initiated following the request.
But, there are two important distinctions.

The rst is that in a message there is a designated receiver for that message;
the receiver is some object to which the message is sent. In a procedure call,
there is no designated receiver.

The second is that the interpretation of the message (that is, the method used
to respond to the message) is determined by the receiver and can vary with di erent
receivers. Chris could give a message to a friend named Elizabeth, for example, and
she will understand it and a satisfactory outcome will be produced (that is, owers
will be delivered to their mutual friend Robin). However, the method Elizabeth uses
to satisfy the request (in all likelihood, simply passing the request on to Fred) will
be di erent from that used by Fred in response to the same request.

Java Programming

If Chris were to ask Kenneth, a dentist, to send owers to Robin, Kenneth may
not have a method for solving that problem. If he understands the request at all,
he will probably issue an appropriate error diagnostic.

Let us move our discussion back to the level of computers and programs.
There, the distinction between message passing and procedure calling is that, in
message passing, there is a designated receiver, and the interpretation - the
selection of a method to execute in response to the message - may vary with
different receivers. Usually, the speci c receiver for any given message will not
be known until run time, so the determination of which method to invoke cannot
be made until then. Thus, we say there is late binding between the message
(function or procedure name) and the code fragment (method) used to respond
to the message. This situation is in contrast to the very early (compile-time or
link-time) binding of name to code fragment in conventional procedure calls.
 Responsibilities

A fundamental concept in object-oriented programming is to describe behavior in
terms of responsibilities. Chris's request for action indicates only the desired out-
come (flowers sent to Robin). Fred is free to pursue any technique that achieves the
desired objective, and in doing so will not be hampered by interference from Chris.

By discussing a problem in terms of responsibilities we increase the level of
abstraction. This permits greater independence between objects, a critical factor in
solving complex problems. The entire collection of responsibilities associated with
an object is often described by the term protocol.

A traditional program often operates by acting on data structures, for exam- ple
changing elds in an array or record. In contrast, an object oriented program requests
data structures (that is, objects) to perform a service. This di erence between
viewing software in traditional, structured terms and viewing it from an object-
oriented perspective can be summarized by a twist on a well-known quote:

Ask not what you can do to your data structures, but rather ask what your data
structures can do for you.

 Classes and Instances

Although Chris has only dealt with Fred a few times, Chris has a rough idea of
the transaction that will occur inside Fred's ower shop. Chris is able to make
certain assumptions based on previous experience with other orists, and hence
Chris can expect that Fred, being an instance of this category, will fit the
general pattern. We can use the term Florist to represent the category (or class)
of all orists. Let us incorporate these notions into our next principle of object-
oriented programming:

All objects are instances of a class. The method invoked by an object in
response to a message is determined by the class of the receiver. All
objects of a given class use the same method in response to similar
messages.

Java Programming

Class Hierarchies - Inheritance

Chris has more information about Fred - not necessarily because Fred is a florist but
because he is a shopkeeper. Chris knows, for example, that a transfer of money will
be part of the transaction, and that in return for payment Fred will o er a receipt.
These actions are true of grocers, stationers, and other shopkeepers. Since the
category Florist is a more specialized form of the category Shopkeeper, any
knowledge Chris has of Shopkeepers is also true of Florists and hence of Fred.

One way to think about how Chris has organized knowledge of Fred is in terms of
a hierarchy of categories. Fred is a Florist, but Florist is a specialized form of
Shopkeeper. Furthermore, a Shopkeeper is also a Human; so Chris knows, for
example, that Fred is probably bipedal. A Human is a Mammal (therefore they nurse
their young and have hair), and a Mammal is an Animal (therefore it breathes
oxygen), and an Animal is a Material Object (therefore it has mass and weight).
Thus, quite a lot of knowledge that Chris has that is applicable to Fred is not directly
associated with him, or even with the category Florist.

The principle that knowledge of a more general category is also applicable to a
more speci c category is called inheritance. We say that the class Florist will inherit
attributes of the class (or category) Shopkeeper.
There is an alternative graphical technique often used to illustrate this rela- tionship,
particularly when there are many individuals with di ering lineage's. This technique shows
classes listed in a hierarchical tree-like structure, with more abstract classes (such as Material
Object or Animal) listed near the top of the tree, and more speci c classes, and nally
individuals, are listed near the bottom. This same hierarchy also includes Elizabeth, Chris's
dog Fido, Phyl the platypus who lives at the zoo, and the owers the Chris is sending to
Robin. Notice that the structure and interpretation of this type of diagram is similar to the
biological hierarchy.

Information that Chris possess about Fred because Fred is an instance of class
Human is also applicable to Elizabeth, for example. Information that Chris knows
about Fred because he is a Mammal is applicable to Fido as well. Information about
all members of Material Object is equally applicable to Fred and to his owers. We
capture this in the idea of inheritance:

Classes can be organized into a hierarchical inheritance structure. A
child class (or subclass) will inherit attributes from a parent class
higher in the tree. An abstract parent class is a class (such as Mam-mal)
for which there are no direct instances; it is used only to create subclasses.

Method Binding and Overriding

Phyl the platypus presents a problem for our simple organizing structure. Chris
knows that mammals give birth to live children, and Phyl is certainly a Mammal, yet
Phyl (or rather his mate Phyllis) lays eggs. To accommodate this, we need to nd a
technique to encode exceptions to a general rule.

We do this by decreeing that information contained in a subclass can override
information inherited from a parent class. Most often, implementations of this
approach takes the form of a method in a subclass having the same name as a
method in the parent class, combined with a rule for how the search for a method
to match a specific message is conducted:

he search for a method to invoke in response to a given message be- gins
with the class of the receiver. If no appropriate method is found, the
search is conducted in the parent class of this class. The search continues
up the parent class chain until either a method is found or the parent class
chain is exhausted. In the former case the method is executed; in the
latter case, an error message is issued. If methods with the same name can
be found higher in the class hierarchy, the method executed is said to
override the inherited behavior.

Java Programming

Even if a compiler cannot determine which method will be invoked at run time,
in many object-oriented languages, such as Java, it can determine whether there will
be an appropriate method and issue an error message as a compile-time error
diagnostic rather than as a run-time message.

The fact that both Elizabeth and Fred will react to Chris's messages, but use
different methods to respond, is one form of polymorphism. As explained, that
Chris does not, and need not, know exactly what method Fred will use to honor
the request is an example of information hiding.

 Summary of Object-Oriented Concepts

Alan Kay, considered by some to be the father of object-oriented programming,
identi ed the following characteristics as fundamental to OOP [Kay 1993]:

1. Everything is an object.

2. Computation is performed by objects communicating with each other, re-

questing that other objects perform actions. Objects communicate by send-
ing and receiving messages. A message is a request for action bundled with
whatever arguments may be necessary to complete the task.

3. Each object has its own memory, which consists of other objects.
4. Every object is an instance of a class. A class simply represents a grouping of

similar objects, such as integers or lists.

5. The class is the repository for behavior associated with an object. That is,
all objects that are instances of the same class can perform the same actions.

6. Classes are organized into a singly rooted tree structure, called the inheri-

tance hierarchy. Memory and behavior associated with instances of a class
are automatically available to any class associated with a descendant in this
tree structure.

Java Programming

History of Java:

In 1990, Sun Micro Systems Inc (US) was conceived a project to develop software for
consumer electronic devices that could be controlled by a remote This project was called
Stealth Project but later its name was changed to Green Project
In January 1991, Project Manager James Gosling and his team members Patrick Naughton,
Mike Sheridan, Chris Wrath, and Ed Frank met to discuss about this project
Gosling thought C and C++ would be used to develop the project But the problem he faced
with them is that they were system dependent languages The trouble with C and C++ (and
most other languages) is that they are designed to be compiled for a specific target and
could not be used on various processors, which the electronic devices might use
James Gosling with his team started developing a new language, which was completely
system independent This language was initially called OAK Since this name was
registered by some other company, later it was changed to Java
James Gosling and his team members were consuming a lot of coffee while developing
this language Good quality of coffee was supplied from a place called “Java Island‟ Hence
they fixed the name of the language as Java The symbol for Java language is cup and
saucer
Sun formally announced Java at Sun World conference in 1995 On January 23rd 1996,
JDK10 version was released

Features of Java (Java buzz words):

Simple: Learning and practicing java is easy because of resemblance with c and C++
Object Oriented Programming Language: Unlike C++, Java is purely OOP
Distributed: Java is designed for use on network; it has an extensive library which works
in agreement with TCP/IP
Secure: Java is designed for use on Internet Java enables the construction of virus-free,
tamper free systems
Robust (Strong/ Powerful): Java programs will not crash because of its exception
handling and its memory management features
Interpreted: Java programs are compiled to generate the byte code This byte code can be
downloaded and interpreted by the interpreter class file will have byte code instructions
and JVM which contains an interpreter will execute the byte code
Portable: Java does not have implementation dependent aspects and it yields or gives
same result on any machine
Architectural Neutral Language: Java byte code is not machine dependent, it can run on
any machine with any processor and with any OS
High Performance: Along with interpreter there will be JIT (Just In Time) compiler
which enhances the speed of execution
Multithreaded: Executing different parts of program simultaneously is called
multithreading This is an essential feature to design server side programs
Dynamic: We can develop programs in Java which dynamically change on Internet (eg:
Applets)

Obtaining the Java Environment:
We can download the JDK (Java Development Kit) including the compiler and runtime
engine from Sun at: http://javasuncom/javase
Install JDK after downloading, by default JDK will be installed in
C:\Program Files\Java\jdk150_05 (Here jdk150_05 is JDK‟s version)

Setting up Java Environment: After installing the JDK, we need to set at least one
environment variable in order to able to compile and run Java programs A PATH environment
variable enables the operating system to find the JDK executables when our working directory
is not the JDK's binary directory

Setting environment variables from a command prompt: If we set the variables from a
command prompt, they will only hold for that session To set the PATH from a command
prompt:

Java Programming

set PATH=C:\Program Files\Java\jdk150_05\bin;%PATH%

Setting environment variables as system variables: If we set the variables as system
variables they will hold continuously

o Right-click on My Computer
o Choose Properties
o Select the Advanced tab
o Click the Environment Variables

button at the bottom
o In system variables tab, select

path (system variable) and click
on edit button

o A window with variable name-
path and its value will be
displayed

o Don‟t disturb the default path
value that is appearing and just
append (add) to that path at the
end:
;C:\ProgramFiles\Java\
jdk150_05\bin;

o Finally press OK button

Programming Structure

Comments: Comments are description about the aim and features of the program Comments
increase readability of a program Three types of comments are there in Java:

Single line comments: These comments start with //
eg: // this is comment line
Multi line comments: These comments start with /* and end with */
eg: /* this is comment line*/
Java documentation comments: These comments start with /** and end with */
These comments are useful to create a HTML file called API (application programming
Interface) document This file contains description of all the features of software

Java Programming

Sample Program:
//A Simple Java Program
import javalangSystem; import
javalangString; class Sample
{

public static void main(String args[])
{

System.out.print ("Hello world");
}

}

Structure of the Java Program:

As all other programming languages, Java also has a structure
The first line of the C/C++ program contains include statement For example, <stdioh> is
the header file that contains functions, like printf (), scanf () etc So if we want to use any
of these functions, we should include this header file in C/ C++ program
Similarly in Java first we need to import the required packages By default javalang* is
imported Java has several such packages in its library A package is a kind of directory that
contains a group of related classes and interfaces A class or interface contains methods
Since Java is purely an Object Oriented Programming language, we cannot write a Java
program without having at least one class or object So, it is mandatory to write a class in
Java program We should use class keyword for this purpose and then write class name
In C/C++, program starts executing from main method similarly in Java, program starts
executing from main method The return type of main method is void because program
starts executing from main method and it returns nothing

Since Java is purely an Object Oriented Programming language, without creating an object
to a class it is not possible to access methods and members of a class But main method is
also a method inside a class, since program execution starts from main method we need to
call main method without creating an object
Static methods are the methods, which can be called and executed without creating objects
Since we want to call main () method without using an object, we should declare main ()
method as static JVM calls main () method using its Classnamemain () at the time of
running the program.JVM is a program written by Java Soft people (Java development
team) and main () is the method written by us Since, main () method should be available to
the JVM, it should be declared as public If we don‟t declare main () method as public, then
it doesn‟t make itself available to JVM and JVM cannot execute it
JVM always looks for main () method with String type array as parameter otherwise JVM
cannot recognize the main () method, so we must provide String type array as parameter to
main () method

A class code starts with a {and ends with a} A class or an object contains variables and
methods (functions) We can create any number of variables and methods inside the class
This is our first program, so we had written only one method called main ()
Our aim of writing this program is just to display a string “Hello world” In Java, print ()
method is used to display something on the monitor
A method should be called by using objectnamemethodname () So, to call print () method,
create an object to PrintStream class then call objectnameprint () method

Java Programming

An alternative is given to create an object to PrintStream Class ie Systemout Here, System
is the class name and out is a static variable in System class out is called a field in System
class When we call this field a PrintStream class object will be created internally So, we
can call print() method as: System.out.print (“Hello world”); println () is also a method
belonging to PrintStream class It throws the cursor to the next line after displaying the
result
In the above Sample program System and String are the classes present in javalang
package

Escape Sequence: Java supports all escape sequence which is supported by C/ C++ A
character preceded by a backslash (\) is an escape sequence and has special meaning to the
compiler When an escape sequence is encountered in a print statement, the compiler interprets
it accordingly

Escape Sequence Description
\t Insert a tab in the text at this point
\b Insert a backspace in the text at this point
\n Insert a newline in the text at this point
\r Insert a carriage return in the text at this point
\f Insert a form feed in the text at this point
\' Insert a single quote character in the text at this point
\" Insert a double quote character in the text at this point
\\ Insert a backslash character in the text at this point

Creating a Source File:
Type the program in a text editor (ie Notepad, WordPad, Microsoft Word or Edit Plus) We
can launch the Notepad editor from the Start menu by selecting Programs > Accessories
> Notepad In a new document, type the above code (ie Sample Program)
Save the program with filename same as Class_name (ie Samplejava) in which main
method is written To do this in Notepad, first choose the File > Save menu item Then, in
the Save dialog box:

Using the Save in combo box, specify the folder (directory) where you'll save your file

In the File name text field, type "Samplejava", including the quotation marks Then
the dialog box should look like this:

Java Programming

Now click Save, and exit Notepad

Compiling the Source File into a class File:
To Compile the Samplejava program go to DOS prompt We can do this from the Start
menu by choosing Run and then entering cmd The window should look similar to the
following figure

The prompt shows current directory To compile Samplejava source file, change current
directory to the directory where Samplejava file is located For example, if source directory
is JQR on the D drive, type the following commands at the prompt and press Enter:

Now the prompt should change to D:\JQR>
At the prompt, type the following command and press Enter

javac Samplejava

Java Programming

The compiler generates byte code and Sampleclass will be created

Executing the Program (Sampleclass):
To run the program, enter java followed by the class name created at the time of
compilation at the command prompt in the same directory as:

java Sample

The program interpreted and the output is displayed

The Java Virtual Machine: Java Virtual Machine (JVM) is the heart of entire Java program
execution process First of all, the java program is converted into a class file consisting of byte
code instructions by the java compiler at the time of compilation Remember, this java
compiler is outside the JVM This class file is given to the JVM Following figure shows the
architecture of Java Virtual Machine

Figure: The internal architecture of the Java virtual machine
In JVM, there is a module (or program) called class loader sub system, which performs the
following instructions:

First of all, it loads the class file into memory
Then it verifies whether all byte code instructions are proper or not If it finds any
instruction suspicious, the execution is rejected immediately

Java Programming

.If the byte instructions are proper, then it allocates necessary memory to execute the program
This memory is divided into 5 parts, called run time data areas, which contain the data and
results while running the program These areas are as follows:

o Method area: Method area is the memory block, which stores the class code, code of
the variables and code of the methods in the Java program (Method means functions
written in a class)

o Heap: This is the area where objects are created Whenever JVM loads a class, method
and heap areas are immediately created in it

o Java Stacks: Method code is stored on Method area But while running a method, it
needs some more memory to store the data and results This memory is allotted on Java
Stacks So, Java Stacks are memory area where Java methods are executed While
executing methods, a separate frame will be created in the Java Stack, where the
method is executed JVM uses a separate thread (or process) to execute each method

o PC (Program Counter) registers: These are the registers (memory areas), which
contain memory address of the instructions of the methods If there are 3 methods, 3 PC
registers will be used to track the instruction of the methods

o Native Method Stacks: Java methods are executed on Java Stacks Similarly, native
methods (for example C/C++ functions) are executed on Native method stacks To
execute the native methods, generally native method libraries (for example C/C++
header
files) are required These header files are located and connected to JVM by a program,
called Native method interface

Execution Engine contains interpreter and JIT compiler which translates the byte code
instructions into machine language which are executed by the microprocessor Hot spot
(loops/iterations) is the area in class file ie executed by JIT compiler JVM will identify the
Hot spots in the class files and it will give it to JIT compiler where the normal instructions and
statements of Java program are executed by the Java interpreter

Naming Conventions, Data Types and Operators

Naming Conventions: Naming conventions specify the rules to be followed by a Java
programmer while writing the names of packages, classes, methods etc

Package names are written in small
letters eg: javaio, javalang, javaawt
etc

Each word of class name and interface name starts with a
capital eg: Sample, AddTwoNumbers

Method names start with small letters then each word start with a
capital eg: sum (), sumTwoNumbers (), minValue ()

Variable names also follow the same above method rule
eg: sum, count, totalCount

Constants should be written using all capital
letters eg: PI, COUNT

Keywords are reserved words and are written in small
letters eg: int, short, float, public, void

Java Programming

Data Types: The classification of data item is called data type Java defines eight simple
types of data byte, short, int, long, char, float, double and boolean These can be put in four
groups:

Integer Data Types:These data types store integer numbers

Data Type Memory size Range
Byte 1 byte -128 to 127

Short 2 bytes -32768 to 32767
Int 4 bytes -2147483648 to 2147483647

Long 8 bytes -9223372036854775808 to 9223372036854775807
eg: byte rno = 10;

long x = 150L; L means forcing JVM to allot 8
bytes

Float Data Types: These data types handle floating point numbers

Data Type Memory size Range
Float 4 bytes -34e38 to 34e38
Double 8 bytes -17e308 to 17e308

eg: float pi = 3142f;
double distance = 198e8;

Character Data Type: This data type represents a single character char data type in java
uses two bytes of memory also called Unicode system Unicode is a specification to
include alphabets of all international languages into the character set of java

Data Type Memory size Range
Char 2 bytes 0 to 65535

eg: char ch = 'x';
Boolean Data Type:can handle truth values either true or false

eg:- boolean response = true;

Operators: An operator is a symbol that performs an operation An operator acts on variables
called operands

Arithmetic operators: These operators are used to perform fundamental operations like
addition, subtraction, multiplication etc

Operator Meaning Example Result

+ Addition 3 + 4 7
- Subtraction 5 - 7 -2
* Multiplication 5 * 5 25
/ Division (gives quotient) 14 / 7 2
% Modulus (gives remainder) 20 % 7 6

· Assignment operator: This operator (=) is used to store some value into a variable

Simple Assignment Compound Assignment
x = x + y x += y
x = x – y x -= y
x = x * y x *= y

x = x y x /= y
·
·

Java Programming

·
·
·
· Unary operators: As the name indicates unary operator‟s act only on one operand

Operator Meaning Example Explanation
- Unary minus j = -k; k value is negated and stored into j

++

 b value will be incremented by 1
Increment b++; (called as post incrementation)

Operator ++b; b value will be incremented by 1
 (called as pre incrementation)

--

 b value will be decremented by 1
Decrement b--; (called as post decrementation)

Operator --b; b value will be decremented by 1
 (called as pre decrementation)

· Relational operators: These operators are used for comparison purpose
Operator Meaning Example

== Equal x == 3
!= Not equal x != 3
< Less than x < 3
> Greater than x > 3
<= Less than or equal to x <= 3
· Logical operators: Logical operators are used to construct compound conditions A

compound condition is a combination of several simple conditions

Operator Meaning Example Explanation

&&

and operator

if(a>b && a>c) If a value is greater than b and c

System.out.print(“yes”); then only yes is displayed

||

or operator

if(a==1 || b==1) If either a value is 1 or b value is 1

System.out.print(“yes”); then yes is displayed

!

not operator

if(!(a==0)) If a value is not equal to zero then

System.out.print(“yes”); only yes is displayed

Java Programming

.
Bitwise operators: These operators act on individual bits (0 and 1) of the operands They
act only on integer data types, ie byte, short, long and int

changing 0‟s as 1‟s and vice versa
Ternary Operator or Conditional Operator (? :): This operator is called ternary because it

acts on 3 variables The syntax for this operator is:
Variable = Expression1? Expression2: Expression3;

First Expression1 is evaluated If it is true, then Expression2 value is stored into variable
otherwise Expression3 value is stored into the variable

eg: max = (a>b) ? a: b;

Program 1: Write a program to perform arithmetic operations
//Addition of two numbers
class AddTwoNumbers
{ public static void mian(String args[])

{int i=10, j=20;
System.out.println("Addition of two numbers is : " + (i+j));
System.out.println("Subtraction of two numbers is : " + (i-j));
System.out.println("Multiplication of two numbers is : " + (i*j));
System.out.println("Quotient after division is : " + (i/j));
System.out.println("Remainder after division is : " +(i%j));

}
}

Output:

Operator Meaning Explanatio
n

& Bitwise AND Multiplies the individual bits of operands
| Bitwise OR Adds the individual bits of operands
^ Bitwise XOR Performs Exclusive OR operation
<< Left shift Shifts the bits of the number towards left a

specified
number of positions

>> Right shift Shifts the bits of the number towards right a
specified number of positions and also
preserves the
sign bit

>>> Zero fill right shift Shifts the bits of the number towards right a
specified number of positions and it stores 0
(Zero)

Java Programming

Program 2: Write a program to perform Bitwise operations
//Bitwise Operations
class Bits
{public static void main(String args[])

{byte x,y;
x=10;
y=11;
System.out.println ("~x="+(~x));
System.out.println ("x & y="+(x&y));
System.out.println ("x | y="+(x|y));
System.out.println ("x ^ y="+(x^y));
System.out.println ("x<<2="+(x<<2));
System.out.println ("x>>2="+(x>>2));
System.out.println
("x>>>2="+(x>>>2));

}
}

Output:

Java Programming

Control Statements

Control statements are the statements which alter the flow of execution and provide better
control to the programmer on the flow of execution In Java control statements are categorized
into selection control statements, iteration control statements and jump control statements

Java’s Selection Statements: Java supports two selection statements: if and switch These
statements allow us to control the flow of program execution based on condition
if Statement: if statement performs a task depending on whether a condition is true or

false
Syntax: if (condition)

statement1;
else

statement2;
Here, each statement may be a single statement or a compound statement enclosed in
curly braces (that is, a block) The condition is any expression that returns a boolean
value The else clause is optional

Program 1: Write a program to find biggest of three numbers
//Biggest of three numbers
class BiggestNo
{public static void main(String args[])

{int a=5,b=7,c=6; if (a
> b && a>c)

System.out.println ("a is big");
else if (b > c)

System.out.println ("b is big");
else

}
}

System.out.println ("c is big");

Output:

Switch Statement: When there are several options and we have to choose only one
option from the available ones, we can use switch statement
Syntax:switch (expression)

{case value1: //statement sequence
break;

case value2: //statement sequence

Java Programming

break;
……………

case valueN: //statement sequence
break;

default: //default statement sequence
}

Here, depending on the value of the expression, a particular corresponding case will be
executed

Program 2: Write a program for using the switch statement to execute a particular
task depending on color value
//To display a color name depending on color
value class ColorDemo
{public static void main(String args[])

{char color = „r‟;
switch (color)
{ case „r‟: System.out.println (“red”); break;

case „g‟: System.out.println (“green”); break;
case „b‟: System.out.println (“blue”); break;
case „y‟: System.out.println (“yellow”); break;
case „w‟: System.out.println (“white”); break;
default: System.out.println (“No Color
Selected”);

}
}

}
Output:

Java’s Iteration Statements: Java‟s iteration statements are for, while and do-while
These statements are used to repeat same set of instructions specified number of times
called loops A loop repeatedly executes the same set of instructions until a termination
condition is met

while Loop: while loop repeats a group of statements as long as condition is true Once
the condition is false, the loop is terminated In while loop, the condition is tested first;
if it is true, then only the statements are executed while loop is called as entry control
loop
Syntax:while (condition)

{
statements;

}

Java Programming

Program 3: Write a program to generate numbers from 1 to 20
//Program to generate numbers from 1 to 20
class Natural
{public static void main(String args[])

{int i=1; while (i <=20)
{System.out.print (i + “\t”); i++;
}

}
}
Output:

do…while Loop: do…while loop repeats a group of statements as long as condition is
true In dowhile loop, the statements are executed first and then the condition is tested
do…while loop is also called as exit control loop
Syntax:do

{
statements;

} while (condition);

Program 4: Write a program to generate numbers from 1 to 20
//Program to generate numbers from 1 to 20
class Natural
{public static void main(String args[])

{int i=1; do
{System.out.print (i + “\t”); i++;
} while (i <= 20);

}
}
Output:

Java Programming

. for Loop: The for loop is also same as do…while or while loop, but it is more compact
syntactically The for loop executes a group of statements as long as a condition is true
Syntax: for (expression1; expression2; expression3)

{ statements;
}

Here, expression1 is used to initialize the variables, expression2 is used for condition
checking and expression3 is used for increment or decrement variable value

Program 5: Write a program to generate numbers from 1 to 20
//Program to generate numbers from 1 to 20
class Natural
{public static void main(String args[])

{int i;
for (i=1; i<=20; i++)

System.out.print (i + “\t”);
}

}
Output:

Java’s Jump Statements: Java supports three jump statements: break, continue and return
These statements transfer control to another part of the program
o break:

break can be used inside a loop to come out of it
break can be used inside the switch block to come out of the switch block
break can be used in nested blocks to go to the end of a block Nested blocks
represent a block written within another block

Syntax: break; (or) break label;//here label represents the name of the block

Program 6: Write a program to use break as a civilized form of goto
//using break as a civilized form of goto
class BreakDemo
{public static void main (String args[])

{boolean t = true; first:
{

second:
{

third:
{

Java Programming

System.out.println (“Before the break”);
if (t) break second; // break out of second block

System.out.println (“This won‟t execute”);
}
System.out.println (“This won‟t execute”);

}
System.out.println (“This is after second block”);

}
}

}
Output:

continue: This statement is useful to continue the next repetition of a loop/ iteration
When continue is executed, subsequent statements inside the loop are not executed
Syntax:continue;

Program 7: Write a program to generate numbers from 1 to 20
//Program to generate numbers from 1 to 20
class Natural
{public static void main (String args[])

{int i=1; while
(true)
{System.out.print (i + “\t”);

i++; if (i <= 20)
continue
;

else

}
}

}

break;

Output:

Java Programming

return statement:
return statement is useful to terminate a method and come back to the calling
method
return statement in main method terminates the application
return statement can be used to return some value from a method to a calling
method

Syntax:return;
(or)

return value; // value may be of any type

Program 8: Write a program to demonstrate return statement
//Demonstrate return
class ReturnDemo
{public static void main(String args[])

{boolean t = true; System.out.println
(“Before the return”); if (t)

return;
System.out.println (“This won‟t execute”);

}
}
Output:

Note: goto statement is not available in java, because it leads to confusion and forms infinite
loops.

Arrays and Strings

Arrays: An array represents a group of elements of same data type Arrays are generally
categorized into two types:

Single Dimensional arrays (or 1 Dimensional arrays)
Multi-Dimensional arrays (or 2 Dimensional arrays, 3 Dimensional arrays, …)

Single Dimensional Arrays: A one dimensional array or single dimensional array represents
a row or a column of elements For example, the marks obtained by a student in 5 different
subjects can be represented by a 1D array

We can declare a one dimensional array and directly store elements at the time of its
declaration, as: int marks[] = {50, 60, 55, 67, 70};
We can create a 1D array by declaring the array first and then allocate memory for it by
using new operator, as: int marks[]; //declare marks array

marks = new int[5]; //allot memory for storing 5 elements
These two statements also can be written as: int marks [] = new int [5];

Java Programming

Program 1: Write a program to accept elements into an array and display the same

program to accept elements into an array and display the
same import javaio*;
class ArrayDemo1
{public static void main (String args[]) throws IOException

{//Create a BufferedReader class object (br)
BufferedReader br = new BufferedReader (new InputStreamReader
(Systemin));
System.out.println (“How many elements: “
); int n = IntegerparseInt (brreadLine ());
//create a 1D array with size n
int a[] = new int[n];
System.out.print ("Enter elements into array : ");
for (int i = 0; i<n;i++)

a [i] = IntegerparseInt (brreadLine ());
System.out.print (“The entered elements in the array are:
“); for (int i =0; i < n; i++)

System.out.print (a[i] + “\t”);
}

}
Output:

Multi-Dimensional Arrays (2D, 3D … arrays): Multi dimensional arrays represent 2D, 3D
… arrays A two dimensional array is a combination of two or more (1D) one dimensional
arrays A three dimensional array is a combination of two or more (2D) two dimensional arrays
Two Dimensional Arrays (2d array): A two dimensional array represents several rows and
columns of data To represent a two dimensional array, we should use two pairs of square
braces [] [] after the array name For example, the marks obtained by a group of

students in five different subjects can be represented by a 2D array
o We can declare a two dimensional array and directly store elements at the time of its

declaration, as:
int marks[] [] = {{50, 60, 55, 67, 70},{62, 65, 70, 70, 81}, {72, 66, 77, 80, 69} };
We can create a two dimensional array by declaring the array first and then we can allot

memory for it by using new operator as:
int marks[] []; //declare marks array
marks = new int[3][5]; //allot memory for storing 15 elements
These two statements also can be written as:

int marks [][] = new int[3][5];

Java Programming

Program 2: Write a program to take a 2D array and display its elements in the form of a
matrix
//Displaying a 2D array as a matrix
class Matrix
{public static void main(String args[])

{//take a 2D array
int x[][] = {{1, 2, 3}, {4, 5, 6}
}; // display the array elements
for (int i = 0 ; i < 2 ; i++)
{System.out.println (); for (int j

= 0 ; j < 3 ; j++)
System.out.print(x[i][j] + “\t”);

}
}

}
Output:

Three Dimensional arrays (3D arrays): We can consider a three dimensional array as a
combination of several two dimensional arrays To represent a three dimensional array, we
should use three pairs of square braces [] [] after the array name
o We can declare a three dimensional array and directly store elements at the time of its

declaration, as:
int arr[] [] [] = {{{50, 51, 52},{60, 61, 62}}, {{70, 71, 72}, {80, 81, 82}}};

 .
We can create a three dimensional array by declaring the array first and then we can allot
memory for it by using new operator as:

int arr[] [] = new int[2][2][3]; //allot memory for storing 15 elements

arraynamelength: If we want to know the size of any array, we can use the property „length‟
of an array In case of 2D, 3D length property gives the number of rows of the array

Strings: A String represents group of characters Strings are represented as String objects in
java

Java Programming

Creating Strings:
We can declare a String variable and directly store a String literal using assignment

operator String str = "Hello";
We can create String object using new operator with some data

We can create a String by using character array

also char arr[] = {
'p','r','o',‟g‟,‟r‟,‟a‟,‟m‟};

We can create a String by passing array name to it,
as: String s2 = new String (arr);

We can create a String by passing array name and specifying which characters we
need: String s3 = new String (str, 2, 3);

Here starting from 2nd character a total of 3 characters are copied into String s3

String Class Methods:
Method Description

String concat (String str) Concatenates calling String with str
Note: + also used to do the same

int length () Returns length of a String
char charAt (int index) Returns the character at specified location (from 0)
int compareTo Returns a negative value if calling String is less than str, a positive

(String str) value if calling String is greater than str or 0 if Strings are equal
boolean equals Returns true if calling String equals str

(String str) Note: == operator compares the references of the string objects It
 does not compare the contents of the objects equals () method
 compares the contents While comparing the strings, equals ()
 method should be used as it yields the correct result

boolean equalsIgnoreCase Same as above but ignores the case
(String str)

boolean startsWith Returns true if calling String starts with prefix
(String prefix)

boolean endsWith Returns true if calling String ends with suffix
(String suffix)

int indexOf (String str) Returns first occurrence of str in String
int lastIndexOf(String str) Returns last occurrence of str in the String

Note: Both the above methods return negative value, if str not

 found in calling String Counting starts from 0
String replace (char returns a new String that is obtained by replacing all characters
oldchar, char newchar) oldchar in String with newchar
String substring returns a new String consisting of all characters from beginIndex

 (int beginIndex) until the end of the String
String substring (int returns a new String consisting of all characters from beginIndex
beginIndex, int endIndex) until the endIndex
String toLowerCase () converts all characters into lowercase
String toUpperCase () converts all characters into uppercase
String trim () eliminates all leading and trailing spaces

Java Programming

Program 3: Write a program using some important methods of String class
program using String class

methods class StrOps
{public static void main(String args [])

{String str1 = "When it comes to Web programming, Java is #1";
String str2 = new String (str1);
String str3 = "Java strings are powerful";
int result, idx; char ch;
System.out.println ("Length of str1: " + str1length

()); display str1, one char at a
time for(int i=0; i < str1length();
i++)

System.out.print (str1charAt (i));
System.out.println ();
if (str1equals (str2))

System.out.println ("str1 equals str2");
else

System.out.println ("str1 does not equal
str2"); if (str1equals (str3))

System.out.println ("str1 equals
str3");

else
System.out.println ("str1 does not equal

str3"); result = str1compareTo (str3);
if(result == 0)

System.out.println ("str1 and str3 are
equal"); else if(result < 0)

System.out.println ("str1 is less than str3");
else

System.out.println ("str1 is greater than str3");
str2 = "One Two Three One"; // assign a new string to str2 idx =
str2indexOf ("One");
System.out.println ("Index of first occurrence of One: " +
idx); idx = str2lastIndexOf("One");
System.out.println ("Index of last occurrence of One: " + idx);

}}
Output:

Java Programming

We can divide objects broadly as mutable and immutable objects Mutable objects are those
objects whose contents can be modified Immutable objects are those objects, once created can
not be modified String objects are immutable The methods that directly manipulate data of the
object are not available in String class

StringBuffer: StringBuffer objects are mutable, so they can be modified The methods that
directly manipulate data of the object are available in StringBuffer class

Creating StringBuffer:
We can create a StringBuffer object by using new operator and pass the string to the object,
as: StringBuffer sb = new StringBuffer ("Kiran");
We can create a StringBuffer object by first allotting memory to the StringBuffer object
using new operator and later storing the String into it as:

StringBuffer sb = new StringBuffer (30);
In general a StringBuffer object will be created with a default capacity of 16 characters Here,
StringBuffer object is created as an empty object with a capacity for storing 30 characters
Even if we declare the capacity as 30, it is possible to store more than 30 characters into
StringBuffer To store characters, we can use append () method as:

Sbappend (“Kiran”);

StringBuffer Class Methods:
Method Description

StringBuffer append (x) x may be int, float, double, char, String or StringBuffer It will be
appended to calling StringBuffer

StringBuffer insert (int x may be int, float, double, char, String or StringBuffer It will be
offset, x) inserted into the StringBuffer at offset
StringBuffer delete (int Removes characters from start to end
start, int end)
StringBuffer reverse
()

Reverses character sequence in the StringBuffer

String toString () Converts StringBuffer into a String
int length () Returns length of the StringBuffer

Java Programming

Program 4: Write a program using some important methods of StringBuffer class
program using StringBuffer class

methods import javaio*;
class Mutable
{public static void main(String[] args) throws IOException

{// to accept data from keyboard
BufferedReader br=new BufferedReader (new InputStreamReader

(Systemin)); System.out.print ("Enter sur name : ");
String sur=brreadLine ();
System.out.print ("Enter mid name :
"); String mid=brreadLine ();
System.out.print ("Enter last name :
"); String last=brreadLine ();

create String Buffer object
StringBuffer sb=new StringBuffer (
);

append sur, last to sb
sbappend (sur);
sbappend (last);

insert mid after
sur int n=surlength (
); sbinsert (n, mid);

display full name
System.out.println ("Full name = "+sb);
System.out.println ("In reverse ="+sbreverse (
));

}
}

Output:

Java Programming

Introduction to OOPs

Languages like Pascal, C, FORTRAN, and COBOL are called procedure oriented
programming languages Since in these languages, a programmer uses procedures or functions
to perform a task When the programmer wants to write a program, he will first divide the task
into separate sub tasks, each of which is expressed as functions/ procedures This approach is
called procedure oriented approach

The languages like C++ and Java use classes and object in their programs and are
called Object Oriented Programming languages The main task is divided into several modules
and these are represented as classes Each class can perform some tasks for which several
methods are written in a class This approach is called Object Oriented approach

Difference between Procedure Oriented Programming and OOP:
Procedure Oriented Programming Object Oriented Programming

1 Main program is divided into small parts 1 Main program is divided into small object
depending on the functions depending on the problem

2 The Different parts of the program 2 Functions of object linked with object using
connect with each other by parameter message passing
passing & using operating system

3 Every function contains different data 3 Data & functions of each individual object act
 like a single unit

4 Functions get more importance than data 4 Data gets more importance than functions in
in program program

5 Most of the functions use global data 5 Each object controls its own data
6 Same data may be transfer from one 6 Data does not possible transfer from one

function to another object to another
7 There is no perfect way for data hiding 7 Data hiding possible in OOP which prevent
 illegal access of function from outside of it This
 is one of the best advantages of OOP also
8 Functions communicate with other 8 One object link with other using the message

functions maintaining as usual rules passing
9 More data or functions can not be added 9 More data or functions can be added with
with program if necessary For this purpose program if necessary For this purpose full
full program need to be change program need not to be change
10 To add new data in program user should 10 Message passing ensure the permission of
be ensure that function allows it accessing member of an object from other object
11 Top down process is followed for 11 Bottom up process is followed for program
program design design
12 Example: Pascal, Fortran 12 Example: C++, Java

Features of OOP:

Class: In object-oriented programming, a class is a programming language construct that
is used as a blueprint to create objects This blueprint includes attributes and methods that
the created objects all share Usually, a class represents a person, place, or thing - it is an
abstraction of a concept within a computer program Fundamentally, it encapsulates the
state and behavior of that which it conceptually represents It encapsulates state through
data placeholders called member variables; it encapsulates behavior through reusable code
called methods
General form of a
class:

eg: class Student

class class_name
{

Properties (variables);
Actions (methods);

}

Java Programming

{//properties -- variables int

rollNo;
String name;
//methods --
actions void
display ()
{

System.out.println ("Student Roll Number is: " +
rollNo); System.out.println ("Student Name is: " +
name);

}
}

Note: Variables inside a class are called as instance variables
Variables inside a method are called as method variables

Object: An Object is a real time entity An object is an instance of a class Instance means
physically happening An object will have some properties and it can perform some actions
Object contains variables and methods The objects which exhibit similar properties and
actions are grouped under one class “To give a real world analogy, a house is constructed
according to a specification Here, the specification is a blueprint that represents a class,
and the constructed house represents the object”
o To access the properties and methods of a class, we must declare a variable of that class

type This variable does not define an object Instead, it is simply a variable that can
refer to an object

o We must acquire an actual, physical copy of the object and assign it to that variable We
can do this using new operator The new operator dynamically allocates memory for an
object and returns a reference to it This reference is, more or less, the address in
memory of the object allocated by new This reference is then stored in the variable
Thus, in Java, all class objects must be dynamically allocated

General form of an Object:
Class_name variable_name; // declare reference to object
variable_name = new Class_name (); // allocate an object

eg: Student s; // s is reference variable
s = new Student (); // allocate an object to reference variable s

The above two steps can be combined and rewritten in a single statement as:

Student s = new Student ();
Now we can access the properties and methods of a class by using object with
dot operator as:

srollNo, sname, sdisplay ()
.Encapsulation: Wrapping up of data (variables) and methods into single unit is called
Encapsulation Class is an example for encapsulation Encapsulation can be described as a protective
barrier that prevents the code and data being randomly accessed by other code defined outside the
class Encapsulation is the technique of making the fields in a class private and providing access to
the fields via methods If a field is declared private, it cannot be accessed by anyone outside the class

eg: class Student
{

private int rollNo;
private String name;
//methods -- actions
void display ()
{

System.out.println ("Student Roll Number is: " +
rollNo); System.out.println ("Student Name is: " +

Java Programming

name);
}}

Abstraction: Providing the essential features without its inner details is called abstraction
(or) hiding internal implementation is called Abstraction We can enhance the internal
implementation without effecting outside world Abstraction provides security A class
contains lot of data and the user does not need the entire data The advantage of abstraction
is that every user will get his own view of the data according to his requirements and will
not get confused with unnecessary data A bank clerk should see the customer details like
account number, name and balance amount in the account He should not be entitled to see
the sensitive data like the staff salaries, profit or loss of the bank etc So such data can be
abstracted from the clerks view
eg: class Bank

{private int accno; private
String name; private
float balance;
private float profit;
private float loan;
void display_to_clerk ()
{

System.out.println ("Accno = " + accno);
System.out.println ("Name = " + name);
System.out.println ("Balance = " +
balance);

}
}

In the preceding class, inspite of several data items, the display_to_clerk () method is
able to access and display only the accno, name and balance values It cannot access profit
and loan of the customer This means the profit and loan data is hidden from the view of
the bank clerk

Inheritance: Acquiring the properties from one class to another class is called inheritance

(or) producing new class from already existing class is called inheritance Reusability of code
is main advantage of inheritance In Java inheritance is achieved by using extends keyword
The properties with access specifier private cannot be inherited

eg: class Parent
{

String parentName;
String familyName;

}
class Child extends Parent
{

String childName;
int childAge;
void printMyName()
{

System.out.println (“My name is“+childName+” ”+familyName);
}

}
In the above example, the child has inherited its family name from the parent class just by
inheriting the class

Java Programming

Polymorphism: The word polymorphism came from two Greek words „poly‟ means
„many‟ and „morphos‟ means „forms‟ Thus, polymorphism represents the ability to assume
several different forms The ability to define more than one function with the same name is
called Polymorphism
eg:int add (int a, int b) float add

(float a, int b) float
add (int a , float b)
void add (float a)
int add (int a)

Message Passing: Calling a method in a class is called message passing We can call
methods of a class by using object with dot operator as:

object_namemethod_name ();
eg: sdisplay (); obadd (2, 5); obprintMyName ();

Program 1: Write a program to display details of student using class and
object //Program to display the details of a student using class and object
class Student
{ int rollNo; //properties -- variables

String name;
void display () //method -- action
{ System.out.println ("Student Roll Number is: " +

rollNo); System.out.println ("Student Name is: " +
name);

}
}
class StudentDemo
{public static void main(String args[])

{

//create an object to Student class
Student s = new Student ();
//call display () method inside Student class using object
s sdisplay ();

}
}

Output:

Java Programming

When the programmer does not initialize the instance variables, java compiler will write code
and initializes the variables with default values

Data Type Default Value
Int 0
Float 00
Double 00
Char Space
String null
Class null
Boolean false

Initializing Instance Variables:
Type 1: We can initialize instance variables directly in the class using assignment operator
In this type every object is initialized with the same data

int rollNo = 101;
String name =
“Kiran”;

Program 2: Let us rewrite the Program 1
//Program to display the details of a student using class and
object class Student
{int rollNo = 101; String name =

“Surya“; void display
()
{System.out.println ("Student Roll Number is: " + rollNo);

System.out.print ("Student Name is: " + name);
}

}
class StudentDemo
{public static void main(String args[])

{Student s1 = new Student (); System.out.println
("First Student Details : ");

}
}
Output:

s1display ();
Student s2 = new Student ();
System.out.println ("Second Student Details : "
); s2display ();

Java Programming

Type 2: We can initialize one class instance variables in another class using reference
variable

srollNo = 101;
sname = “Kiran”;

Program 3: Let us rewrite the Program 1
//Program to display the details of a student using class and
object class Student
{ int rollNo;

String name;
void display ()
{

System.out.println ("Student Roll Number is: " +
rollNo); System.out.print ("Student Name is: " + name);

}
}
class StudentDemo
{public static void main(String args[])

{Student s1 = new Student (); System.out.println
("First Student Details : "); s1rollNo = 101;
s1name = "Suresh";
s1display ();
Student s2 = new Student ();
System.out.println ("Second Student Details : "
); s2rollNo = 102;
s2name = "Ramesh";
s2display ();

}
}

Java Programming

.Output:

In this type of initialization the properties (variables in the class) are not available, if they
are declared as private

Access Specifiers: An access specifier is a key word that represents how to access a
member of a class There are four access specifiers in java

private: private members of a class are not available outside the class
public: public members of a class are available anywhere outside the

class o protected: protected members are available outside the class
o default: if no access specifier is used then default specifier is used by java compiler

Default members are available outside the class

Type 3: We can initialize instance variables using a constructor
Constructor:
o A constructor is similar to a method that initializes the instance variables of a
class o A constructor name and classname must be same
o A constructor may have or may not have parameters Parameters are local variables to

receive data
o A constructor without any parameters is called default constructor
egclass Student

{int rollNo; String
name;
Student ()
{rollNo = 101; name =

“Kiran”;
}

}
A constructor with one or more parameters is called parameterized constructor

egclass Student
{int rollNo; String
name;

{rollNo = r;
name = n;

}
}

A constructor does not return any value, not even void

Java Programming

.A constructor is called and executed at the time of creating an object o A constructor is called
only once per object

o Default constructor is used to initialize every object with same data where as
parameterized constructor is used to initialize each object with different data

o If no constructor is written in a class then java compiler will provide default values

Program 4: Write a program to initialize student details using default constructor
and display the same
//Program to initialize student details using default constructor and displaying the

same class Student
{int rollNo; String

name;
Student ()
{rollNo = 101;

name = "Suresh";
}
void display ()
{System.out.println ("Student Roll Number is: " +

rollNo); System.out.println ("Student Name is: " +
name);

}
}
class StudentDemo
{public static void main(String args[])

{Student s1 = new Student ();
System.out.println ("s1 object contains:
"); s1display (); Student s2 =
 new Student ();
System.out.println ("s2 object contains:
"); s2display ();

}
}
Output:

Program 5: Write a program to initialize student details using Parameterized
constructor and display the same

//Program to initialize student details using parameterized
constructor class Student
{int rollNo;

Java Programming

. .
String name;
Student (int r, String n)
{rollNo = r;

name = n;
}
void display ()
{System.out.println ("Student Roll Number is: " + rollNo);

System.out.println ("Student Name is: " + name);
}

}
class StudentDemo
{public static void main(String args[])

{Student s1 = new Student (101, “Suresh”);
System.out.println (“s1 object contains: “
); s1display ();
Student s2 = new Student (102, “Ramesh”);
System.out.println (“s2 object contains: “);
s2display ();

}
}
Output:

The keyword ‘this’: There will be situations where a method wants to refer to the object
which invoked it To perform this we use „this‟ keyword There are no restrictions to use „this‟
keyword we can use this inside any method for referring the current object This keyword is
always a reference to the object on which the method was invoked We can use „this‟ keyword
wherever a reference to an object of the current class type is permitted „this‟ is a key word that
refers to present class object It refers to

Present class instance variables
Present class methods
Present class constructor

Program 6: Write a program to use „this‟ to refer the current class parameterized constructor
and current class instance variable
//this demo
class Person
{String name;

Java Programming

. .

Person ()
{this (“Ravi Sekhar”); // calling present class parameterized constructor

thisdisplay (); // calling present class method
}
Person (String name)
{thisname = name; // assigning present class variable with parameter “name”
}
void display()
{System.out.println ("Person Name is = " + name);
}

}
class ThisDemo
{public static void main(String args[])

{
Person p = new Person ();

}
}
Output:

Garbage Collection: Generally memory is allocated to objects by using „new‟ operator and
deleting an allocated memory is uncommon This deletion of memory is supported by delete
operator in C++ but this deletion of allocated memory works automatically in Java This
automatic deletion of already allocated but unused memory is called as garbage collection
This operation of garbage collection is accomplished by a method named “gc ()” This method
is used for garbage collection

The finalize() Method: It is possible to define a method that will be called just before an
object's final destruction by the garbage collector This method is called finalize() method To
add a finalizer to a class, simply define the finalize() method The Java runtime calls that
method whenever it is about to recycle an object of that class Inside the finalize() method
specify those actions that must be performed before an object is destroyed The finalize()
method has this general form:

protected void finalize()
{

// finalization code here
}

Here, the keyword protected is a specifier that prevents access to finalize () by code defined
outside its class This means that you cannot know whenor even iffinalize () will be executed
For example, if your program ends before garbage collection occurs, finalize () will not
execute

Java Programming

Static Methods:
o Static methods can read and act upon static variables
o Static methods cannot read and act upon instance variables
o Static variable is a variable whose single copy is shared by all the objects
o Static methods are declared using keyword static
o Static methods can be called using objectnamemethodname (or) classnamemethodname
o From any object, if static variable is modified it affects all the objects Static variables are

stored on method area

Program 2: Write a program to access static variable using static
method //static method accessing static variable
class Sample
{static int x = 10; static void

display()
{x++;

System.out.println (" x value is = " + x);
}

}
class SDemo
{public static void main(String args[])

{System.out.print (“Calling static method using Class name : “);
Sampledisplay ();
Sample s1 = new Sample ();
System.out.print (“Calling static method using Object name :
“); s1display ();

}
}

Output:

Java Programming

Inheritance

Inheritance: Creating new class from existing class such that the features of existing class are
available to the new class is called inheritance Already existing class is called super class &
produced class is called sub class Using inheritance while creating sub classes a programmer
can reuse the super class code without rewriting it
Syntax: class subclass_name extends superclass_name
eg: class Child extends Parent

Program 1: Write a program to create a Person class which contains general details of a
person and create a sub class Employ which contains company details of a person Reuse the
general details of the person in its sub class

Inheritance
Example class Person
{String name;

String
permanentAddress; int
age;
void set_PermanentDetails (String name, String permanentAddress, int age)
{thisname = name; thispermanentAddress =

permanentAddress; thisage = age;

}
void get_PermanentDetails ()
{System.out.println ("Name : " + name);

System.out.println ("Permanent Address : " +
permanentAddress); System.out.println ("Age :" + age);

}
}
class Employ extends Person
{int id;

String companyName;
String
companyAddress;
Employ (int id, String name, String permanentAddress, int age,

String companyName, String companyAddress)
{thisid = id;

set_PermanentDetails (name, permanentAddress, age);
thiscompanyName = companyName;
thiscompanyAddress = companyAddress;

}
void get_EmployDetails ()
{System.out.println ("Employ Id : " + id);

get_PermanentDetails ();
System.out.println ("Company Name : "+ companyName);
System.out.println ("Company Address : "+companyAddress);

}

Java Programming

. .

}
class InherDemo
{public static void main (String args [])
{Employ e1 = new Employ (101, "Suresh Kumar", "18-Madhura Nagar-Tirupati", 29,

"Centris Software- Chennai", "20-RVS Nagar");
e1get_EmployDetails ();

}
}

Output:

Program 2: Write a program to illustrate the order of calling of default constructor in super
and sub class

Default constructors in super and sub
class class One
{ One () //super class default constructor

{
System.out.println ("Super class default constructor called");

}
}
class Two extends One
{ Two () //sub class default constructor

{
System.out.println ("Sub class default constructor called");

}
}
class Const
{public static void main (String args[])

{ Two t=new Two (); //create sub class object }

}

Output:

Java Programming

.Super class default constructor is available to sub class by default
First super class default constructor is executed then sub class default constructor is
executed
Super class parameterized constructor is not automatically available to subclass super is
the key word that refers to super class

The keyword ‘super’:
· super can be used to refer super class variables as: supervariable

· super can be used to refer super class methods as: supermethod ()
· super can be used to refer super class constructor as: super (values)

Program 3: Write a program to access the super class method, super class parameterized
constructor and super class instance variable by using super keyword from sub class

super refers to super class- constructors, instance variables and
methods class A

{int x; A (int
x)

{
thisx = x;

}
void show()
{System.out.println("super class method: x = "+x);
}

}
class B extends A
{ int y;

B (int a,int b)
{

super(a)
;
y=b;

}

// (or) x=a;

void show()
{ supershow ();

System.out.println ("y =
"+y);
System.out.println (“ super x = “ + superx);

}
}
class SuperUse
{

public static void main(String args[])
{B ob = new B (10, 24);

obshow ();
}

}

Java Programming

 .

Output:

Super key word is used in sub class only
The statement calling super class constructor should be the first one in sub class constructor

Polymorphism

Polymorphism came from the two Greek words „poly‟ means many and morphos means forms
If the same method has ability to take more than one form to perform several tasks then it is
called polymorphism It is of two types: Dynamic polymorphism and Static polymorphism

Dynamic Polymorphism: The polymorphism exhibited at run time is called dynamic
polymorphism In this dynamic polymorphism a method call is linked with method body at
the time of execution by JVM Java compiler does not know which method is called at the
time of compilation This is also known as dynamic binding or run time polymorphism
Method overloading and method overriding are examples of Dynamic Polymorphism in
Java o Method Overloading: Writing two or more methods with the same name, but with
a

difference in the method signatures is called method over loading Method signature
represents the method name along with the method parameters In method over loading
JVM understands which method is called depending upon the difference in the method
signature The difference may be due to the following:

There is a difference in the no of
parameters void add (int a,int b)
void add (int a,int b,int c)

There is a difference in the data types of
parameters void add (int a,float b)
void add (double a,double b)

There is a difference in the sequence of
parameters void swap (int a,char b)
void swap (char a,int b)

Java Programming

Program 1: Write a program to create a class which contains two methods with the same
name but with different signatures

overloading of methods --------- Dynamic
polymorphism class Sample
{void add(int a,int b)

{
System.out.println ("sum of two="+ (a+b));

}
void add(int a,int b,int c)
{

System.out.println ("sum of three="+ (a+b+c));
}

}
class OverLoad
{public static void main(String[] args)

{Sample s=new Sample (); sadd
(20, 25);
sadd (20, 25, 30);

}
}

Output:

Method Overriding: Writing two or more methods in super & sub classes with same
name and same signatures is called method overriding In method overriding JVM executes
a method depending on the type of the object
Program 2: Write a program that contains a super and sub class which contains a method
with same name and same method signature, behavior of the method is dynamically
decided //overriding of methods ---------------- Dynamic polymorphism

class Animal
{ void move()

{
System.out.println ("Animals can move");

}
}
class Dog extends Animal
{ void move()

{
System.out.println ("Dogs can walk and run");

}
}
public class OverRide
{ public static void main(String args[])

{Animal a = new Animal (); // Animal reference and object
Animal b = new Dog (); // Animal reference but Dog
object amove (); // runs the method in Animal class
bmove (); //Runs the method in Dog class

} }

Java Programming

Output:

Achieving method overloading & method overriding using instance methods is an example of
dynamic polymorphism

Static Polymorphism: The polymorphism exhibited at compile time is called Static
polymorphism Here the compiler knows which method is called at the compilation This is
also called compile time polymorphism or static binding Achieving method overloading &

method overriding using private, static and final methods is an example of Static
Polymorphism
Program 3: Write a program to illustrate static polymorphism
//Static Polymorphism

class Animal
{static void move ()

{System.out.println ("Animals can move");
}

}
class Dog extends Animal
{static void move ()

{System.out.println ("Dogs can walk and run");
}

}
public class StaticPoly
{public static void main(String args[])

{Animalmove ();
Dogmove ();

}
}
Output:

The keyword ‘final’:
final keyword before a class prevents
inheritance eg: final class A

class B extends A //invalid
final keyword before a method prevents overriding
final keyword before a variable makes that variable as a
constant eg: final double PI = 314159; //PI is a constant

Java Programming

Type Casting: Converting one data type into another data type is called casting Type cast
operator is used to convert one data type into another data type Data type represents the type
of the data stored into a variable There are two kinds of data types:

Primitive Data type: Primitive data type represents singular values
eg: byte, short, int, long, float, double, char, boolean

Using casting we can convert a primitive data type into another primitive data type

This is done in two ways, widening and narrowing
Widening: Converting a lower data type into higher data type is called
widening byte, short, int, long , float, double
eg: char ch = 'a'; int

n = (int) ch;
eg: int n = 12;

float f = (float) n;
Narrowing: Converting a higher data type into lower data type is called narrowing
eg: int i = 65;

char ch = (char)
i; eg: float f = 125;

int i = (int) f;
Referenced Data type: Referenced data type represents multiple values
eg: class, String

Using casting we can convert one class type into another class type if they are related
by means of inheritance

Generalization: Moving back from subclass to super class is called generalization or
widening or upcasting
Specialization: Moving from super class to sub class is called specialization or
narrowing or downcasting

Program 4: Write a program to convert one class type into another class type

conversion of one class type into another class
type class One
{void show1()

{System.out.println ("One's method");
}

}
class Two extends One
{void show2()

{System.out.println ("Two's method");
}

}
class Ex3
{

public static void main(String args[])
{

/* If super class reference is used to refer to super class object then only super class
members are available to programmer */

One ob1 = new One ();
ob1show1 ();

/* If sub class reference is used to refer to sub class object then super class members as
well as sub class members are available to the programmer */

Two ob2 = new Two();
ob2show1();

Java Programming

ob2show2();
/* If super class reference is used to refer to sub class object then super class methods
are available, sub class methods are not available unless they override super class
methods */

One ob3 = (One) new Two(); // Generalization
ob3show1();

/* It is not possible to access any methods if we use subclass object to refer to super
class as above */

Two ob4 = (Two) new One();
ob4show1();
ob4show2();

// Specialization
One ob5 = (One) new Two();
Two ob6 = (Two) ob5;
ob6show1();
ob6show2();

}
}

Note: Using casting it is not possible to convert a primitive data type into a referenced data
type and vice-versa For this we are using Wrapper classes

Java Programming

Abstract Class

A method with method body is called concrete method In general any class will have all
concrete methods A method without method body is called abstract method A class that
contains abstract method is called abstract class It is possible to implement the abstract
methods differently in the subclasses of an abstract class These different implementations will
help the programmer to perform different tasks depending on the need of the sub classes
Moreover, the common members of the abstract class are also shared by the sub classes

The abstract methods and abstract class should be declared using the keyword abstract
We cannot create objects to abstract class because it is having incomplete code Whenever an
abstract class is created, subclass should be created to it and the abstract methods should be
implemented in the subclasses, then we can create objects to the subclasses

An abstract class is a class with zero or more abstract methods
An abstract class contains instance variables & concrete methods in addition to
abstract methods
It is not possible to create objects to abstract class
But we can create a reference of abstract class type
All the abstract methods of the abstract class should be implemented in its sub classes
If any method is not implemented, then that sub class should be declared as „abstract‟
Abstract class reference can be used to refer to the objects of its sub classes
Abstract class references cannot refer to the individual methods of sub classes
A class cannot be both „abstract‟ & „final‟
eg: final abstract class A // invalid

Program 1: Write an example program for abstract class

Using abstract methods and
classes abstract class Figure
{double dim1;

double
dim2;

{ dim1 = a;

dim2 = b;

}
abstract double area ();

// area is now an abstract method
}
class Rectangle extends Figure
{Rectangle (double a, double b)

{super (a, b);
}
double area () // override area for rectangle
{System.out.println ("Inside Area of Rectangle"); return

dim1 * dim2;
}

Java Programming

}

class Triangle extends Figure
{Triangle (double a, double b)

{super (a, b);
}
double area() // override area for right triangle
{System.out.println ("Inside Area of Triangle"); return dim1 * dim2 / 2;
}

}
class AbstractAreas
{public static void main(String args[])

{// Figure f = new Figure(10, 10); // illegal now Rectangle r = new
Rectangle(9, 5); Triangle t = new Triangle(10, 8);
System.out.println("Area is " + rarea()); System.out.println("Area is
"
+ tarea());

}
}
Output:

Wrapper Classes

Wrapper Classes are used to convert primitive data types into objects A wrapper class is a
class whose object wraps the primitive data type Wrapper classes are available in javalang
package Different applications on internet send data or recieve data in the form of objects The
classes in javautil package act upon objects only

Primitive Data type Wrapper class
char Character
byte Byte
short Short
int Integer
long Long
float Float
double Double
boolean Boolean

Character Class: The Character class wraps a value of the primitive type char in an object
An object of type character contains a single field whose type is char We can create Character
class

Java Programming

object as: Character obj = new Character (ch); // where ch is a character
Methods of Character Class:

Method Description
char charValue () returns the char value of the invoking object

int compareTo (Character obj)

This method is useful to compare the contents of two

Character class objects

static boolean isDigit (char ch)
returns true if ch is a digit (0 to 9) otherwise returns

false
static boolean isLetter (char ch) returns true if ch is a letter (A to Z or a to z)
static boolean isUpperCase (char ch) returns true if ch is an uppercase letter (A to Z)
static boolean isLowerCase (char ch) returns true if ch is a lower case letter (a to z)
static boolean isSpaceChar (char ch) returns true if ch is coming from SPACEBAR
static boolean isWhiteSpace(char
ch)

returns true if ch is coming from TAB, ENTER,

BackSpace
static char toUpperCase (char ch) converts ch into uppercase
static char toLowerCase (char ch) converts ch into lowercase

Program 1: Write a program which shows the use of Character class methods
//Testing a char
import javaio*;
class CharTest
{public static void main(String args[]) throws IOException

{BufferedReader br = new BufferedReader (new InputStreamReader (Systemin));
System.out.print ("Enter a character : ");
char ch = (char) brread();

if (CharacterisDigit (ch))
System.out.println ("It is a
digit");

else if (CharacterisUpperCase (ch)) System.out.println
("It is a Upper Case Letter");

else if (CharacterisLowerCase (ch))
System.out.println ("It is a Lower Case
Letter");

else if (CharacterisSpaceChar (ch))
System.out.println ("It is a Space
bar");

else if (CharacterisWhitespace (ch))
System.out.println ("Dont know what is this character");

}
}
Output:

Byte Class: Th Byte
class type Byte

of

Java Programming

Constructors:
· Byte (byte num)

eg: Byte b1 = new Byte (98);
· Byte (String str)

eg: String str = "98";
Byte b2 = new Byte (str);

Methods of Byte Class:
Method Description

byte byteValue () returns the value of invoking object as a byte

int compareTo (Byte b)
This method is useful to compare the contents of two

Byte class objects

static byte parseByte(String str)
returns byte equivalent of the number contained in the

string specified by 'str'

String toString ()
returns a String that contains the decimal equivalent of

the invoking object

static Byte valueOf (String str)
returns a Byte object that contains the value specified

by the String 'str'

Program 2: Write a program which shows the use of Byte class methods
//Creating and comparing Byte Objects
import javaio*;
class Bytes
{public static void main(String args[]) throws IOException

{BufferedReader br = new BufferedReader (new InputStreamReader (Systemin));
System.out.print ("Enter a byte number: ");
String str = brreadLine ();
//convert str into Byte
object Byte b1 = new Byte
(str);
System.out.print ("Enter a another byte number:
"); str = brreadLine ();
//convert str into Byte obj
Byte b2 = BytevalueOf
(str); //compare b1 and b2
int n =
b1compareTo(b2); if
(n==0)

System.out.println ("Both are
Same"); else if(n>0)

System.out.println (b1 + "is bigger");
else

}
}

System.out.println (b2 + " is bigger");

Java Programming

Short Class: Short class wraps a value of primitive data type 'short' in its object Short class
object contains a short type field that stores a short number

Constructors:
· Short (short num)
· Short (String str)

Methods:
Method Description

int compareTo (Short obj)

This method compares the numerical value of two

Short class objects and returns 0,-ve, +ve value

Boolean equals (Object obj)
This method compares the Short object with any other

object obj and returns true if both have same content
static short parseShort (String str) This method returns int equivalent of the String str
String toString () This method returns a String form of the Short object

static Short valueOf (String str)

This method converts a String str that contains a short

number into Short class object and returns that object

Integer Class: Integer class wraps a value of the primitive type 'int' in an object An object of
type Integer contains a single field whose type is int

Constructors:
· Integer (int num)
· Integer (String str)
Methods:

Method Description
int intVlaue () returns the value of the invoking object as an int

int compareTo (Integer obj)

compares the numerical value of the invoking object

with that of 'obj' returns zero or -ve value or +ve value
static int parseInt (String str) returns int equivalent of the String str
String toString () returns a String form of the invoking object

static Integer valueOf (String str)

returns an Integer object that contains the value shown

by str

static String toBinaryString (int i)
returns a String representation of the integer argument

in base2

static String toHexString (int i)
returns a String representation of the integer argument

in base 16

static String toOctalString (int i)
returns a String representation of the integer argument

in base 8

Float Class: Float class wraps a value of primitive type float in an object An object of type
float contains a single field whose type is float

Constructors:
· Float (float num)

Java Programming

· Float (String str)
Methods:

Method Description
float floatValue () returns the value of the invoking object as a float
double doubleValue () returns the value of the invoking object as a double

int compareTo (Float f)

Compares the numerical value of the invoking object

with that of 'f' returns zero or +ve or -ve value
static float parseFloat (String str) returns the float equivalent of the String str
String toString () returns the String equivalent of invoking object

static Float valueOf (String str)

returns the Float object with the value specified by

String str

Long Class: The Long class contains a primitive long type data The object of Long class
contains a field where we can store a long value
Constructors: Long has two constructors

Long (long num): Long object can be created as: Long obj = new Long (123000);
Long(String str): String str = "12300044";

Long obj = new Long (str);

Methods:
Method Description

int compareTo(Long obj)

This method compares the numerical value of two

Long class objects and returns),-ve,+ve value
static long parseLong(String str) This method returns long equivalent of the String str

String toString()

This method converts Long object into String object

and returns the String object

Static Long valueOf(String str)
This method converts a string str that contains some

long number into Long object and returns that object

Boolean class: The Boolean class object contains a primitive 'boolean' type data The object of
Boolean class contains a field where we can store a boolean value

Constructors:
Boolean obj = new Boolean (true);
String str ="false";
Boolean obj = new Boolean (str);

Methods:
Method Description

int compareTo(Boolean obj)

This method compares the numerical value of two

Boolean class objects and returns 0,-ve,+ve value

static boolean parseBoolean(String str)
This method returns boolean equivalent of the String

str
String toString() This method converts Boolean object into a String

Java Programming

object and returns the String object

static Boolean valueOf(String str)

This method converts a String str that contains a
boolean value into Boolean object and returns that
object

Double Class: Double class wraps a value of primitive type Double in an Object
Constructors:
· Double (double num)
· Double (String str)
Methods:

Method Description
double doubleValue() returns the value of the invoking object as a double
float floatValue() returns the value of the invoking object as a float

int compareTo(Double d)

This method compares the numerical value of two

Double class objects and returns 0,-ve,+ve value
static double parseDouble(String str) returns the double equivalent of the String str

String toString()

This method converts Double object into a String

object and returns the String object

static Double valueOf(String str)
returns the Double object with the value specified by

String str

Java Programming

Math class: The class Math contains methods for performing basic numeric operations
Methods:

Method Description
static double sin(double arg) returns the sine value of the arg arg is in radians
static double cos(double arg) returns the cosine value of the arg
static double tan(double arg) returns the tangent value of the arg
static double log(double arg) returns the natural logarithm value or arg
static double pow(double x, double n) returns x to the power of n value
static double sqrt(double arg) returns the square root of arg
static double abs(double arg) returns the absolute value of arg

static double ceil(double arg)

returns the smallest integer which is greater or equal
to

arg

static double floor(double arg)
returns the greatest integer which is lower or equal to

arg
static double min(arg1,arg2) returns the minimum of arg1 and arg2
static double max(arg1,arg2) returns the maximum of arg1 and arg2
static long round(arg) returns the rounded value of arg
static double random() returns a random number between 0 and 1
static double toRadians(double angle) converts angle in degrees into radians
static double toDegrees(double angle) converts angle in radians into degrees

Program 3: Write a program to print random numbers using Math class
//Generating random numbers
class Rand
{

public static void main(String args[]) throws
Exception {

while(true)
{

double d = 10 * Mathrandom();
int i = (int) d;
System.out.print ("\t" +
i); if (i == 0)

Systemexit (0);
}

}
}
Output:

Java Programming

UNIT - II
Packages- Defining a Package, CLASSPATH, Access protection, importing packages.
Interfaces- defining an interface, implementing interfaces, Nested interfaces, applying interfaces,
variables in interfaces and extending interfaces.
Stream based I/O (java.io) – The Stream classes-Byte streams and Character streams, Reading console
Input and Writing Console Output, File class, Reading and writing Files, Random access file operations,
The Console class, Serialization, Enumerations, auto boxing, generics.

Packages
A package is a container of classes and interfaces A package represents a directory that
contains related group of classes and interfaces For example, when we write statemens like:

import javaio*;
Here we are importing classes of javaio package Here, java is a directory name and io is
another sub directory within it The „*‟ represents all the classes and interfaces of that io sub
directory We can create our own packages called user-defined packages or extend the
available packages User-defined packages can also be imported into other classes and used
exactly in the same way as the Built-in packages Packages provide reusability

General form for creating a package:
package packagename;
eg: package pack;

The first statement in the program must be package statement while creating a package
While creating a package except instance variables, declare all the members and the class
itself as public then only the public members are available outside the package to other
programs

Program 1: Write a program to create a package pack with Addition class
//creating a package
package pack;
public class Addition
{private double d1,d2;

public Addition(double a,double b)
{d1 = a; d2 =

b;
}
public void sum()
{System.out.println ("Sum of two given numbers is : " + (d1+d2));
}

}
Compiling the above program:

The –d option tells the Java compiler to create a separate directory and place the class file in
that directory (package) The () dot after –d indicates that the package should be created in the
current directory So, out package pack with Addition class is ready

Java Programming

Program 2: Write a program to use the Addition class of package pack
//Using the package pack
import packAddition;
class Use

{public static void main(String args[])
{Addition ob1 = new Addition(10,20);

ob1sum();
}

}
Output:

Program 3: Write a program to add one more class Subtraction to the same package pack
//Adding one more class to package pack:
package pack;
public class Subtraction
{private double d1,d2;

public Subtraction(double a, double b)
{d1 = a; d2 =

b;
}
public void difference()
{System.out.println ("Sum of two given numbers is : " + (d1 - d2));
}

}
Compiling the above program:

Program 4: Write a program to access all the classes in the package pack
//To import all the classes and interfaces in a class using import pack*;
import pack*;
class Use
{public static void main(String args[])

{Addition ob1 = new Addition(105,206);
ob1sum();
Subtraction ob2 = new
Subtraction(302,4011); ob2difference();

}
}
In this case, please be sure that any of the Additionjava and Subtractionjava programs will not
exist in the current directory Delete them from the current directory as they cause confusion
for the Java compiler The compiler looks for byte code in Additionjava and Subtractionjava
files and there it gets no byte code and hence it flags some errors

Java Programming

Output:

If the package pack is available in different directory, in that case the compiler should be given
information regarding the package location by mentioning the directory name of the package in
the classpath The CLASSPATH is an environment variable that tells the Java compiler where to
look for class files to import If our package exists in e:\sub then we need to set class path as
follows:

We are setting the classpath to e:\sub directory and current directory () and
%CLASSPATH% means retain the already available classpath as it is

Creating Sub package in a package: We can create sub package in a package in the format:

package packagenamesubpackagename;
eg: package pack1pack2;

Here, we are creating pack2 subpackage which is created inside pack1 package To use the
classes and interfaces of pack2, we can write import statement as:

import pack1pack2;

Program 5: Program to show how to create a subpackage in a package
//Creating a subpackage in a package
package pack1pack2;
public class Sample
{public void show ()

{
System.out.println ("Hello Java Learners");

}
}
Compiling the above program:

Access Specifier: Specifies the scope of the data members, class and methods
private members of the class are available with in the class only The scope of private
members of the class is “CLASS SCOPE”

Java Programming

public members of the class are available anywhere The scope of public members of the
class is "GLOBAL SCOPE"

default members of the class are available with in the class, outside the class and in its sub
class of same package It is not available outside the package So the scope of default
members of the class is "PACKAGE SCOPE"

protected members of the class are available with in the class, outside the class and in its
sub class of same package and also available to subclasses in different package also

Class Member Access private No Modifier protected public
Same class Yes Yes Yes Yes
Same package subclass No Yes Yes Yes
Same package non-subclass No Yes Yes Yes
Different package subclass No No Yes Yes
Different package non-subclass No No No Yes

Program 6: Write a program to create class A with different access specifiers
//create a package same
package same;
public class A
{private int a=1;

public int b =
2;
protected int c = 3;
int d = 4;

}
Compiling the above program:

Program 7: Write a program for creating class B in the same package
//class B of same package
package same;
import sameA;
public class B
{

public static void main(String args[])
{

A obj = new A();
System.out.println(obja
);
System.out.println(objb
);
System.out.println(objc
);
System.out.println(objd
);

}
}

Java Programming

Compiling the above program:

Program 8: Write a program for creating class C of another package
package another;
import sameA;
public class C extends A
{public static void main(String args[])

{C obj = new C();
System.out.println(obja);
System.out.println(objb)
;
System.out.println(objc);
System.out.println(objd)
;

}
}

Compiling the above program:

Java Programming

Inner Class

Inner Class: A class with in another class is called Inner class When the programmer wants to
restrict the access of entire code of a class, creates an inner class as a private class The way to
access the inner class is through its outer class only
· Inner class is a safety mechanism
· Inner class is hidden in outer class from other classes
· Only inner class can be private
· An object to Inner class can be created only in its outer class
· An object to Inner class cannot be created in any other class
· Outer class object and Inner class objects are created in separate memory locations
· Outer class members are available to Inner class object
· Inner class object will have an additional invisible field called „this$0‟ that stores a reference
of outer class object
· Inner class members are referenced as: thismember;
· Outer class members are referred as: Outerclassthismember;

Java Programming

Interface

A programmer uses an abstract class when there are some common features shared by all the
objects A programmer writes an interface when all the features have different implementations
for different objects Interfaces are written when the programmer wants to leave the
implementation to third party vendors An interface is a specification of method prototypes All
the methods in an interface are abstract methods

 An interface is a specification of method prototypes
 An interface contains zero or more abstract methods
 All the methods of interface are public, abstract by default
 An interface may contain variables which are by default public static final
 Once an interface is written any third party vendor can implement it
 All the methods of the interface should be implemented in its implementation classes
 If any one of the method is not implemented, then that implementation class should be

declared as abstract
 We cannot create an object to an interface
 We can create a reference variable to an interface
 An interface cannot implement another interface
 An interface can extend another interface
 A class can implement multiple interfaces

Program 1: Write an example program for
interface interface Shape
{void area (); void

volume ();
double pi = 314;

}
class Circle implements Shape
{double r;

Circle (double radius)
{r = radius;
}
public void area ()
{System.out.println ("Area of a circle is : " + pi*r*r);
}
public void volume ()
{System.out.println ("Volume of a circle is : " + 2*pi*r);
}

}
class Rectangle implements Shape
{double l,b;

Rectangle (double length, double breadth)
{l = length; b =

breadth;.}
public void area ()
{System.out.println ("Area of a Rectangle is : " + l*b);
}

Java Programming

B C D

public void volume ()
{System.out.println ("Volume of a Rectangle is : " + 2*(l+b));
}

}
class InterfaceDemo
{public static void main (String args[])

{Circle ob1 = new Circle (102);
ob1area ();
ob1volume ();
Rectangle ob2 = new Rectangle (126,
2355); ob2area ();
ob2volume ();

}
}
Output:

Types of inheritance:
Single Inheritance: Producing subclass from a single super class is called single

inheritance

A

A

class B extends A

class B extends
A

 class C extends
A

B

 class D extends
A

Multiple Inheritance: Producing subclass from more than one super class is called
Multiple Inheritance

Invalid in
Java

class C extends A, B class D extends A,
B, C class E extends
A, B, C C

D5 E

A

B

A

B

C

Java Programming

Java does not support multiple inheritance But multiple inheritance can be achieved by using
interfaces

Program 2: Write a program to illustrate how to achieve multiple inheritance using multiple
interfaces
//interface Demo
interface Father

{double PROPERTY = 10000;
double HEIGHT = 56;
}
interface Mother

{double PROPERTY = 30000;
double HEIGHT = 54;
}
class MyClass implements Father, Mother
{void show()

{ System.out.println("Total property is :" +(FatherPROPERTY+MotherPROPERTY));
System.out.println ("Average height is :" + (FatherHEIGHT + MotherHEIGHT)/2);

}
}
class InterfaceDemo
{public static void main(String args[])

{MyClass ob1 = new MyClass();
ob1show();

}
}

Output:

Java Programming

Java IO

A Stream represents flow of data from one place to another place Input Streams reads or
accepts data Output Streams sends or writes data to some other place All streams are
represented as classes in javaio package The main advantage of using stream concept is to
achieve hardware independence This is because we need not change the stream in our
program even though we change the hardware Streams are of two types in Java:

Byte Streams: Handle data in the form of bits and bytes Byte streams are used to
handle any characters (text), images, audio and video files For example, to store an
image file (gif or
jpg), we should go for a byte stream To handle data in the form of 'bytes' the abstract
classes: InputStream and OutputStream are used The important classes of byte streams
are:

FileInputStream FilterInputStream ObjectInputStream

BufferedInputStream DataInputStream

Byte Stream Classes for Reading Data

OutputStream

FileOutputStream FilterOutputStream ObjectOutputStream
 |

BufferedOutputStream DataOutputStream

InputStrea
m

Java Programming

Byte Stream Classes for Writing Data

FileInputStream/FileOutputStream: They handle data to be read or written to disk files
FilterInputStream/FilterOutputStream: They read data from one stream and write it
to another stream

ObjectInputStream/ObjectOutputStream: They handle storage of objects and
primitive data

Character or Text Streams: Handle data in the form of characters Character or text
streams can always store and retrieve data in the form of characters (or text) only It
means text streams are more suitable for handling text files like the ones we create in
Notepad They are not suitable to handle the images, audio or video files To handle
data in the form of 'text'

the abstract classes: Reader and Writer are used The important classes of character streams
are:

Reader

BufferedReader CharArrayReader InputStreamReader PrintReader

Text Stream Classes for Reading Data

Writer

BufferedWriter CharArrayWriter OuputStreamWriter PrintWriter

Text Stream Classes for Writing Data

BufferedReader/BufferedWriter: - Handles characters (text) by buffering them They
provide efficiency

CharArrayReader/CharArrayWriter: - Handles array of characters
InputStreamReader/OutputStreamWriter: - They are bridge between byte streams and

character streams Reader reads bytes and then decodes them into 16-bit unicode
characters Writer decodes characters into bytes and then writes

PrintReader/PrintWriter: - Handle printing of characters on the screen

File: A file represents organized collection of data Data is stored permanently in the file Once
data is stored in the form of a file we can use it in different programs

FileReader

FileWriter

Java Programming

Program 1: Write a program to read data from the keyboard and write it to a text file using
byte stream classes
//Creating a text file using byte stream classes

import javaio*;
class Create1
{public static void main(String args[]) throws IOException

{//attach keyboard to DataInputStream DataInputStream dis =
new DataInputStream (Systemin); //attach the file to
FileOutputStream FileOutputStream fout = new
FileOutputStream ("myfile");
//read data from DataInputStream and write into
FileOutputStream char ch;
System.out.println ("Enter @ at end : ")
; while((ch = (char) disread()) != '@')

foutwrite (ch);
foutclose ();

}
}

Output:

Program 2: Write a program to improve the efficiency of writing data into a file using
BufferedOutputStream
//Creating a text file using byte stream classes
import javaio*;
class Create2
{public static void main(String args[]) throws IOException

{//attach keyboard to DataInputStream DataInputStream dis =
new DataInputStream (Systemin);
//attach file to FileOutputStream, if we use true then it will open in append
mode FileOutputStream fout = new FileOutputStream ("myfile", true);
BufferedOutputStream bout = new BufferedOutputStream (fout, 1024); //Buffer
size is declared as 1024 otherwise default buffer size of 512 bytes is used //read
data from DataInputStream and write into FileOutputStream
char ch;
System.out.println ("Enter @ at end : ")
; while ((ch = (char) disread()) != '@')

boutwrite (ch);
boutclose ();
foutclose ();

}
}

Java Programming

Output:

Java Programming

Program 3: Write a program to read data from myfile using FileInputStream
//Reading a text file using byte stream classes
import javaio*;
class Read1
{public static void main (String args[]) throws IOException

{//attach the file to FileInputStream FileInputStream fin =
new FileInputStream ("myfile");
//read data from FileInputStream and display it on the
monitor int ch;
while ((ch = finread()) != -1)

System.out.print ((char) ch);
finclose ();

}
}

Output:

Program 4: Write a program to improve the efficiency while reading data from a file using
BufferedInputStream
//Reading a text file using byte stream classes
import javaio*;
class Read2
{public static void main(String args[]) throws IOException

{//attach the file to FileInputStream FileInputStream fin = new
FileInputStream ("myfile"); BufferedInputStream bin = new
BufferedInputStream (fin); //read data from FileInputStream
and display it on the monitor int ch;

while ((ch = binread()) != -1)
System.out.print ((char)
ch);

finclose ();
}

}
Output:

Java Programming

Program 5: Write a program to create a text file using character or text stream classes
//Creating a text file using character (text) stream classes import javaio*;

class Create3
{public static void main(String args[]) throws IOException

{ String str = "This is an Institute" + "\n You are a student";
//Connect a file to FileWriter
FileWriter fw = new FileWriter ("textfile");
//read chars from str and send to fw
for (int i = 0; i<strlength () ; i++)

fwwrite (strcharAt (i));
fwclose ();

// take a
String

}
}

Output:

Program 6: Write a program to read a text file using character or text stream
classes //Reading data from file using character (text) stream classes import
javaio*;

class Read3
{public static void main(String args[]) throws IOException

{//attach file to FileReader
FileReader fr = new FileReader
("textfile"); //read data from fr and display
int ch;
while ((ch = frread()) != -1)

System.out.print ((char)
ch);

//close the
file frclose ();

}
}

Output:

Note: Use BufferedReader and BufferedWriter to improve the efficiency of the above two
programs

Java Programming

Serialization of objects:
Serialization is the process of storing object contents into a file The class whose objects
are stored in the file should implement "Serializable' interface of javaio package
Serializable interface is an empty interface without any members and methods, such an
interface is called 'marking interface' or 'tagging interface'
Marking interface is useful to mark the objects of a class for a special purpose For
example, 'Serializable' interface marks the class objects as 'serializable' so that they can be
written into a file If serializable interface is not implemented by the class, then writing that
class objects into a file will lead to NotSerializableException
static and transient variables cannot be serialized
De-serialization is the process of reading back the objects from a file

Program 7: Write a program to create Employ class whose objects is to be stored into a file
//Employ information
import javaio*;
import javautil*;
class Employ implements Serializable
{private int id; private

String name;
private float sal;
private Date doj;
Employ (int i, String n, float s, Date d)
{id = i; name =

n; sal = s;
doj = d;

}
void display ()
{

System.out.println (id+ "\t" + name + "\t" + sal + "\t" + doj);
}
static Employ getData() throws IOException
{BufferedReader br = new BufferedReader (new InputStreamReader (Systemin));

System.out.print ("Enter employ id : ");
int id = IntegerparseInt(brreadLine());
System.out.print ("Enter employ name :
"); String name = brreadLine ();
System.out.print ("Enter employ salary : "
); float sal = FloatparseFloat(brreadLine
());
Date d = new Date ();
Employ e = new Employ (id, name, sal, d);
return e;

}
}

Java Programming

. .

Output:

Program 8: Write a program to show serialization of objects
//ObjectOutputStream is used to store objects to a file
import javaio*;
import javautil*;
class StoreObj
{public static void main (String args[]) throws IOException

{BufferedReader br = new BufferedReader (new InputStreamReader (Systemin));
FileOutputStream fos = new FileOutputStream ("objfile");
ObjectOutputStream oos = new ObjectOutputStream (fos); System.out.print
("Enter how many objects : ");
int n = IntegerparseInt(brreadLine ());
for(int i = 0;i<n;i++)
{Employ e1 = EmploygetData ();

ooswriteObject (e1);
}
oosclose ();
fosclose ();

}
}

Output:

Program 9: Write a program showing deserialization of objects
//ObjectInputStream is used to read objects from a file
import javaio*;
class ObjRead
{public static void main(String args[]) throws Exception

{
FileInputStream fis = new FileInputStream
("objfile"); ObjectInputStream ois = new
ObjectInputStream (fis); try
{Employ e;

Java Programming

. .

while ((e = (Employ) oisreadObject()) != null)
edisplay ();

}
catch(EOFException ee)
{

System.out.println ("End of file Reached");
}
finally
{oisclose ();

fisclose ();
}

}
}

Output:

File Class: File class of javaio package provides some methods to know the properties of a
file or a directory We can create the File class object by passing the filename or directory
name to it

File obj = new File (filename);
File obj = new File (directoryname);
File obj = new File ("path", filename);
File obj = new File ("path", directoryname);

File class Methods:
Methods Description

boolean isFile () Returns true if the File object contains a filename, otherwise false
boolean isDirectory () Returns true if the File object contains a directory name
boolean canRead () Returns true if the File object contains a file which is readable
boolean canWrite () Returns true if the File object contains a file which is writable
boolean canExecute () Returns true if the File object contains a file which is executable
Boolean exists () Returns true when the File object contains a file or directory which

physically exists in the computer
String getParent () Returns the name of the parent directory
String getPath () Gives the name of directory path of a file or directory
String getAbsolutePath () Gives the fully qualified path
long length () Returns a number that represents the size of the file in bytes
boolean delete () Deletes the file or directory whose name is in File object
boolean createNewFile () Automatically crates a new, empty file indicated by File object, if

and only if a file with this name does not yet exist

Java Programming

Program 10: Write a program that uses File class methods
//Displaying file properties
import javaio*;
class FileProp
{public static void main(String args[])

{String fname = args [0]; File f
= new File (fname);
System.out.println ("File name: " + fgetname ());
System.out.println ("Path:"+ fgetPath ());
System.out.println ("Absolute Path:"+ fgetAbsolutePath
()); System.out.println ("Parent:"+ fgetParent ());
System.out.println ("Exists:"+ fexists ());
if (fexists())
{System.out.println ("Is writable: "+ fcanWrite ());

System.out.println ("Is readable: "+ fcanRead ());
System.out.println ("Is executable: "+ fcanExecute
()); System.out.println ("Is directory: "+ fisDirectory
()); System.out.println ("File size in bytes: "+ flength
());

}
}

}
Ouput:

Java Programming

UNIT - III
Exception handling - Fundamentals of exception handling, Exception types, Termination or resumptive
models, Uncaught exceptions, using try and catch, multiple catch clauses, nested try statements, throw,
throws and finally, built- in exceptions, creating own exception sub classes.
Multithreading- Differences between thread-based multitasking and process-based multitasking, Java
thread model, creating threads, thread priorities, synchronizing threads, inter thread communication.

EXCEPTIONS

An error in a program is called bug Removing errors from program is called debugging There
are basically three types of errors in the Java program:

Compile time errors: Errors which occur due to syntax or format is called compile time
errors These errors are detected by java compiler at compilation time Desk checking is
solution for compile-time errors
Runtime errors: These are the errors that represent computer inefficiency Insufficient
memory to store data or inability of the microprocessor to execute some statement is
examples to runtime errors Runtime errors are detected by JVM at runtime
Logical errors: These are the errors that occur due to bad logic in the program These
errors are rectified by comparing the outputs of the program manually

Exception: An abnormal event in a program is called Exception

Exception may occur at compile time or at runtime
Exceptions which occur at compile time are called Checked exceptions
eg: ClassNotFoundException, NoSuchMethodException, NoSuchFieldException etc
Exceptions which occur at run time are called Unchecked exceptions
eg: ArrayIndexOutOfBoundsException, ArithmeticException, NumberFormatException
etc

Exception Handling: Exceptions are represented as classes in
java

An exception can be handled by the programmer where as an error cannot be handled by the
programmer When there is an exception the programmer should do the following tasks:

If the programmer suspects any exception in program statements, he should write them
inside try block

try
{

statements;
}

When there is an exception in try block JVM will not terminate the program abnormally
JVM stores exception details in an exception stack and then JVM jumps into catch block
The programmer should display exception details and any message to the user in catch
block

Java Programming

catch (ExceptionClass obj)
{statements;
}

Programmer should close all the files and databases by writing them inside finally block
Finally block is executed whether there is an exception or not

finally
{ statements;
}

Performing above tasks is called Exception Handling

Program 1: Write a program which tells the use of try, catch and finally block
Exception example

class
ExceptionExample
{public static void main(String args[])

{try
{System.out.println ("open files"); int

n=argslength;
System.out.println ("n="+n); int
a=45/n; System.out.println
("a="+a);
int b[]={10,19,12,13};
b[50]=100;

}
catch (ArithmeticException ae)
{System.out.println ("ae");

System.out.println ("plz type data while executing the program");
}
catch (ArrayIndexOutOfBoundsException aie)
{System.out.println ("aie");

System.out.println ("please see that array index is not within the range");
}
finally
{ System.out.println ("close files");
}

}
}

Output:

Java Programming

.Even though multiple exceptions are found in the program, only one exception is raised at a
time.We can handle multiple exceptions by writing multiple catch blocks.A single try block
can be followed by several catch blocks.Catch block does not always exit without a try, but a
try block exit without a catch block.Finally block is always executed whether there is an
exception or not

throws Clause: throws clause is useful to escape from handling an exception throws clause is
useful to throw out any exception without handling it

Program 2: Write a program which shows the use of throws clause

not handling the
exception import javaio*;
class Sample
{void accept()throws IOException

{BufferedReader br=new BufferedReader (new InputStreamReader(Systemin));
System.out.print ("enter ur name: ");
String name=brreadLine ();
System.out.println ("Hai "+name);

}
}
class ExceptionNotHandle
{public static void main (String args[])throws IOException

{Sample s=new Sample ();
saccept ();

}
}
Output:

throw Clause: throw clause can be used to throw out user defined exceptions It is useful to
create an exception object and throw it out of try block

Program 3: Write a program which shows the use of throw clause
//Throw Example
class ThrowDemo
{static void Demo()

{try
{System.out.println ("inside method"); throw new

NullPointerException("my data");

}
catch (NullPointerException ne)
{

System.out.println ("ne");
}

Java Programming

}
public static void main(String args[])
{

ThrowDemoDemo ();
}

}
Output:

Types of Exceptions:
Built-in exceptions: These are the exceptions which are already available in java
eg: ArithmeticException, ArrayIndexOutOfBoundsException,
NullPointerException, StringIndexOutOfBoundsException,
NoSuchMethodException, InterruptedException, ClassNotFoundException,
FileNotFoundException, NumberFormatException, RuntimeException etc
User-defined exceptions: - These are the exceptions created by the programmer

Write user exception class extending Exception
class eg: class MyException extends Exception
Write a default constructor in the user exception class
eg: MyException () { }

o Write a parameterized constructor with String as a parameter, from there call the
parameterized constructor of Exception class

eg: MyException (String str)
{

super (str);
}

Whenever required create user exception object and throw it using throw
statement Ex: - throw me;

Program 4: Write a program to throw a user defined exception
// user defined exception
class MyException extends Exception
{

int accno[] = {1001,1002,1003,1004,1005};

String name[] = {"Hari","Siva","Bhanu","Rama","Chandu"};
double bal[] = {2500,3500,1500,1000,6000};
MyException()
{
}
MyException(String str)
{

super(str);
}

Java Programming

public static void main(String args[])
{

try
{

MyException me = new MyException("");
System.out.println("AccNo \t Name \t Balance ");
for(int i=0;i<5;i++)
{

System.out.println(meaccno[i]+ "\t" + mename[i] + "\t" +
mebal[i]);

if(mebal[i] < 2000)
{

throw me1;

MyException me1 = new MyException
("Insufficient Balance");

}

}
}

Java Programming

catch(MyException e)
{

eprintStackTrace();
}

}
}
Output:

Threads

Executing the tasks is of two types:
Single Tasking: Executing only one task at a time is called single tasking In this single
tasking the microprocessor will be sitting idle for most of the time This means micro
processor time is wasted
Multi tasking: Executing more than one task at a time is called multi tasking Multitasking
is of two types:
Process Based Multitasking: Executing several programs simultaneously is called process

based multi tasking
Thread Based Multitasking: Executing different parts of the same program simultaneously

with the help of a thread is called thread based multitasking
Advantage of multitasking is utilizing the processor time in an optimum way

Java provides built-in support for multithreaded programming A multithreaded program
contains two or more parts that can run concurrently Each part of such a program is called a

Java Programming

thread Thread is a smallest unit of code Thread is also defined as a subprocess A Thread
sometimes called an execution context or a light weight process

Uses of Threads:
Threads are used in designing serverside programs to handle multiple clients at a time
Threads are used in games and animations

Program 1: Write a program to know the currently running Thread
//Currently running thread
class Current
{

public static void main(String args[])
{

System.out.println ("This is first statement");
Thread t = ThreadcurrentThread ();
System.out.println ("Current Thread: " + t);
System.out.println ("Its name: " + tgetName ());
System.out.println ("Its priority:" + tgetPriority
());

}
}
Output:

Creating a Thread:
Write a class that extends Thread class or implements Runnable interface this is available
in lang package
Write public void run () method in that class This is the method by default executed by
any thread
Create an object to that class
Create a thread and attach it to the object
Start running the threads

Program 2: Write a program to create and run a Thread
//creating and running a Thread
class MyThread extends Thread
{public void run ()

{for (int i = 0;i<100;i++)
{

System.out.print (i + "\t");
}

}
}

Java Programming

class TDemo
{public static void main(String args[])

{MyThread obj = new MyThread ();
Thread t = new Thread (obj);
tstart ();

}
}
Output:

Multi Tasking Using Threads: In multi tasking, several tasks are executed at a time For this
purpose, we need more than one thread For example, to perform 2 tasks we can take 2 threads
and attach them to the 2 tasks Then those tasks are simultaneously executed by the two
threads Using more than one thread is called „multi threading‟

Program 3: Write a program to create more than one
thread //using more than one thread is called Multi
Threading class Theatre extends Thread
{String str; Theatre

(String str)
{thisstr = str;
}
public void run()
{for (int i = 1; i <= 10 ; i++)

{System.out.println (str + " : " + i); try
{Threadsleep (2000);
}
catch (InterruptedException ie) { ieprintStackTrace (); }

}
}

}
class TDemo1
{public static void main(String args[])

{Theatre obj1 = new Theatre ("Cut Ticket");
Theatre obj2 = new Theatre ("Show
Chair"); Thread t1 = new Thread (obj1);
Thread t2 = new Thread
(obj2); t1start ();
t2start ();

}

Java Programming

}
Output:

In the preceding example, we have used 2 threads on the 2 objects of TDemo1 class
First we have taken a String variable str in Theatre class Then we passed two strings- cut
ticket and show chair into that variable from TDemo1 class When t1 start () is executed, it
starts execution run () method code showing cut ticket Note that in run () method, we used:
Thread sleep (2000) is a static method in Thread class, which is used to suspend execution of
a thread for some specified milliseconds Since this method can throw InterruptedException,
we caught it in catch block When Thread t1 is suspended immediately t2 start () will make the
thread t2 to execute and when it encounters Threadsleep(2000), it will suspend for specified
time meanwhile t1 will get executed respectively In this manner, both the threads are
simultaneously executed

Multiple Threads Acting on Single Object: When two people (threads) want to perform
same task then they need same object (run () method) to be executed each time Take the case
of railway reservation Every day several people want reservation of a berth for them The
procedure to reserve the berth is same for all the people So we need some object with same
run () method to be executed repeatedly for all the people (threads)

Let us think that only one berth is available in a train and two passengers (threads) are
asking for that berth in two different counters The clerks at different counters sent a request to
the server to allot that berth to their passengers Let us see now to whom that berth is allotted
Program 4: Write a program to create multiple threads and make the threads to act on single
object
//Multiple Threads acting on single object
class Reserve implements Runnable
{int available = 1; int

wanted;
Reserve (int i)
{wanted = i;
}
public void run()
{synchronized (this)

Java Programming

{System.out.println ("Number of berths available: " + available); if (
available >= wanted)
{String name = ThreadcurrentThread ()getName ();

System.out.println (wanted + " berths alloted to: " +
name); try
{Threadsleep (2000); // wait for priniting the ticket

available = available - wanted;
}
catch (InterruptedException ie)
{ ieprintStackTrace (); }

}
else
{ System.out.println ("Sorry, no berths available");
}

}
}

}
.

class Safe
{public static void main(String args[])

{Reserve obj = new Reserve (1);
Thread t1 =new Thread (obj);
Thread t2 = new Thread (obj);
t1setName ("First Person");
t2setName ("Second Person");
t1start ();
t2start ();

}
}
Output:

If we would not use synchronized (this) block in the preceding program then when
thread t1 enter into the run () method, it sees available number of berths as 1 and hence it
allots it to First Person and displays “1 Berths reserved for First Person” Then it enters try { }
block inside run () method, where it will sleep for 2 seconds In this time, the ticket will be
printed on the printer When the first thread is sleeping thread t2 also enters the run () method,
it also sees that there is 1 berth remaining The reason is for this is that the available number of
berths is not yet updated by the first thread So the second thread also sees 1 berth as available
and it allots the same berth to the Second Person Then the thread t2 will also go into sleep
state Thread t1 wakes up first and then it updates the available number of berths to zero (0)
But at the same time the second thread has already allotted the same berth to the Second

Java Programming

Person also Since both the threads are acting on the same object simultaneously, the result will
be unreliable

Thread Synchronization or Thread Safe: When a thread is acting on an object preventing
other threads from acting on the same object is called Thread Synchronization or Thread Safe
The Object on which the Threads are synchronized is called synchronized object or Mutex
(Mutually Exclusive Lock) Thread synchronization is done in two ways:

Using synchronized block we can synchronize a block of
statements eg: synchronized (obj)

{
statements;

}
To synchronize an entire method code we can use synchronized word before method
name eg: synchronized void method ()

{

}
.

Thread Creation: To create a Thread, we can use the following
forms:

Thread t1 = new Thread ();
Thread t2 = new Thread (obj);
Thread t3 = new Thread (obj, "thread-name");

Thread Class Methods:
· To know the currently running thread: Thread t = ThreadcurrentThread ();
· To start a thread: tstart ();
· To stop execution of a thread for a specific time: Threadsleep (milliseconds);
· To get the name of the thread: String name = tgetName ();
· To set the new name to the thread: tsetName ("New Name");
· To get the priority of the thread: int priority = tgetPriority();
· To set the priority of the thread: tsetPriority (int priority);
Thread priorities can change from 1 to 10 We can also use the following constants to represent

priorities: ThreadMAX_PRIORITY value is 10
ThreadMIN_PRIORITY value is 1
ThreadNORM_PRIORITY value is 5

· To test if a thread is still alive:

tisAlive () returns
true/false

· To wait till a thread dies: tjoin ();
· To send a notification to a waiting thread: objnotify ();
· To send notification to all waiting threads: objnotifyAll ();

To wait till the obj is released (till notification is sent): objwait ();

Deadlock: When a Thread locked an object and waiting for another object to be released by
another Thread, and the other thread is also waiting for the first thread to release the first
object, both the threads will continue waiting forever This is called "Thread Deadlock"

Java Programming

Even if we synchronize the threads, there is possibility of other problems like deadlock
Daily, thousands of people book tickets in trains and cancel tickets also If a programmer is to
develop code for this, he may visualize that booking tickets and canceling them are reverse
procedures Hence, he will write these 2 tasks as separate and opposite tasks and assign 2
different threads to do these tasks simultaneously

To book a ticket, the thread will enter the train object to verify that the ticket is
available or not When there is a ticket, it updates the available number of tickets in the train
object For this, it takes say 150 milli seconds Then it enters the compartment object In
compartment object, it should allot the ticket for the passenger and update its status to
reserved This means the thread should go through both the train and compartment objects
Similarly, let us think if a thread has to cancel a ticket, it will first enter compartment object
and updates the status of the ticket as available For this it is taking say 200 milliseconds Then
it enters train object and updates the available number of tickets there So, this thread
alsoshould fo through both the compartment and train objects

When the BookTicket thread is at train object for 150 milliseconds, the CancelTicket
thread will be at compartment object for 200 milliseconds Because we are using multiple
(more than one) threads, we should synchronize them So, the threads will lock those objects
When 150 milliseconds time is over, BookTicket thread tries to come out of train object and
wants to lock on compartment object, by entering it At that time, it will find that the
compartment object

is already locked by another thread (CancelTicket) and hence it will wait BookTicket thread
will wait for compartment object for another 50 milli seconds

After 200 milliseconds time is up, the CancelTicket thread which is in compartment
object completes its execution and wants to eneter and lock on train object But it will find that
the train object is already under lock by BookTicket thread and hence is not available Now,
CancelTicket will wait for the train object which should be unlocked by BookTicket
In this way, BookTicket thread keeps on waiting for the CancelTicket thread to unlock the
compartment object and the CancelTicket thread keeps on waiting for the BookTicket to
unlock the train object Both the threads will wait forever in this way, this situation is called
DealLock

Program 5: Write a program to get a deadlock situation using threads
//to cancel the ticket
class CancelTicket extends Thread
{Object train, comp;

CancelTicket (Object train, Object comp)
{thistrain = train;

thiscomp = comp;
}
public void run()
{

synchronized (comp)
{System.out.println ("Cancel ticket has locked on compartment"); try

{
Threadsleep (2000);

}
catch (InterruptedException ie) { }

Java Programming

System.out.println ("Cancel ticket tries to lock train
object"); synchronized (train)
{

System.out.println ("Cancel ticket has locked train");
}

}
}

}
//to book the ticket
class BookTicket extends Thread
{Object train, comp;

{thistrain = train;

thiscomp = comp;
}
public void run()
{synchronized (train)

{
System.out.println ("Book ticket has locked on train");

. .

try
{

}

Threadsleep (2000);

catch (InterruptedException ie)
{
}
System.out.println ("Book ticket tries to lock train
object"); synchronized (comp)
{

System.out.println ("Book ticket has locked compartment");
}

}
}

}
class Dead
{public static void main (String args[])

{Object train = new Object ();
Object compartment = new Object ();
CancelTicket obj1 = new CancelTicket (train, compartment);
BookTicket obj2 = new BookTicket (train, compartment);
Thread t1 = new Thread (obj1);
Thread t2 = new Thread (obj2);
t1start ();
t2start ();

}
}

Java Programming

Output:

There is no specific solutioin for preventing deadlock The programmer should exercise

proper caution while planning the logic of the program to avoid deadlocks

Thread Communication: In some cases two or more threads should communicate with each
other One thread output may be send as input to other thread For example, a consumer thread
is waiting for a Producer to produce the data (or some goods) When the Producer thread
completes production of data, then the Consumer thread should take that data and use it
In producer class we take a StringBuffer object to store data, in this case; we take some
numbers from 1 to 5 These numbers are added to StringBuffer object Until producer
completes placing the data into StringBuffer the consumer has to wait Producer sends a
notification immediately after the data production is over

Program 6: Write a program to demonstrate Thread
communication //inter thread communication
class Producer implements Runnable
{StringBuffer sb;

Producer ()
{

sb = new StringBuffer();
}
public void run ()
{synchronized (sb)

{
for (int i=1;i<=5;i++)
{try

{sbappend (i + " : "); Threadsleep (500);
System.out.println (i + " appended");

}
catch (InterruptedException ie){}

}
sbnotify ();

}
}

}

Java Programming

class Consumer implements Runnable
{ Producer prod;

Consumer (Producer prod)
{

thisprod = prod;
}
public void run()

Java Programming

{ synchronized (prodsb)
{ try

{
prodsbwait ();
}

catch (Exception e) {

System.out.println

(prodsb);

}
}

class Communicate

{public static void main(String args[])

{

Producer obj1 = new Producer (); Consumer obj2 = new
Consumer (obj1); Thread t1 = new Thread (obj1);

Thread t2 = new Thread (obj2);

t2start ();

t1start ();

}

}

}
catch (Exception e) {
System.out.println
(prodsb);

}
}

Java Programming

Output:

Both sleep () and wait () methods are used to suspend a thread execution for a specified time
When sleep () is executed inside a synchronized block, the object is still under lockWhen wait
() method is executed, it breaks the synchronized block, so that the object lock is removed and
it is available

Thread Group: A ThreadGroup represents a group of threads The main advantage of taking
several threads as a group is that by using a single method, we will be able to control all the
threads in the group
· Creating a thread group: ThreadGroup tg = new ThreadGroup
(“groupname”);
· To add a thread to this group (tg): Thread t1 = new Thread (tg, targetobj,
“threadname”);

To add another thread group to this group (tg):
 ThreadGroup tg1 = new ThreadGroup (tg,

“groupname”);
· To know the parent of a thread: tggetParent ();
· To know the parent thread group: tgetThreadGroup ();
 This returns a ThreadGroup object to which the thread t belongs
· To know the number of threads actively running in a thread group: tactiveCount ();
· To change the maximum priority of a thread group tg: tgsetMaxPriority ();

Java Programming

Program 7: Write a program to demonstrate the creation of thread group
//Using ThreadGroup
import javaio*;
class WhyTGroups
{public static void main (String args[]) throws IOException

{Reservation res = new Reservation ();
Cancellation can = new Cancellation
(); //Create a ThreadGroup
ThreadGroup tg = new ThreadGroup ("Reservation
Group"); //Create 2 threads and add them to thread group
Thread t1 = new Thread (tg, res, "First Thread");
Thread t2 = new Thread (tg, res, "Second
Thread");
//Create another thread group as a child to tg
ThreadGroup tg1 = new ThreadGroup (tg, "Cancellation
Group"); Thread t3 = new Thread (tg1, can, "Third Thread");
Thread t4 = new Thread (tg1, can, "Fourth
Thread"); //find parent group of tg1

System.out.println ("Parent of tg1 = " + tg1getParent ());
//set maximum priority
tg1setMaxPriority (7);
System.out.println ("Thread group of t1 = " + t1getThreadGroup
()); System.out.println ("Thread group of t3 = " +
t3getThreadGroup ()); t1start ();
t2start ();
t3start ();
t4start ();
System.out.println ("Number of threads in this group : " + tgactiveCount ());

}
}
class Reservation extends Thread
{public void run ()

{System.out.println ("I am Reservation Thread");
}

}
class Cancellation extends Thread
{public void run ()

{System.out.println ("I am Cancellation Thread");
}

}

Java Programming

Output:

Thread States (Life-Cycle of a Thread): The life cycle of a thread contains several states At
any time the thread falls into any one of the states

The thread that was just created is in the born state
The thread remains in this state until the threads start method is called This causes the
thread to enter the ready state
The highest priority ready thread enters the running state when system assigns a processor
to the thread ie, the thread begins executing
When a running thread calls wait the thread enters into a waiting state for the particular
object on which wait was called Every thread in the waiting state for a given object
becomes ready on a call to notify all by another thread associated with that object

When a sleep method is called in a running thread that thread enters into the suspended
(sleep) state A sleeping thread becomes ready after the designated sleep time expires A
sleeping thread cannot use a processor even if one is available A thread enters the dead
state when its run () method completes (or) terminates for any reason A dead thread is
eventually be disposed of by the system

One common way for a running thread to enter the blocked state is when the thread issues
an input or output request In this case a blocked thread becomes ready when the input or
output waits for completes A blocked thread can‟t use a processor even if one is available

Java Programming

UNIT - IV
The Collections Framework (java.util)- Collections overview, Collection Interfaces, The Collection
classes- Array List, Linked List, Hash Set, Tree Set, Priority Queue, Array Deque. Accessing a
Collection via an Iterator, Using an Iterator, The For-Each alternative, Map Interfaces and Classes,
Comparators, Collection algorithms, Arrays, The Legacy Classes and Interfaces- Dictionary, Hashtable
,Properties, Stack, Vector
More Utility classes, String Tokenizer, Bit Set, Date, Calendar, Random, Formatter, Scanner

The Collection Framework

In order to handle group of objects we can use array of objects If we have a class called
Employ with members name and id, if we want to store details of 10 Employees, create an
array of object to hold 10 Employ details

Employ ob [] = new Employ [10];
We cannot store different class objects into same array
Inserting element at the end of array is easy but at the middle is difficult
After retriving the elements from the array, in order to process the elements we dont have
any methods

Collection Object:
A collection object is an object which can store group of other objects
A collection object has a class called Collection class or Container class
All the collection classes are available in the package called 'javautil‟ (util stands for utility)
Group of collection classes is called a Collection Framework
A collection object does not store the physical copies of other objects; it stores references of
other objects

All the collection classes in javautil package are the implementation classes of different
interfaces

Interface Type Implementation Classes

Set <T> HashSet<T>
LinkedHashSet<T>

List <T> Stack<T>
LinkedList<T>
ArrayList<T>
Vector<T>

Queue <T> LinkedList<T>
Map<T> HashMap<K,V>

Hashtable<K,V>

Set: A Set represents a group of elements (objects) arranged just like an array The set will
grow dynamically when the elements are stored into it A set will not allow duplicate
elements

List: Lists are like sets but allow duplicate values to be stored
Queue: A Queue represents arrangement of elements in FIFO (First In First Out) order This
means that an element that is stored as a first element into the queue will be removed first
from the queue

Map: Maps store elements in the form of key value pairs If the key is provided its
corresponding value can be obtained

Java Programming

Retrieving Elements from Collections: Following are the ways to retrieve any element from
a collection object:

Using Iterator interface
Using ListIterator interface
Using Enumeration interface

Iterator Interface: Iterator is an interface that contains methods to retrieve the elements one
by one from a collection object It retrieves elementsonly in forward direction It has 3
methods:

Method Description
boolean hasNext() This method returns true if the iterator has more elements
element next() This method returns the next element in the iterator
void remove() This method removes the last element from the collection

returned by the iterator

ListIterator Interface: ListIterator is an interface that contains methods to retrieve the
elements from a collection object, both in forward and reverse directions It can retrieve the
elements in forward and backward direction It has the following important methods:

Method Description
boolean hasNext() This method returns true if the ListIterator has more elements

when traversing the list in forward direction
element next() This method returns the next element

void remove()

This method removes the list last element that was returned by
The
next () or previous () methods

boolean hasPrevious() This method returns true if the ListIterator has more elements
when traversing the list in reverse direction

element previous() This method returns the previous element in the list

Enumeration Interface: This interface is useful to retrieve elements one by one like Iterator
It has 2 methods

Method Description
boolean hasMoreElements() This method tests Enumeration has any more elements
element nextElement() This returns the next element that is available in Enumeration

HashSet Class: HashSet represents a set of elements (objects) It does not guarantee the order
of elements Also it does not allow the duplicate elements to be stored
· We can write the HashSet class as: class HashSet<T>
· We can create the object as: HashSet<String> hs = new HashSet<String> ();

HashSet();
HashSet (int capacity); Here capacity represents how many elements can be stored into th

HashSet initially This capacity may
: increase automatically when more

number of elements is being stored

Java Programming

 Description

boolean add(obj)
element is added to th

This method adds an element obj to the HashSet It returns true if the
e HashSet, else it returns false If the same

 element is already available in the HashSet, then the present element
is
not added

boolean remove(obj)

This method removes the element obj from the HashSet, if it is
present It returns true if the element is removed successfully
otherwise false

void clear() This removes all the elements from the HashSet
boolean contains(obj) This returns true if the HashSet contains the specified element obj
boolean isEmpty() This returns true if the HashSet contains no elements
int size() This returns the number of elements present in the HashSet

Program 1: Write a program which shows the use of HashSet and Iterator
//HashSet Demo
import javautil*;
class HS
{public static void main(String args[])

{//create a HashSet to store Strings
HashSet <String> hs = new HashSet<String> ();
//Store some String elements
hsadd ("India");
hsadd ("America");
hsadd ("Japan");
hsadd ("China");
hsadd ("America");
//view the HashSet
System.out.println ("HashSet = " + hs);
//add an Iterator to hs
Iterator it = hsiterator ();
//display element by element using Iterator
System.out.println ("Elements Using Iterator: ");
while (ithasNext())
{Strings = (String) itnext ();

System.out.println(s);
}

}
}
Output:

Java Programming

LinkedHashSet Class: This is a subclass of HashSet class and does not contain any additional
members on its own LinkedHashSet internally uses a linked list to store the elements It is a
generic class that has the declaration:
class LinkedHashSet<T>

Stack Class: A stack represents a group of elements stored in LIFO (Last In First Out) order
This means that the element which is stored as a last element into the stack will be the first
element to be removed from the stack Inserting the elements (Objects) into the stack is called
push operation and removing the elements from stack is called pop operation Searching for an
element in stack is called peep operation Insertion and deletion of elements take place only
from one side of the stack, called top of the stack We can write a Stack class as:

class Stack<E>
eg: Stack<Integer> obj = new Stack<Integer> ();

Stack Class Methods:
Method Description

boolean empty() this method tests whether the stack is empty or not If the stack is
empty then true is returned otherwise false

element peek() this method returns the top most object from the stack without
removing it

element pop()

this method pops the top-most element from the stack and returns
it

element push(element obj) this method pushes an element obj onto the top of the stack and
returns that element

int search(Object obj) This method returns the position of an element obj from the top of
the stack If the element (object) is not found in the stack then it
returns -1

Program 2: Write a program to perform different operations on a stack
//pushing, popping, searching elements in a stack
import javautil*;
class StackDemo
{

public static void main(String args[])
{//create an empty stack to contain Integer objects

Stack<Integer> st = new Stack<Integer>();
stpush (new Integer(10));
stpush (new Integer(20)
); stpush (new
Integer(30)); stpush
(new Integer(40));
stpush (new Integer(50));
System.out.println (st);
System.out.println ("Element at top of the stack is : " + stpeek());
System.out.println ("Removing element at the TOP of the stack : " +
stpop()); System.out.println ("The new stack is : " + st);

}
}

Java Programming

.

Output:

LinkedList Class: A linked list contains a group of elements in the form of nodes Each node
will have three fields- the data field contatins data and the link fields contain references to
previous and next nodesA linked list is written in the form of:

class LinkedList<E>
we can create an empty linked list for storing String type elements (objects) as:

LinkedList <String> ll = new LinkedList<String> ();
LinkedList Class methods:

Method Description
boolean add (element obj) This method adds an element to the linked list It returns true if the

element is added successfully

void add(int position,
This method inserts an element obj into the linked list at a
specified

element obj) Position
void addFirst(element obj) This method adds the element obj at the first position of the linked

List
void addLast(element obj) This method adds the element obj at the last position of the linked

List
element removeFirst () This method removes the first element from the linked list and

returns it
element removeLast () This method removes the last element from the linked list and

returns it
element remove (int This method removes an element at the specified position in the

position) linked list
void clear () This method removes all the elements from the linked list
element get (int position) This method returns the element at the specified position in the

linked list
element getFirst () This method returns the first element from the list
element getLast () This method returns the last element from the list

element set(int position,

This method replaces the element at the specified position in the
list

element obj) with the specified element obj
int size () Returns number of elements in the linked list
int indexOf (Object obj) This method returns the index of the first occurrence of the

specified element in the list, or -1 if the list does not contain the
Element

int lastIndexOf (Object

This method returns the index of the last occurrence of the
Specified

obj) element in the list, or -1 if the list does not contain the element

.

Java Programming

Object[] toArray() This method converts the linked list into an array of Object class
type All the elements of the linked list will be stored into the array
in the same sequence

Note: In case of LinkedList counting starts from 0 and we start counting from 1

Program 3: Write a program that shows the use of LinkedList class
import javautil*;
//Linked List
class LinkedDemo
{public static void main(String args[])

{LinkedList <String> ll = new LinkedList<String>();
lladd ("Asia");
lladd ("North America");
lladd ("South America");
lladd ("Africa");
lladdFirst ("Europe");
lladd (1,"Australia");
lladd (2,"Antarctica");
System.out.println ("Elements in Linked List is : " + ll);
System.out.println ("Size of the Linked List is : " + llsize()
);

}
}

Output:

ArrayList Class: An ArrayList is like an array, which can grow in memory dynamically
ArrayList is not synchronized This means that when more than one thread acts simultaneously
on the ArrayList object, the results may be incorrect in some cases
ArrayList class can be written as: class ArrayList <E>
We can create an object to ArrayList as: ArrayList <String> arl = new ArrayList<String> ();

ArrayList Class
Methods:

Method Description
boolean add (element obj) This method appends the specified element to the end of the

ArrayList If the element is added successfully then the method
returns true

void add(int position, This method inserts the specified element at the specified position

element obj) in the ArrayList
element remove(int This method removes the element at the specified position in the

position) ArrayList and returns it
boolean remove (Object This method removes the first occurrence of the specified element

80

Java Programming

.

.

obj) obj from the ArrayList, if it is present
void clear () This method removes all the elements from the ArrayList
element set(int position, This method replaces an element at the specified position in the

element obj) ArrayList with the specified element obj
boolean contains (Object This method returns true if the ArrayList contains the specified

obj) element obj
element get (int position) This method returns the element available at the specified position

in the ArrayList
int size () Returns number of elements in the ArrayList
int indexOf (Object obj) This method returns the index of the first occurrence of the

specified element in the list, or -1 if the list does not contain the
Element

int lastIndexOf (Object

This method returns the index of the last occurrence of the
specified

obj) element in the list, or -1 if the list does not contain the element
Object[] toArray () This method converts the ArrayLlist into an array of Object class

type All the elements of the ArrayList will be stored into the array
in the same sequence

Program 4: Write a program that shows the use of ArrayList class
import javautil*;
//ArrayList Demo
class ArrayListDemo
{public static void main(String args[])

{ArrayList <String> al = new ArrayList<String>();
aladd ("Asia");
aladd ("North
America"); aladd
("South America");
aladd ("Africa"); aladd
("Europe"); aladd
(1,"Australia"); aladd
(2,"Antarctica");
System.out.print ("Size of the Array List is: " + alsize ());
System.out.print ("\nRetrieving elements in ArrayList using Iterator
:"); Iterator it = aliterator ();
while (ithasNext ())

System.out.print (itnext () + "\t");
}

}
Output:

Java Programming

Vector Class: Similar to ArrayList, but Vector is synchronized It means even if several
threads act on Vector object simultaneously, the results will be reliable
Vector class can be written as: class Vector <E>
We can create an object to Vector
as: Vector <String> v = new Vector<String> ();

Vector Class Methods:
Method Description

boolean add(element obj)

This method appends the specified element to the end of the
Vector
If the element is added successfully then the method returns true

void add (int position, This method inserts the specified element at the specified position
element obj) in the Vector

element remove (int This method removes the element at the specified position in the
position) Vector and returns it

boolean remove (Object This method removes the first occurrence of the specified element
obj) obj from the Vector, if it is present

void clear () This method removes all the elements from the Vector
element set (int position, This method replaces an element at the specified position in the

element obj) Vector with the specified element obj
boolean contains (Object This method returns true if the Vector contains the specified

obj) element obj
element get (int position) This method returns the element available at the specified position

in the Vector
int size () Returns number of elements in the Vector
int indexOf (Object obj) This method returns the index of the first occurrence of the

specified element in the Vector, or -1 if the Vector does not
contain
the element

int lastIndexOf (Object

This method returns the index of the last occurrence of the
Specified

obj) element in the Vector, or -1 if the Vector does not contain the
 Element

Object[] toArray () This method converts the Vector into an array of Object class type
All the elements of the Vector will be stored into the array in the
same sequence

int capacity () This method returns the current capacity of the Vector

Program 5: Write a program that shows the use of Vector class
import javautil*;
//Vector Demo
class VectorDemo
{public static void main(String args[])

{Vector <Integer> v = new Vector<Integer> ();
int x[] = {10,20,30,40,50};
//When x[i] is stored into v below, x[i] values are converted into Integer Objects

//and stored into v This is auto boxing
for (int i = 0; i<xlength; i++)

vadd(x[i]);
System.out.println ("Getting Vector elements using get () method: ");

Java Programming

.

for (int i = 0; i<vsize(); i++)
System.out.print (vget (i) +
"\t");

System.out.println ("\nRetrieving elements in Vector using ListIterator
:"); ListIterator lit = vlistIterator ();
while (lithasNext ())

System.out.print (litnext () + "\t");
System.out.println ("\nRetrieving elements in reverse order using ListIterator
:"); while (lithasPrevious ())

System.out.print (litprevious () +
"\t");

}
}

Output:

HashMap Class: HashMap is a collection that stores elements in the form of key-value pairs
If key is provided later its corresponding value can be easily retrieved from the HAshMap
Keys should be unique HashMap is not synchronized and hence while using multiple threads
on HashMap object, we get unreliable results
We can write HashMap class as: class HashMap<K, V>
For example to store a String as key and an integer object as its value, we can create the
HashMap as: HashMap<String, Integer> hm = new HashMap<String, Integer> ();
The default initial capacity of this HashMap will be taken as 16 and the load factor as 075
Load factor represents at what level the HashMap capacity should be doubled For example,
the product of capacity and load factor = 16 * 075 = 12 This represents that after storing 12th
key-value pair into the HashMap, its capacity will become 32

HashMap Class Methods:
Method Description

value put (key, value) This method stores key-value pair into the HashMap
value get (Object key) This method returns the corresponding value when key is given If

the key does not have a value associated with it, then it returns null
Set<K> keyset() This method, when applied on a HashMap converts it into a set

where only keys will be stored
Collection <V> values() This method, when applied on a HashMap object returns all the

values of the HashMap into a Collection object
value remove (Object key) This method removes the key and corresponding value from the

HashMap
void clear () This method removes all the key-value pairs from the map
boolean isEmpty () This method returns true if there are no key-value pairs in the

HashMap
int size () This method returns number of key-value pairs in the HashMap

83

Java Programming

. .

Program 6: Write a program that shows the use of HashMap class
//HashMap Demo
import javautil*;
class HashMapDemo
{public static void main(String args[])

{HashMap<Integer, String> hm = new HashMap<Integer, String> ();
hmput (new Integer (101),"Naresh");
hmput (new Integer (102),"Rajesh");
hmput (new Integer (103),"Suresh");
hmput (new Integer (104),"Mahesh");
hmput (new Integer (105),"Ramesh");
Set<Integer> set = new
HashSet<Integer>(); set = hmkeySet();

`System.out.println (set);
}

}
Output:

Hashtable Class: Hashtable is a collection that stores elements in the form of key-value
pairs If key is provided later its corresponding value can be easily retrieved from the
HAshtable Keys should be unique Hashtable is synchronized and hence while using
multiple threads on Hashtable object, we get reliable results
We can write Hashtable class as: class Hashtable<K,V>
For example to store a String as key and an integer object as its value, we can create the
Hashtable as: Hashtable<String, Integer> ht = new Hashtable<String, Integer> ();
The default initial capacity of this Hashtable will be taken as 11 and the load factor as 075
Load factor represents at what level the Hashtable capacity should be doubled For example,
the product of capacity and load factor = 11 * 075 = 825 This represents that after storing
8th key-value pair into the Hashtable, its capacity will become 22

Hashtable Class Methods:
Method Description

value put(key, value) This method stores key-value pair into the Hashtable
value get(Object key) This method returns the corresponding value when key is given If

the key does not have a value associated with it, then it returns null
Set<K> keyset() This method, when applied on a Hashtable converts it into a set

where only keys will be stored
Collection <V> values() This method, when applied on a Hashtable object returns all the

values of the Hashtable into a Collection object
value remove(Object key) This method removes the key and corresponding value from the

Hashtable

.

Java Programming

void clear() This method removes all the key-value pairs from the Hashtable
boolean isEmpty() This method returns true if there are no key-value pairs in the

Hashtable
int size() This method returns number of key-value pairs in the Hashtable

Program 7: Write a program that shows the use of Hashtable class
//Hashtable Demo
import javautil*;
class HashtableDemo
{public static void main(String args[])

{
Hashtable<Integer, String> ht = new Hashtable<Integer,
String> (); htput (new Integer (101),"Naresh");
htput (new Integer
(102),"Rajesh"); htput (new
Integer (103),"Suresh"); htput
(new Integer (104),"Mahesh");
htput (new Integer
(105),"Ramesh");
Enumeration e = htkeys ();
while (ehasMoreElements ())
{

Integer i1 = (Integer) enextElement ();
System.out.println (i1 + "\t" + htget
(i1));

}
}

}
Output:

Arrays Class: Arrays class provides methods to perform certain operations on any single
dimensional array All the methods of the Arrays class are static, so they can be called in the
form of Arraysmethodname ()
Arrays Class Methods:

Method Description
static void sort (array) This method sorts all the elements of an array into ascending

order This method internally uses QuickSort algorithm
static void sort (array, int This method sorts the elements in the range from start to end

start, int end) within an array into ascending order

.

Java Programming

static int binarySearch This method searches for an element in the array and returns its
(array, element) position number If the element is not found in the array, it returns

 a negative value Note that this method acts only on an array
 which is sorted in ascending order This method internally uses
 BinarySearch algorithm

static boolean equals This method returns true if two arrays, that is array1 and array2
(array1, array2) are equal, otherwise false

static array copyOf (source- This method copies n elements from the source-array into another
array, int n) array and returns the array
static void fill (array, value) This method fills the array with the specified value It means that

all the elements in the array will receive that value

Program 8: Write a program to sort given numbers using sort () method of
Arrays Class import javautil*;
//Array
s Demo
class
Arrays
Demo
{public static void main(String args[])

{
int x[] =
{40,50,10,30,20};
Arrayssort(x);
for (int

i=0;i<xlength;
i++)
System.out.pr
int(x[i] +
"\t");

}
}
Output:

StringTokenizer: The StringTokenizer class is useful to break a String into small
pieces called tokens We can create an object to StringTokenizer as:

StringTokenizer st = new StringTokenizer (str, "delimeter");

Java Programming

StringTokenizer Class Methods:
Method Description

String nextToken() Returns the next token from the StringTokenizer
boolean hasMoreTokens() Returns true if token is available and returns false if not available
int countTokens() Returns the number of tokens available

Program 9: Write a program that shows the use of StringTokenizer object
//cutting the String
into tokens import
javautil*;
class STDemo
{
public static void main(String args[])

{//take a String
String str = "Java is an OOP Language";
//brake wherever a space is found
StringTokenizer st = new
StringTokenizer (str," "); //retrieve
tokens and display
System.out.println ("The tokens
are: ");

while (sthasMoreTokens ())
{

String s =
stnextToken
();
System.out.p
rintln (s
);

}
}

Java Programming

}
Output:

Calendar: This class is useful to handle date and time We can create an object to
Calendar class

as: Calendar cl = CalendargetInstance ();
Calendar Class Methods:

Method Description
int get(Constant) This method returns the value of the given Calendar constant

Examples of Constants are CalendarDATE, CalendarMONTH,
CalendarYEAR, CalendarMINUTE, CalendarSECOND,
CalendarHour

void set(int field, int value) This method sets the given field in Calendar Object to the given
value For example, clset(CalendarDATE,15);

String toString() This method returns the String representation of the Calendar
object

boolean equals(Object obj)

This method compares the Calendar object with another object
obj
and returns true if they are same, otherwise false

Program 10: Write a program to display System time and date
//To display system time
and date import
javautil*;
class Cal
{public static void main(String args[])

{Calendar cl = CalendargetInstance ();

Java Programming

//Retrieve Date

int dd = clget (CalendarDATE);
int mm = clget (CalendarMONTH);
++mm;
int yy = clget (CalendarYEAR);
System.out.println ("Current Date is : " + dd + "-" +
mm + "-" + yy); //Retrieve Time
int hh = clget
(CalendarHOUR); int
mi = clget
(CalendarMINUTE);
int ss = clget
(CalendarSECOND);

System.out.println ("Current Time is : " + hh + ":" + mi + ":" +ss);
}

}
Output:

Date Class: Date Class is also useful to handle date and time Once Date class
object is created, it should be formatted using the following methods of
DateFormat class of javatext packageWe
can create an object to Date class as: Date dd = new Date ();
Once Date class object is created, it should be formatted using the methods of
DateFormat class of javatext package

DateFormat class Methods:
DateFormat fmt = DateFormatgetDateInstance(formatconst, region);
This method is useful to store format information for date value into
DateFormat object fmt

DateFormat fmt = DateFormatgetTimeInstance(formatconst, region);
This method is useful to store format information for time value into
DateFormat object fmt

DateFormat fmt = DateFormatgetDateTimeInstance(formatconst,
formatconst, region); This method is useful to store format information for
date value into DateFormat object fmt

Formatconst Example (region=LocaleUK)

DateFormatFULL
03 september
2007

19:43:14 O'Clock GMT + 05:30

DateFormatLONG

03 september
2007

19:43:14 GMT + 05:30

Java Programming

DateFormatMEDIUM

03-sep-07
19:43:14

DateFormatSHORT 03/09/07 19:43

Program 11: Write a program that shows the use of Date class
//Display System date and time using
Date class import javautil*;
impor
t
javate
xt*;
class
MyDa
te
{

public static void main(String args[])

{Date d = new Date ();
DateFormat fmt = DateFormatgetDateTimeInstance

(DateFormatMEDIUM, DateFormatSHORT, LocaleUK);
String str =
fmtformat (d);
System.out.pri
ntln (str);

}
}

Output:

