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Background

M —Frankly, we didn‘t have the vaguest idea how the thing [FORTRAN hgegeand compiler] would
work out in detail. ... We struck out simply to optimize the object program, the running time, because most
people at that time believed you couldn‘t do that kind of thing. They believed that machined-coded
programs would be so inefficient that it would be impractical for many applications.|

-John Backus

M Unexpected successes are common — the browser is another example of an unexpected success
Reasons for Studying Concepts of Programming Languages

Increased ability to express ideas

Improved background for choosing appropriatelanguages
Increased ability to learn new languages

Better understanding of significance ofimplementation
Overall advancement of computing
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Programming Domains

. Scientific applications

- Large number of floating point computations
- Fortran

. Business applications

- Produce reports, use decimal numbers andcharacters
- COBOL

. Artificial intelligence

- Symbols rather than numbers manipulated

- LISP

. Systems programming

- Need efficiency because of continuous use
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. Web Software

— Eclectic collection of languages: markup (e.g., XHTML), scripting (e.g., PHP), general-
purpose (e.g., Java)

Language Evaluation Criteria

. Readability: the ease with which programs can be read and understood

. Writability: the ease with which a language can be used to create programs

. Reliability: conformance to specifications (i.e., performstoits specifications)
. Cost: the ultimate total cost

Evaluation Criteria: Readability

. Overall simplicity

- A manageable set of features and constructs

- Few feature multiplicity (means of doing the same operation)

- Minimal operator overloading

Orthogonality

Arelatively small set of primitive constructs can be combined ina relatively small

number of ways
- Every possible combination is legal

. Control statements

- The presence of well-known control structures (e.g., while statement)
. Data types and structures

- The presence of adequate facilities for defining data structures

. Syntax considerations

- Identifier forms: flexible composition

- Special words and methods of forming compound statements

- Formand meaning: self-descriptive constructs, meaningful keywords
Evaluation Criteria: Writability

. Simplicity and orthogonality
— Few constructs, asmall number of primitives, asmall set of rules for combining them
. Support for abstraction

- The ability todefine and use complex structures or operations inways that allow details
to be ignored

. Expressivity

- A set of relatively convenient ways of specifying operations

- Example: the inclusion of for statement in many modern languages

Evaluation Criteria: Reliability

. Type checking

- Testing for type errors

. Exception handling

- Intercept run-time errors and take correctivemeasures

. Aliasing

- Presenceoftwoormoredistinctreferencingmethods forthesame memory location
. Readability and writability

- A language that does not support —naturall ways of expressing an algorithm will
necessarily use -unnaturall approaches, and hence reduced reliability



Evaluation Criteria: Cost

. Training programmers to use language

. Writing programs (closeness to particularapplications)

. Compiling programs

. Executing programs

. Language implementation system: availability of free compilers
. Reliability: poor reliability leads to high costs

. Maintaining programs

Evaluation Criteria: Others

. Portability

Neural Networks - an Overview The easewithwhichprograms canbe movedfromoneimplementationto
another

. Generality
- The applicability to a wide range ofapplications
. Well-definedness

- The completeness and precision of the language ‘s official definition
Influences on Language Design

. Computer Architecture

- Languages are developed around the prevalent computer architecture, known as the von
Neumann architecture

. Programming Methodologies

- New software development methodologies (e.g., object-oriented software development) led
to new programming paradigms and by extension, new programming languages

Computer Architecture Influence

. Well-known computer architecture: Von Neumann

. Imperative languages, most dominant, because of von Neumann computers

- Data and programs stored in memory

- Memory is separate from CPU

- Instructions and data are piped from memory toCPU

- Basis for imperative languages

. Variables model memory cells
. Assignment statements model piping
. Iteration is efficient

The von Neumann Architecture



Programming Methodologies Influences
. 1950s and early 1960s: Simple applications; worry about machine efficiency

. Late 1960s: People efficiency became important; readability, better control structures
- structured programming
- top-down design and step-wise refinement

. Late 1970s: Process-oriented to data-oriented
- data abstraction
. Middle 1980s: Object-oriented programming

- Data abstraction + inheritance +polymorphism
Language Categories

. Imperative

— Central features are variables, assignment statements, and iteration

— Examples: C, Pascal

. Functional

- Main means of making computations is by applying functions to given parameters
- Examples: LISP, Scheme

. Logic

- Rule-based (rules are specified in no particular order)

— Example: Prolog

. Object-oriented

- Data abstraction, inheritance, late binding

- Examples: Java, C++

. Markup

- New; nota programming per se, but used to specify the layout of information in
Web documents

- Examples: XHTML, XML

Language Design Trade-Offs

. Reliability vs. cost of execution

- Conflicting criteria

- Example:Javademandsall referencestoarray elements be checked for proper indexing
but that leads to increased execution costs

. Readability vs. writability

- Another conflicting criteria

- Example: APL provides many powerful operators (andalarge number of newsymbols),
allowing complex computations tobewritteninacompact programbut at the cost of poor readability

. Writability (flexibility) vs. reliability

- Another conflicting criteria

- Example:C++pointersarepowerfulandveryflexiblebutnotreliably used

Implementation Methods

. Compilation



— Programs are translated into machine language

Pure Interpretation

— Programs are interpreted by another program known as an interpreter
Hybrid Implementation Systems

— A compromise between compilers and pureinterpreters

Layered View of Computer

The operating system and language implementation are layered over Machine interface of a computer
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Compilation
. Translate high-level program (source language) into machine code (machine language)
. Slow translation, fast execution
. Compilation process has several phases:

- lexical analysis: converts characters in the source program into lexical units

- syntax analysis: transforms lexical units into parse trees which represent the syntactic
structure of program

- Semantics analysis: generate intermediate code
- code generation: machine code is generated

The Compilation Process
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Additional Compilation Terminologies

. Load module (executable image): the user and system code together
. Linkingand loading: the process of collecting system programand linking them to user program

Execution of Machine Code
. Fetch-execute-cycle (on a von Neumann architecture) initialize the
program counter
repeat forever
fetchthe instruction pointed by the counter increment
the counter
decode the instruction execute the
instruction
end repeat
Von Neumann Bottleneck

. Connection speed between a computer ‘s memory and its processor determines the speed of a
computer

. Program instructions often can be executed a lot faster than the above connection speed; the
connection speed thus results in abottleneck

. Known as von Neumann bottleneck; it is the primary limiting factor in the speed of computers
Pure Interpretation

. No translation

. Easierimplementation of programs (run-time errors caneasily andimmediately displayed)

. Slower execution (10 to 100 times slower than compiled programs)

. Often requires more space

. Becoming rare on high-level languages

Significant comeback with some Web scripting languages (e.g., JavaScript)
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Hybrid Implementation Systems

. A compromise between compilers and pureinterpreters

. A high-level language program is translated to an intermediate language that allows easy
interpretation

. Faster than pure interpretation

. Examples

- Perlprogramsarepartiallycompiledtodetecterrorsbeforeinterpretation

Initial implementations of Java were hybrid; the intermediate form, byte code, provides
portablllty to any machine that has a byte code interpreter and a run- time system (together, these are
called Java Virtual Machine)
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Just-in-Time Implementation Systems

. Initially translate programs to an intermediate language

. Then compile intermediate language into machinecode

. Machine code version is kept for subsequent calls

. JIT systems are widely used for Java programs

. .NET languages are implemented with a JIT system

Preprocessors

. Preprocessor macros (instructions)arecommonlyusedtospecifythatcodefrom another file is to be
included

. A preprocessor processes a program immediately before the programis compiled to
expand embedded preprocessor macros

. A well-known example: C preprocessor

- expands #include, #define, and similar macros



UNIT-2
Syntax and Semantics

Topics
e Introduction
¢ TheGeneralProblemofDescribingSyntax Formal
¢ Methods of Describing Syntax Attribute Grammars
e Describing the Meanings of Programs: Dynamic Semantics

Introduction

« Syntax: theformor structure of the expressions, statements, and program units

+ Semantics: the meaning of the expressions, statements, and program units Syntax and

* semantics provide a language‘sdefinition

o Users of a language definition

= Other language designers
= Implementers
= Programmers (the users of the language)

The General Problem of Describing Syntax: Terminology
s Asentence isastring of characters over some alphabet A

* language is a set ofsentences
s Alexeme isthe lowest level syntactic unit of a language (e.g., *, sum, begin) A token is a
+ category of lexemes (e.g., identifier)

Formal Definition of Languages
+ Recognizers
o Arecognitiondevicereadsinputstrings ofthe languageanddecides whether the input
strings belong to the language
o Example: syntax analysis part of acompiler
o Detailed discussion in Chapter 4
+ Generators
o A device that generates sentences of alanguage
o Onecandetermine ifthesyntax of a particular sentence is correct by comparing it to the
structure of thegenerator

Formal Methods of Describing Syntax
» Backus-Naur Form and Context-Free Grammars
o Most widely known method for describing programming language syntax Extended BNF
o o Improves readability and writability of BNF
« Grammars and Recognizers




BNF and Context-Free Grammars
o Context-Free Grammars
o Developed by Noam Chomsky in the mid-1950s
o Language generators, meant to describe the syntax of natural languages
o Definea class of languages called context-free languages

Backus-Naur Form (BNF)
s Backus-Naur Form (1959)
o Invented by John Backus to describe Algol 58
o BNF is equivalent to context-free grammars
o BNF is ametalanguage used to describe another language
o In BNF, abstractions are used to represent classes of syntactic structures--they act
like syntactic variables (also called nonterminal symbols)

BNF Fundamentals
L ]
Non-terminals: BNF abstractions

Terminals: lexemes and_tokens .
Grammar: a collection of rules

o Examples of BNF rules:
<ident_list> — identifier | identifer, <ident_list>
<if stmt>— if <logic_expr> then <stmt>

BNF Rules
o Arule has a left-hand side (LHS) and a right-hand side (RHS), and consists of

terminal and nonterminal symbols
A grammar is a finite nonempty set of rules

¢ Anabstraction (or nonterminal symbol) can have more than one RHS
<stmt> <single_stmt>
|begin <stmt_list> end
Describing Lists
s Syntactic lists are described using recursion
s <jdent_list> ident
| ident, <ident_list>

» Aderivationisarepeatedapplicationofrules, startingwith the start symbol and ending with a

sentence (all terminalsymbols)

An Example Grammar
<program>  — <stmts>
<stmts>  — <stmt> | <stmt> ; <stmts>
<stmt>  —> <var> = <expr>
<var> —al|b]jc]|d
<expr> — <term> + <term> | <term> - <term>
<term> — <var> | const

An example derivation
<program> => <stmts> => <stmt>
=> <var> = <expr>=>a =<expr>



a = <term> + <term>
a = <var> + <term>
a=b+ <term>

a=b + const
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Derivation
Every string of symbols in the derivation is a sentential form

* Asentence is a sentential form that has only terminal symbols
A lettmost derivation is one in which the leftmost nonterminal in each
sentential form is the one that is expanded

* Aderivation may be neither leftmost nor rightmost

Parse Tree
+ A hierarchical representation of a derivation

<programs>

<stmts>
|

<stmt>

- S
|
f/ .

<var= = <expr=
| ] e

a <term> + <term>

-,

<var> const
|
b
Ambiguity in Grammars

e Agrammar is ambiguous iff it generates a sentential form that has two or more distinct parse trees

An Ambiguous Expression Grammar



<expr> [l <op> <expr> <expr> <op> <expr>

const ] -] const [/ 8 corst [N con - cors |1  const

An Unambiguous Expression Grammar
o Ifweusetheparsetreetoindicateprecedence levelsoftheoperators, wecannot have ambiguity

<expr> <expr> - <term> | <term>
<term> <term> / const|const
%
N

<expr> I <term>

<term> [l <term> [/ §f const

s Operator associativity can also be indicated by a grammar

Associativity of Operators

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)



Extended BNF

« Optional parts are placed in brackets ([ ])
<proc_call> -> ident [(<expr_list>)]

s Alternativepartsof RHSsareplaced insideparenthesesandseparatedvia vertical bars
<term> — <term> (+|-) const

+ Repetitions (0 or more) are placed inside braces ({ })
<ident> — letter {letter|digit}

BNF and EBNF
¢ BNF
<expr> <expr> + <term>
| <expr> -<term>
| <term>
<term> <term> * <factor>
| <term> / <factor>
| <factor>
« EBNF
<expr> <term> {(+ | -) <term>}

<term> — <factor> {(* |/) <factor>}

Attribute Grammars
» Context-freegrammars(CFGs)cannotdescribeallofthesyntaxof programming languages
s Additionsto CFGstocarrysomesemantic infoalong parsetrees Primary value of
« attribute grammars (AGS):
o Static semantics specification
o Compiler design (static semantics checking)
Attribute Grammars : Definition
+ An attribute grammar is a context-free grammar G = (S, N, T, P) with the



following additions:
o For each grammar symbol x there is a set A(x) of attribute values
Eachrule has a set of functions that define certain attributes of the nonterminals in

(@]

the rule
o Eachrulehasa(possibly empty) set of predicates tocheck for attribute consistency
o Let Xo— Xi.. Xpbearule
o Functions of the form S(Xo) = f(A(X4), ..., A(Xn)) define synthesized attributes
o Functions of the form I(Xj) = f(A(Xo), ..., A(Xn)), for i <=j <=n, define

inherited attributes
o Initially, there are intrinsic attributes on the leaves

Attribute Grammars: Example

Syntax
<assign> -> <var> = <expr>
<expr> -> <var> + <var> | <var>
<var>A|B|C

actual_type: synthesized for <var>and <expr>

expected_type: inherited for<expr>

Syntax rule: <expr> <var>[1] + <var>[2]

Semantic rules:
<expr>.actual_type <var>[1].actual_type
Predicate:
<var>[1].actual_type == <var>[2].actual_type
<expr>.expected_type == <expr>.actual_type

Syntax rule: <var> id
Semantic rule:
<var>.actual_type lookup (<var>.string)

How are attribute values computed?
o Ifallattributeswereinherited, thetree couldbedecoratedintop-down order.
o Ifallattributesweresynthesized, thetree could be decorated inbottom- up order.
o Inmany cases, both kinds of attributes are used, and it is some combination of
top-down and bottom-up that must be used.

<expr>.expected_type <« inherited from parent

<var>[1].actual_type < lookup (A)



<var>[2].actual_type <« lookup (B)
<var>[1].actual_type =? <var>[2].actual_type

<expr>.actual_type<« <var>[1].actual_type
<expr>.actual_type =? <expr>.expected_type

Semantics
» Thereisnosinglewidelyacceptablenotationorformalismfordescribing semantics
¢  Operational Semantics
o Describe the meaning of a program by executing its statements ona machine, either
simulated or actual. The change in the state of the machine (memory, registers, etc.)
defines the meaning of the statement
« Touseoperational semantics for ahigh-level language, avirtualmachineis needed
« Ahardwarepureinterpreterwouldbetooexpensive A software
« pureinterpreter also has problems:
o Thedetailedcharacteristics oftheparticular computerwould make actions difficult to
understand
o Such a semantic definition would be machine-dependent

Operational Semantics
L

Oc/é\sts)t_atter alternative: A complete computer simulatione  The

o Buildatranslator (translates source codetothe machine code of an idealized
computer)
o Buildasimulator for the idealized computer Evaluation
« of operational semantics:
o Good if used informally (language manuals, etc.)
o Extremelycomplexifusedformally(e.g., VDL), itwasusedfordescribing semantics of
PL/I.

+ Axiomatic Semantics
o Based on formal logic (predicate calculus)
o Original purpose: formal program verification
o Approach: Defineaxiomsorinferencerulesforeachstatementtypein the language (to
allow transformations of expressions to other expressions)
o The expressions are called assertions

Axiomatic Semantics
s Anassertionbeforeastatement (aprecondition) statestherelationshipsand constraints among
variables that are true at that point in execution
s An assertion following a statement is a postcondition
+  Aweakestpreconditionistheleastrestrictivepreconditionthatwill guarantee the postcondition

o  Pre-post form: {P} statement {Q}



Anexample:a=b+1{a>1}

¢ Onepossible precondition: {b>10} Weakest
+  precondition: {b>0}

s Programproofprocess: Thepostconditionforthewholeprogramisthedesired result. Work back
through the program to the first statement. If the precondition on the first statement is the same
as the program spec, the program is correct.

+ Anaxiomforassignmentstatements (x = E):

{Qesel x = E{Q}

« Aninference rule for sequences
o Forasequence S1;S2:
o {P1}S1{P2}
o {P2} S2{P3}

« Aninferenceruleforlogicalpretestloops For the
loop construct:
{P} while B do S end {Q}

Characteristics of the loop invariant I must
meetthefollowingconditions:
o P=>I (the loop invariant must be trueinitially)
o {I}B{l} (evaluation of the Boolean must not
change the validity of I)
o {landB}S{I} (I'is not changed by executing the
body of the loop)

o (land(notB))=>Q (if 1 is true and B is false, Q
is implied)
o Theloopterminates (this can be difficult to prove)

o Theloop invariant I isaweakened version of the loop postcondition, and it is also a precondition.
s | must be weak enough to be satisfied prior to the beginning of the loop, but when combined with
the loop exit condition, it must be strong enough toforce the truth of the postcondition

Evaluation of axiomatic semantics:
o Developingaxioms orinferencerulesforall ofthe statementsina language is
difficult
o Itisagoodtool for correctness proofs, and an excellent framework for reasoning about
programs, but it is not as useful for language users and compiler writers
o ltsusefulnessindescribingthe meaningofaprogramminglanguageis limited for
language users or compilerwriters
Denotational Semantics
o Based on recursive function theory



o The most abstract semantics description method
o Originally developed by Scott and Strachey(1970)
o Theprocessofbuildingadenotational specforalanguage (not necessarily
easy):
= Define a mathematical object for each language entity
= Defineafunctionthat maps instances of the language entities onto instances of
the corresponding mathematical objects
o Themeaning of language constructs are defined by only the values of the program's variables
o Thedifferencebetweendenotationalandoperationalsemantics: In operational
semantics, the state changes are defined by coded algorithms;indenotational
semantics, theyaredefinedbyrigorous mathematical functions
o The state of a program is the values of all its current variables

S = {<i1, V1>, <iz2, V2>, ceey <in, Vn>}

o LetVARMAP beafunctionthat, when givena variable name and a state, returns the
current value of the variable
VARMAP(j, s) = v;
Decimal Numbers
o The following denotational semantics description maps decimal numbers as strings of
symbols into numeric values

<dec_num> o|l1]2|3141|5
=> | <dec_num> (

I
(0) 2
5|6

6
I
| 7181

71819
1|2]3]4]
7 | 9)
Maec('0") = 0, Maec('1') =1, ...; Maec ('9") = 9

Mgec (<dec_num> '0") = 10 * Mgec(<dec_num>)

Maec (<dec_num> '1’) = 10 * Mgec (<dec_num>) + 1

Mgec (<dec_num> '9') =10 * Mgec (<dec_num>) +9

Expressions

Map expressions onto Z {error}

We assume expressions are decimal numbers, variables, or binary expressions
having onearithmetic operator and two operands, each of which can bean expression

Me(<expr>,s) A=
case <expr>of
<dec_num> => Mgec(<dec_num>, s)
<var> =>
if VARMAP(<var>, s) == undef then
error
else VARMAP(<var>, s)
<binary_expr> =>
if (Me(<binary_expr>.<left_expr>, s) == undef



OR Me(<binary_expr>.<right_expr>, s) =
=> udhen
error
else

if (<binary_expr>.<operator>==_+‘then
Me(<binary_expr>.<left_expr>, s)+

Me(<binary_expr>.<right_expr>, s) else
Me(<binary_expr>.<left_expr>, s) *
Me(<binary_expr>.<right_expr>,s)

+ Assignment Statements
o Maps state sets to state sets

Ma(x :=E,s) =

ifMe(E,s)==error then

error

else s° = {<iy‘,v1>,<i2" ,v2*>,...,<in‘,va >}, Where

forj=1,2,..,n,
Vi = VARMAP(j, s) if ij<> X
=Me(E,s)ifij==x
+ Logical Pretest Loops
o Maps state sets to state sets

Mi(whileBdoL,s) =
if Mp(B, s) == undef then
error
else if My(B, s) ==false then
s
elseif Mg (L, s)==error then
error
else My(while B do L, Mg(L, s))

o The meaning of the loop is the value of the program variables after the statements inthe loop
have been executedthe prescribed number of times, assuming there have been no errors

s Inessence, the loop hasbeenconverted from iterationtorecursion, wherethe recursive control is
mathematically defined by other recursive state mapping functions

s Recursion,whencomparedtoiteration, iseasiertodescribe withmathematical rigor

« Evaluation of denotational semantics

o Can be used to prove the correctness of programs

Provides a rigorous way to think aboutprograms

Can be an aid to language design

Has been used in compiler generation systems

Because of its complexity, they are of little use to language users

O O O O

Summary



BNF and context-free grammars are equivalent meta-languages

o Well-suited for describing the syntax of programming languages
Anattributegrammar isadescriptive formalismthat candescribe boththe syntax and the
semantics of a language
Three primary methods of semantics description

o Operation, axiomatic, denotational



UNIT-III
Data types

Topics

Introduction

Primitive DataTypes

Character String Types
User-Defined Ordinal Types
Array Types

Associative Arrays

Record Types

Union Types

Pointer and Reference Types

Names

Variables

The Concept of Binding
Type Checking

Strong Typing

Type Compatibility
Scope

Scope and Lifetime

Referencing Environments

Named Constants

Introduction

® A data type defines a collection of data objects and a set of predefined operations on those
objects

® A descriptor is the collection of the attributes of avariable
® Anobject represents an instance of a user-defined (abstract data) type
® One design issue for all data types: What operations are defined and how are they specified?



Primitive Data Types

® Almost all programming languages provide a set of primitive data types
*® Primitive data types: Those not defined in terms of other data types

® Some primitive data types are merely reflections of the hardware

® Othersrequire only a little non-hardware support for their implementation

Primitive Data Types: Integer

® Almost always an exact reflection of the hardware so the mapping is trivial
® There may be as many as eight different integer types in a language

® Java‘s signed integer sizes: byte, short, int, long

Primitive Data Types: Floating Point
® Model real numbers, but only as approximations

® |_anguages for scientific use support at least two floating-point types (e.g., float and double;
sometimes more

@ Usually exactly like the hardware, but not always
® |EEE Floating-Point
Standard 754

Primitive Data Types: Complex
® Some languages support a complex type, e.g., Fortran and Python
@ Each value consists of two floats, the real part and the imaginary part
@ Literal form (in Python):

(7 + 3j), where 7 is the real part and 3 is the imaginary part
Primitive Data Types: Decimal

® For business applications (money)

—Essential to COBOL

—C# offers a decimal data type
@ Store a fixed number of decimal digits, in coded form (BCD)
® Advantage: accuracy
® Disadvantages: limited range, wastes memory

Primitive Data Types: Boolean



@ Simplest of all
® Range of values: two elements, one for —truel and one for —falsel
® Could be implemented as bits, but often as bytes

—Advantage: readability

Primitive Data Types: Character
@ Stored as numeric codings

® Most commonly used coding: ASCII

® An alternative, 16-bit coding: Unicode

—Includes characters from most natural languages
—Originally used in Java
—C# and JavaScript also support Unicode

Character String Types
® Values are sequences of characters
® Design issues:

—Is it a primitive type or just a special kind of array?
—Should the length of strings be static ordynamic?

Character String Types Operations

® Typical operations:
—Assignment and copying
—Comparison (=, >, etc.)
—Catenation
—Substring reference
—Pattern matching

Character String Type in Certain Languages

®Cand C++



—Not primitive

—Use char arrays and a library of functions that provide operations
® SNOBOLA4 (a string manipulation language)

—Primitive

—Many operations, including elaborate pattern matching
“® Fortran and Python

—Primitive type with assignment and several operations

® Java

—Primitive via the String class

® Perl, JavaScript, Ruby, and PHP
- Provide built-inpatternmatching, using regular expressions

Character String Length Options
@ Static: COBOL, Java‘s String class
® L.imited Dynamic Length: C and C++

—Inthese languages, a special character is used to indicate the end of a string‘s characters,
rather than maintaining the length

® Dynamic (no maximum): SNOBOLA4, Perl, JavaScript
® Ada supports all three string length options

Character String Type Evaluation
® Aid to writability
® As a primitive type with static length, they are inexpensive to provide--why not have them?

@ Dynamic length is nice, but is it worth theexpense?

Character String Implementation
@ Static length: compile-time descriptor
® |_imited dynamic length: may need a run-time descriptor for length (but not in C and C++)

@ Dynamic length: need run-time descriptor; allocation/de-allocation is the biggest
implementation problem



Compile- and Run-Time Descriptors

Limited dynamic string

Static string

Maximum length
Length

Current length
Address

Address

User-Defined Ordinal Types

® An ordinal type is one in which the range of possible values can be easily associated with the
set of positive integers

@ Examples of primitive ordinal types in Java
— integer
— char

—boolean

Enumeration Types
® Allpossible values, which are named constants, are provided inthe definition

® C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

® Design issues

—Is an enumeration constant allowed to appear in more than one type definition, and if
so, how is the type of an occurrence of that constant checked?



—Are enumeration values coerced to integer?
—Any other type coerced to an enumeration type?

Evaluation of Enumerated Type
*® Aid to readability, e.g., no need to code a color as a number
® Aid to reliability, e.g., compiler can check:

—operations (don‘t allow colors to be added)
—No enumeration variable can be assigned a value outside its defined range

Ada, C#, and Java 5.0 provide better support for enumeration than C++ because
erumeration type variables in these languages are not coerced into integer types

Subrange Types

® An ordered contiguous subsequence of an ordinaltype

—Example: 12..18 is a subrange of integer type

® Ada‘s design

type Days is (mon, tue, wed, thu, fri, sat, sun); subtype
Weekdays is Days range mon..fri; subtype Index is
Integer range 1..100;

Dayl: Days; Day?2:

Weekday; Day2 :=

Dayl,

Subrange Evaluation

® Aid to readability
—NMuake it clear to the readers that variables of subrange can store only certain range of
values

® Reliability

—Assigning a value to a subrange variable that is outside the specified range is detected
as an error

Implementation of User-Defined Ordinal Types



® Enumeration types are implemented as integers

@ Subrange types are implemented like the parent types with code inserted (by the compiler) to
restrict assignments to subrange variables

Array Types
® An array is an aggregate of homogeneous data elements in which an individual element is

identified by its position in the aggregate, relative to the first element.
Array Design Issues

® \What types are legal for subscripts?

® Are subscripting expressions in element references range checked?
®\When are subscript ranges bound?

*\When does allocation take place?

® \What is the maximum number of subscripts?

® Can array objects be initialized?

® Are any kind of slices supported?

Array Indexing

® [ndexing (or subscripting) isamapping fromindicesto elements array_name
(index_value_list) an element

® |ndex Syntax

—FORTRAN, PL/I, Ada use parentheses

® Adaexplicitlyuses parenthesesto show uniformity betweenarrayreferences and function calls
because both are mappings

—Most other languages use brackets
Arrays Index (Subscript) Types

® FORTRAN, C: integer only
® Ada: integer or enumeration (includes Boolean andchar)
® Java: integer types only

® Index range checking



- C,C++,Perl,andFortrandonotspecify range
checking

- Java, ML, C# specify range checking

- In Ada, the default isto require range checking,
but it can be turned off

Subscript Binding and Array Categories

Static: subscript ranges are statically bound and storage allocation is static (before run-time)

—Advantage: efficiency (no dynamic allocation)

® Fixed stack-dynamic: subscript ranges are statically bound, but the allocation is done at
declaration time

—Advantage: space efficiency

® Stack-dynamic: subscript ranges are dynamically bound and the storage allocation is
dynamic (done at run-time)

—Advantage: flexibility (the size of an array need not be known until the array is to be used)

® Fixed heap-dynamic: similar to fixed stack-dynamic: storage binding is dynamic but fixed
after allocation (i.e., binding is done when requested and storage is allocated from heap, not
stack)

Subscript Binding and Array Categories (continued)

® Heap-dynamic: binding of subscript ranges and storage allocation isdynamic and can change any
number of times
—Advantage: flexibility (arrays can grow or shrink during program execution)
@ C and C++ arrays that include static modifier are static
® C and C++ arrays without static modifier are fixed stack-dynamic
® C and C++ provide fixed heap-dynamicarrays
® C#includesasecond array class ArrayL.ist that provides fixed heap-dynamic
@ perl, JavaScript, Python, and Ruby support heap-dynamicarrays

Array Initialization

@ Some language allow initialization at the time of storage allocation



—C, C++, Java, C#example int list
[1=44,5,7,83}

—CharacterstringsinCandC++ char
name [| = —freddiel;

—Arrays of strings in C and C++
char*names[]={—Bobl,—Jakel,—Joel];

—Java initialization of String objects String[]
names = {—Bobl, —Jakel, —Joel};

Heterogeneous Arrays

® A heterogeneous array is one in which the elements need not be of the same type
@ Supported by Perl, Python, JavaScript, and Ruby

Arrays Operations

® APL provides the most powerful array processing operations for vectors and matrixesaswellas
unaryoperators (forexample, to reverse columnelements)

® Ada allows array assignment but also catenation

® Python‘s array assignments, but they are only reference changes. Python also supports array
catenation and element membership operations

® Ruby also provides array catenation

@ [ortran provides elemental operations because they are between pairs of array elements

—Forexample, + operator betweentwo arraysresults inanarray ofthe sums of the element pairs of
the two arrays
Rectangular and Jagged Arrays

® A rectangular array is a multi-dimensioned array in which all of the rows have the same
number of elements and all columns have the same number of elements

® A jagged matrix has rows with varying number of elements

—Possible when multi-dimensioned arrays actually appear as arrays of arrays



@ C, C++, and Java support jagged arrays
® Fortran, Ada, and C# support rectangular arrays (C# also supports jagged arrays)

Slices
® A slice is some substructure of an array; nothing more than a referencing mechanism

@ Slices are only useful in languages that have array operations

Implementation of Arrays

® Access function maps subscript expressions to an address in the array

Slice Examples

® Fortran95

Integer, Dimension (10) ::Vector Integer,
Dimension (3, 3) :: Mat

Integer, Dimension(3, 3) :: Cube

Vector(3:6)isafourelementarray

Slices Examples in Fortran 95

/)
/i YN

MAT (1:3, 2) MAT (2:3, 1:3)

P
W

CUBE (2, 1:3, 1:4) CUBE (1:3, 1:3, 2:3)



® Access functionforsingle-dimensionedarrays:
address(list[k])=address(list[lower_bound])
+ ((k-lower_bound) * element_size)

Accessing Multi-dimensioned Arrays

® Two common ways:

—Row major order (by rows) — used in most languages

—column major order (by columns) — used in Fortran

Locating an Element in a Multi-dimensioned Array

Compile-Time Descriptors

Multidimensioned array

Array
Element type

Element type Index type

Index type Number of dimensions

Index lower bound Index range 1

Index upper bound

Index range n

Address
Address




Associative Arrays

® An associative array is an unordered collection of data elements that are indexed by an
equal number of values called keys

—User-defined keys must be stored

® Design issues:
- What is the form of references to elements?
- Is the size static or dynamic?
Associative Arrays in Perl

® Names begin with %; literals are delimited byparentheses
%hi_temps = ("Mon" => 77, "Tue" => 79, -Wedl => 65, ...);

@ Subscripting is done using braces and keys
$hi_temps{"Wed"} = 83;

—Elementscanberemovedwithdelete delete
$hi_temps{"Tue"};
Record Types

® Arecord isapossibly heterogeneous aggregate of data elements in which the individual
elements are identified by names

® Design issues:
—What is the syntactic form of references to the field?

—Are elliptical references allowed

Definition of Records in COBOL

® COBOL uses level numbers to show nested records; others use recursive definition
01 EMP-REC.
02 EMP-NAME.
05 FIRST PIC X(20).
05MID  PIC X(10).
05 LAST PIC X(20).
02 HOURLY-RATE PIC 99V99.

Definition of Records in Ada

® Record structures are indicated in an orthogonalway



type Emp_Rec_Type is record First:
String (1..20);
Mid: String (1..10);
Last: String (1..20);
Hourly _Rate: Float;
end record;
Emp_Rec: Emp_Rec_Type;

References to Records

® Record field references

1. COBOL

field_name OF record_name_1 OF ... OF record_name_n

2. Others (dot notation)

record name_1.record_name_2. ... record_name_n.field_name

® Fully qualified references must include all recordnames

“ Elliptical references allow leaving out record names as long as the reference is unambiguous, for
example in COBOL

FIRST, FIRST OF EMP-NAME, and FIRST of EMP-REC are elliptical references to the
employee‘s first name

Operations on Records

® Assignment is very common if the types areidentical
® Ada allows record comparison

® Ada records can be initialized with aggregateliterals
® COBOL provides MOVE CORRESPONDING

—Copies a field of the source record to the corresponding field in the target record
Evaluation and Comparison to Arrays

® Records are used when collection of data values is heterogeneous

® Accesstoarrayelements is muchslower thanaccessto record fields, because subscripts are
dynamic (field names are static)

@ Dynamic subscripts could be used with record field access, but it would disallow type
checking and it would be muchslower

Implementation of Record Type



Record

Name

Field1 < Type

Offset

Name

Fieldn < Type

Offset

Address

Unions Types

® A union is atype whose variables are allowed to store different type values at different times
during execution

® Design issues
—Should type checking be required?
—Should unions be embedded in records?

Discriminated vs. Free Unions

® Fortran, C, and C++ provide union constructs in which there is no language support for type
checking; the union in these languages is called free union

® Type checking of unions require that each union include a type indicator called a
discriminant

—Supported by Ada

Ada Union Types
type Shape is (Circle, Triangle, Rectangle); type
Colors is (Red, Green,Blue);
type Figure (Form: Shape) isrecord Filled:
Boolean;
Color: Colors;
case Form is
when Circle => Diameter: Float; when
Triangle =>
Leftside, Rightside: Integer; Angle:
Float;
when Rectangle => Sidel, Side2: Integer;



end case;
end record:;

Ada Union Type Illustrated

rectangle: sidel, side2
A

p
circle:diameter

A
'd N\

\e
~
triangle: leftside, rightside, angle
Discriminant (form)

color

® A pointer type variable has a range of values that consists of memory addresses and a special
value, nil

® Provide the power of indirect addressing

® Provideawaytomanagedynamic memory

® A pointer can be used to access a location in the area where storage is dynamically created
(usually called a heap)

Design Issues of Pointers

®\Vhat are the scope of and lifetime of a pointer variable?



®\What is the lifetime of a heap-dynamic variable?

® Are pointers restricted as to the type of value to which they can point?

® Are pointers used for dynamic storage management, indirect addressing, or both?
® Should the language support pointer types, reference types, or both?

Pointer Operations
® Two fundamental operations: assignment anddereferencing
® Assignment is used to set a pointer variable‘s value to some useful address

® Dereferencing yields the value stored at the location represented by the pointer‘s value
—Dereferencing can be explicit or implicit C++ uses an
—explicit operation via *

j="ptr

sets j to the value located at ptr

Pointer Assignment Illustrated

7080

An anonymous
dynamic variable

ptr 4 7080

The assignment operafli Dn j = *ptr

Problems with Pointers

® Dangling pointers (dangerous)

—A pointer points to a heap-dynamic variable that has been deallocated

® |ost heap-dynamic variable

—An allocated heap-dynamic variable that is no longer accessible to the user



program (often called garbage)
*® Pointer p1 is set to point to a newly created heap-dynamic variable
“® Pointer pl is later set to point to another newly created heap-dynamic variable

® The process of losing heap-dynamic variables is called memory leakage

Pointers in Ada

@ Some dangling pointers are disallowed because dynamic objects can be automatically
deallocated at the end of pointer's type scope

® The lost heap-dynamic variable problem is not eliminated by Ada (possible with
UNCHECKED_DEALLOCATION)

Pointers in C and C++
® Extremely flexible but must be used with care
@® Pointers can point at any variable regardless of when or where it was allocated
® Used for dynamic storage management and addressing
® Pointer arithmetic is possible
® Explicit dereferencing and address-of operators Domain
® type need not be fixed(void *)
void * can point to any type and can be type checked
(cannot bede-referenced)
Pointer Arithmetic in C and C++
float stuff[100];
float *p;
p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]
*(p+i) is equivalent to stuff[i] and p[i]

Reference Types

® C++ includes a special kind of pointer type called a reference type that is used primarily for
formal parameters



—Advantages of both pass-by-reference and pass-by-value
® Java extends C++*s reference variables and allows them to replace pointers entirely

—References are references to objects, rather than being addresses
@ C# includes both the references of Java and the pointers of C++

Evaluation of Pointers

*® Dangling pointersand dangling objectsare problems as is heap management

® pointersare like goto's--they widen the range of cells that can be accessed by a variable

® pPointersorreferencesare necessary for dynamic datastructures--sowe can't design a language
without them

Representations of Pointers

® |_arge computers use single values

® Intel microprocessors use segment and offset

Dangling Pointer Problem

® Tombstone: extra heap cell that is a pointer to the heap-dynamic variable
—The actual pointer variable points only at tombstones
—When heap-dynamic variable de-allocated, tombstone remains but set to nil

—Costly in time and space
. Locks-and-keys: Pointer values are represented as (key, address) pairs

—Heap-dynamic variables are represented as variable plus cell for integer lock value

—When heap-dynamic variable allocated, lock value is created and placed in lock cell and key
cell of pointer

Heap Management

® A very complex run-time process

@ Single-size cells vs. variable-size cells
® Two approaches to reclaim garbage



—Reference counters (eager approach): reclamation is gradual

—Mark-sweep (lazy approach): reclamation occurs when the list of variable space
becomes empty

Reference Counter

® Reference counters: maintainacounter inevery cell that store the number of pointers currently
pointing at the cell

—Disadvantages: space required, execution time required, complications for cells connected
circularly

—Advantage: it is intrinsically incremental, so significant delays in the application execution are
avoided

Mark-Sweep

® The run-time system allocates storage cells as requested and disconnects pointers from cells as
necessary; mark-sweep thenbegins

—Every heap cell has an extra bit used by collection algorithm

—All cells initially set to garbage

—All pointers traced into heap, and reachable cells marked as not garbage
—All garbage cells returned to list of availablecells

—Disadvantages: in its original form, it was done too infrequently. When done, it caused

significant delays in application execution. Contemporary mark- sweep algorithms avoid this by
doing it more often—called incremental mark- sweep

Marking Algorithm



Dashed lines show the order of node_marking



1 Length
If too short, they cannot be connotative
Language examples:
FORTRAN I: maximum 6
COBOL: maximum 30
FORTRAN 90 and ANSI C: maximum 31
Ada and Java: no limit, and all are significant
C++: no limit, but implementors often impose one
1 Connectors
Pascal, Modula-2, and FORTRAN 77 don't allow



Others do
Case sensitivity
Disadvantage: readability (names that look alike are different)
worse in C++ and Java because predefined names are mixed case (e.g.
IndexOutOfBoundsException)
C, C++, and Java names are case sensitive
The names in other languages are not
Spec1a1 words
An aid to readability; used to delimit or separate statement clauses
Def: A keyword is a word that is special only in certain contexts i.e. in Fortran:
Real VarName (Real is data type followed with a name, therefore Real is a keyword)
Real = 3.4 (Real is a variable)
Disadvantage: poor readability
Def: A reserved word is a special word that cannot be used as a user-defined
name

Variables

I
I

A variable is an abstraction of a memory cell
Variables can be characterized as a sextuple of attributes:
(name, address, value, type, lifetime, and scope)
Name - not all variables have them (anonymous)
Address - the memory address with which it is associated (also called I-value)
A variable may have different addresses at different times during execution
A variable may have different addresses at different places in a program
If two variable names can be used to access the same memory location, they are
called aliases
Aliases are harmful to readability (program readers must remember all of them)
How aliases can be created:
Pointers, reference variables, C and C++ unions, (and through parameters -
discussed in Chapter 9)
Some of the original justifications for aliases are no longer valid; e.g. memory
reuse in FORTRAN
Replace them with dynamic allocation
Type determines the range of values of variables and the set of operations that are
defined for values of that type; in the case of floating point, type also determines the
precision
Value - the contents of the location with which the variable is associated
Abstract memory cell - the physical cell or collection of cells associated with a
variable

The Concept of Binding

0

The I-value of a variable is its address



The r-value of a variable is its value

Def: A binding is an association, such as between an attribute and an entity, or
between an operation and a symbol

Def: Binding time is the time at which a binding takes place.

Poss1b1e binding times:

Language design time--e.g., bind operator symbols to operations

Language implementation time--e.g., bind floating point type to a

representation

Compile time--e.g., bind a variable to a type in C or Java

Load time--e.g., bind a FORTRAN 77 variable to a memory cell (or a C static

variable)

Runtime--e.g., bind a nonstatic local variable to a memory cell
Def A binding is static if it first occurs before run time and remains unchanged
throughout program execution.

Def: A binding is dynamic if it first occurs during execution or can change during
execution of the program.

Type Bindings

I How s a type specified?

When does the binding take place?

If static, the type may be specified by either an explicit or an implicit declaration
Def: An explicit declaration is a program statement used for declaring the types of
variables
Def: An implicit declaration is a default mechanism for specifying types of variables
(the first appearance of the variable in the program)
FORTRAN, PL/I, BASIC, and Perl provide implicit declarations
1 Advantage: writability

Disadvantage: reliability (less trouble with Perl)
Dynamic Type Binding (JavaScript and PHP)

Specified through an assignment statement e.g., JavaScript
list = [2, 4.33, 6, 8];
list =17.3;
Advantage: flexibility (generic program units)
Disadvantages:

High cost (dynamic type checking and interpretation)
1 Type error detection by the compiler is difficult

Type Inferencing (ML, Miranda, and Haskell)

Rather than by assignment statement, types are determined from the contextof

the reference
Storage Bindings & Lifetime

Allocation - getting a cell from some pool of available cells

Deallocation - putting a cell back into the pool
Def: The lifetime of a variable is the time during which it is bound to a particular
memory cell



I

I

I

I

Categorles of variables by lifetimes

Static--bound to memory cells before execution begins and remains bound to
the same memory cell throughout execution.

e.g. all FORTRAN 77 variables, C static variables

Advantages: efficiency (direct addressing), history-sensitive subprogram
support

Disadvantage: lack of flexibility (no recursion)

Categorles of variables by lifetimes

Stack-dynamic--Storage bindings are created for variables when their
declaration statements are elaborated.
If scalar, all attributes except address are statically bound
e.g. local variables in C subprograms and Java methods

Advantage: allows recursion; conserves storage
Disadvantages:

Overhead of allocation and deallocation

Subprograms cannot be history sensitive

Inefficient references (indirect addressing)

Categorles of variables by lifetimes

Explicit heap-dynamic--Allocated and deallocated by explicit directives,
specified by the programmer, which take effect during execution
Referenced only through pointers or references

e.g. dynamic objects in C++ (via new and delete)

all objects in Java

Advantage: provides for dynamic storage management

Disadvantage: inefficient and unreliable

Categorles of variables by lifetimes

Implicit heap-dynamic--Allocation and deallocation caused by assignment
statements
e.g. all variables in APL; all strings and arrays in Perl and JavaScript
Advantage: flexibility
Disadvantages:

Inefficient, because all attributes are dynamic

Loss of error detection

Type Checking

Generalize the concept of operands and operators to include subprograms and
assignments

Type checking is the activity of ensuring that the operands of an operator are of
compatible types

A compatible type is one that is either legal for the operator, or is allowed under
language rules to be implicitly converted, by compiler- generated code, to a legal
type. This automatic conversion is called a coercion.

A type error is the application of an operator to an operand of an inappropriate



type

If all type bindings are static, nearly all type checking can be static

If type bindings are dynamic, type checking must be dynamic

Def: A programming language is strongly typed if type errors are always detected

Strong Typing

I

I

Advantage of strong typing: allows the detection of the misuses of variables that
result in type errors
Language examples:
I FORTRAN 77 is not: parameters, EQUIVALENCE
Pascal is not: variant records
C and C++ are not: parameter type checking can be avoided; unions are not
type checked
Ada is, almost (UNCHECKED CONVERSION is loophole)
(Java is similar)
Coercion rules strongly affect strong typing--they can weaken it considerably (C++
versus Ada)
Although Java has just half the assignment coercions of C++, its strong typing is
still far less effective than that of Ada

Type Compatibility

I
I

Our concern is primarily for structured types
Def: Name type compatibility means the two variables have compatible types if
they are in either the same declaration or in declarations that use the same type
name
Easy to implement but highly restrictive:
I Subranges of integer types are not compatible with integer types
Formal parameters must be the same type as their corresponding actual
parameters (Pascal)
Structure type compatibility means that two variables have compatible types if their
types have identical structures
More flexible, but harder to implement
Consider the problem of two structured types:
Are two record types compatible if they are structurally the same but use
different field names?
Are two array types compatible if they are the same except that the subscripts
are different?
(e.g.[1..10] and [0..9])
Are two enumeration types compatible if their components are spelled
differently?
With structural type compatibility, you cannot differentiate between types of
the same structure  (e.g. different units of speed, both float)



I

Language examples:
Pascal: usually structure, but in some cases name is used (formal parameters)
C: structure, except for records
Ada: restricted form of name
Derived types allow types with the same structure to be different
Anonymous types are all unique, even in:
A, B :array (1..10) of INTEGER:

Scope

I
I

The scope of a variable is the range of statements over which it is visible
The nonlocal variables of a program unit are those that are visible but not declared
there
The scope rules of a language determine how references to names are associated
with variables
Static scope
1 Based on program text
To connect a name reference to a variable, you (or the compiler) must find the
declaration
Search process: search declarations, first locally, then in increasinglylarger
enclosing scopes, until one is found for the given name
Enclosing static scopes (to a specific scope) are called its static ancestors; the
nearest static ancestor is called a static parent
Variables can be hidden from a unit by having a "closer" variable with the same
name
C++ and Ada allow access to these "hidden" variables
In Ada: unit.name
In C++: class_name::name
Blocks
A method of creating static scopes inside program units--from ALGOL 60
Examples:
Cand C++: for (...)
{

int index;

}
Ada: declare LCL : FLOAT;

begin

end
Evaluation of Static Scoping
Consider the example:
Assume MAIN calls A and B
A calls Cand D
B calls A and E

Static Scope Example



Static Scope Example
Static Scope
© Suppose the spec is changed so that D must now access some data in B
7 Solutions:
Put D in B (but then C can no longer call it and D cannot access A's variables)
Move the data from B that D needs to MAIN (but then all procedures can access
them)
7 Same problem for procedure access
7 Overall: static scoping often encourages many globals
. Dynamic Scope
Based on calling sequences of program units, not their textual layout (temporal
versus spatial)
References to variables are connected to declarations by searching back through
the chain of subprogram calls that forced execution to this point
Scope Example
MAIN
- declaration of x
SUB1
- declaration of x -

call SUB2

SUB2

- reference to x -

call SUB1

Scope Example

1 Static scoping
Reference to x is to MAIN's x

! Dynamic scoping
Reference to x is to SUB1's x

! Evaluation of Dynamic Scoping;:
Advantage: convenience
Disadvantage: poor readability

Scope and Lifetime
7 Scope and lifetime are sometimes closely related, but are different concepts
© Consider a static variable in a C or C++ function



Referencing Environments

I Def: The referencing environment of a statement is the collection of all names that
are visible in the statement

1 In astatic-scoped language, it is the local variables plus all of the visible variables in
all of the enclosing scopes

1 Asubprogram is active if its execution has begun but has not yet terminated

1 In adynamic-scoped language, the referencing environment is the local variables
plus all visible variables in all active subprograms

Named Constants
7 Def: A named constant is a variable that is bound to a value only when it is bound
to storage
1 Advantages: readability and modifiability
. Used to parameterize programs
© The binding of values to named constants can be either static (called manifest
constants) or dynamic
I Languages:
Pascal: literals only
FORTRAN 90: constant-valued expressions
Ada, C++, and Java: expressions of any kind
Variable Initialization
. Def: The binding of a variable to a value at the time it is bound to storage is called
initialization
| Initialization is often done on the declaration statement
e.g., Java
intsum = 0;

Summary

- The data types of a language are a large part of what determines that language*s style and

usefulness

d The primitive data types of most imperative languages include numeric, character, and
Boolean types

The user-defined enumeration and subrange types are convenient and add to the readability
and reliability of programs

Arrays and records are included in most languages

d Pointers are used for addressing flexibility and to control dynamic storage management

I Case sensitivity and the relationship of names to special words represent design



issues of names

Variables are characterized by the sextuples: name, address, value, type, lifetime,
scope

Binding is the association of attributes with program entities

Scalar variables are categorized as: static, stack dynamic, explicit heap dynamic,
implicit heap dynamic



UNIT-IV
Expressions and Statements

* Introduction

® Arithmetic Expressions
® QOverloaded Operators

® Type Conversions

® Relational and Boolean Expressions
@ Short-Circuit Evaluation
® Assighment Statements
® Mixed-Mode Assignment
® Control Structures

*® Introduction

@ Selection Statements

® |terative Statements

® Unconditional Branching
® Guarded Commands

® Conclusions

Introduction

® Expressions are the fundamental means of specifying computations in a programming
language

® To understand expression evaluation, need to be familiar with the orders of operator and
operand evaluation

® Essenceofimperative languagesisdominant role ofassignment statements Arithmetic
Expressions

® Arithmetic evaluation was one of the motivations for the development of the first programming
languages

® Arithmetic expressions consist of operators, operands, parentheses, and function calls

Arithmetic Expressions: Design Issues

® Designissuesforarithmeticexpressions



—Operator precedence rules?
—Operator associativity rules?
—Order of operand evaluation?
—Operand evaluation side effects?
—Operator overloading?

—Type mixing in expressions?

Arithmetic Expressions: Operators
® A unary operator has one operand
® A binary operator has two operands

® A ternary operator has three operands
Arithmetic Expressions: Operator Precedence Rules

® The operator precedence rules for expression evaluation define the order in which
—adjacentl operators of different precedence levels are evaluated

® Typical precedence levels

— parentheses
= unary operators
— ** (if the language supports it)

_*’ /

—
Arithmetic Expressions: Operator Associativity Rule

® The operator associativity rules for expression evaluation define the order in which
adjacent operators with the same precedence level are evaluated

® Typical associativity rules
—Left to right, except **, which is right to left
—Sometimes unary operators associate right to left (e.g., in FORTRAN)

® APL is different; all operators have equal precedence and all operators associate right to left



“ Precedence and associativity rules can be overriden with parentheses Arithmetic
Expressions: Conditional Expressions

® Conditional Expressions
—C-based languages (e.g., C, C++) An

—example:
average = (count == 0)? 0 : sum / count

—Evaluates as if written like
if (count ==0)
average = O
else
average = sum /count
Arithmetic Expressions: Operand Evaluation Order
® Operand evaluation order
® Variables: fetch the value from memory

® Constants: sometimes a fetch from memory; sometimes the constant is in the machine language
instruction

® Parenthesized expressions: evaluate all operands and operators first

® The most interesting case is when an operand is a function call Arithmetic
Expressions: Potentials for SideEffects

® Functional side effects: when a function changes a two-way parameter or a non-local
variable

® problem with functional side effects:

—When a function referenced in an expression alters another operand of the expression; e.g., for
a parameter change:
a = 10;
/* assume that fun changes its parameter */ b =a +
fun(a);

Functional Side Effects
® Two possible solutions to the problem

® Write the language definition to disallow functional side effects



* Notwo-wayparametersinfunctions
“® Nonon-localreferencesinfunctions
® Advantage: it works!

® Disadvantage: inflexibility of one-way parameters and lack of non-local references
® Write the language definition to demand that operand evaluation order be fixed

*® Disadvantage: limits some compiler optimizations

® Javarequiresthatoperandsappearto be evaluated in left-to-right order Overloaded
Operators

® Use of an operator for more than one purpose is called operator overloading
® Some are common (e.g., + for int and float)
@ Some are potential trouble (e.g., * in C and C++)

—Loss of compiler error detection (omission of an operand should be a detectable error)
—Some loss of readability

—Can be avoided by introduction of new symbols (e.g., Pascal‘s div for integer division)
Overloaded Operators (continued)

® C++, Ada, Fortran 95, and C# allow user-defined overloaded operators
® potential problems:

—Users can define nonsense operations
—Readability may suffer, even when the operators make sense

Type Conversions

® A narrowing conversion is one that converts an object to a type that cannot include all of
the values of the original type e.qg., float to int

® A widening conversion is one in which an object is converted to a type that can include at
least approximations to all of the values of the original type e.g., int to float
Type Conversions: Mixed Mode



® A mixed-mode expression is one that has operands of different types

® A coercion is an implicit type conversion

® Disadvantage of coercions:

—They decrease in the type error detection ability of the compiler

“® In most languages, all numeric types are coerced in expressions, using widening conversions
® InAda, thereare virtually no coercions inexpressions Explicit Type

Conversions

® Called casting in C-basedlanguages

@ Examples
— C: (int)angle
— Ada: Float (Sum)

Note that Ada’s syntax is similar to that of function calls
Type Conversions: Errors in Expressions

® Causes
—Inherent limitations ofarithmetic e.g., division by zero
—Limitations of computer arithmetic e.g. overflow

@ Often ignored by the run-time system

Relational and Boolean Expressions

® Relational Expressions
—Use relational operators and operands of varioustypes
—Evaluate to some Boolean representation

—Operatorsymbolsusedvarysomewhatamong languages(!=,/=,.NE., <>, #)

@ JavaScript and PHP have two additional relational operator, ===and !==
- Similar to their cousins, == and !=, except that they do not coerce their operands

® Boolean Expressions



—Operands are Boolean and the result is Boolean

—Example operators

FORTRAN 77 FORTRAN 90 C Ada
AND. and && and
.OR. or || or
.NOT. not I not
xor

Relational and Boolean Expressions: No Boolean Type in C
® (89 has no Boolean type--it uses int type with O for false and nonzero for true

“® One odd characteristic of C‘s expressions: a<b <c isalegal
expression, but the result is not what you mightexpect:

—Left operator is evaluated, producing 0 or 1

—Theevaluationresult isthen compared withthe third operand (i.e., c) Short Circuit
Evaluation

® An expression in which the result is determined without evaluating all of the operands and/or
operators

@ Example: (13*a)*(b/13-1)
If a is zero, there is no need to evaluate (b/13-1)

® Problem with non-short-circuit evaluation

index = 1;

while (index <=length) && (LIST[index] != value)
index++;

—When index=length, LIST [index] will cause an indexing problem (assuming LIST has length -1
elements)
Short Circuit Evaluation (continued)

® C, C++, and Java: use short-circuit evaluation for the usual Boolean operators (&& and ||),
but also provide bitwise Boolean operators that are not short circuit (& and |)

® Ada: programmer can specify either (short-circuit is specified with and then and or else)

® Short-circuit evaluation exposes the potential problem of side effects in expressions
eg.(@>h) || (b++/3)



Assignment Statements1

® The general syntax
<target_var> <assign_operator> <expression>

® The assignment operator
= FORTRAN, BASIC, the C-based languages
:= ALGOLs, Pascal, Ada

®= can be bad when it is overloaded for the relational operator for equality (that‘s why the C-
based languages use == as the relational operator) Assignment Statements: Conditional Targets

* Conditional targets (Perl)
($flag ? $total : $subtotal) =0

Whichisequivalentto if

($flag){
$total =0

}else {
}

$subtotal = 0

Assignment Statements: Compound Operators

® Ashorthand method of specifying acommonly needed form of assignment
® |ntroduced in ALGOL; adopted by C

®Example

a=a+b
is writtenas a
+=b

Assignment Statements: Unary Assignment Operators

® Unary assignment operators in C-based languages combine increment and decrement
operations with assignment

@ Examples

sum=++count(countincremented,addedtosum) sum=count++
(count incremented, added to sum) count++ (count
incremented)

-count++ (count incremented then negated) Assignment

as an Expression



®|n C, C++, and Java, the assignment statement produces a result and can be used as operands
® An example:
while ((ch = getchar())!= EOF){...}

ch = getchar() is carried out; the result (assigned to ch) is used as a conditional value for
the while statement
List Assignments

® Perland Ruby support list assignments e.g.,
($first, $second, $third) = (20, 30, 40);

Mixed-Mode Assignment

® Assignment statements canalso be mixed-mode, forexample int a, b;
float c;
c=al/b;

® |n Fortran, C, and C++, any numeric type value can be assigned to any numeric type variable
® |n Java, only widening assignment coercions are done
® |n Ada, there is no assignment coercion

Levels of Control Flow
— Within expressions
—Among program units

— Among program statements

Control Statements: Evolution
® FORTRAN I control statements were based directly on IBM 704 hardware
® Much research and argument in the 1960s about theissue

—One important result: It was proven that all algorithms represented by flowcharts can be coded
with only two-way selection and pretest logical loops

Control Structure



® A control structure is a control statement and the statements whose execution it controls

® Design question
—Should a control structure have multiple entries?

Selection Statements

® A selection statement provides the means of choosing between two or more paths of
execution

® Two general categories:
—Two-way selectors
—Multiple-way selectors

Two-Way Selection Statements

® General form:

if control_expression then
clause else clause

® Design Issues:

—What is the form and type of the controlexpression?
—How are the then and else clauses specified?

—How should the meaning of nested selectors be specified?

The Control Expression

® |f the then reserved word or some other syntactic marker is not used to introduce the then
clause, the control expression is placed in parentheses

®|n C89, C99, Python, and C++, the control expression can be arithmetic
® |n languages such as Ada, Java, Ruby, and C#, the control expression must be Boolean

Clause Form

“® In many contemporary languages, the then and else clauses can be single statements or
compound statements

“® In Perl, all clauses must be delimited by braces (they must be compound)



“® In Fortran 95, Ada, and Ruby, clauses are statement sequences

® Pythonuses indentationto defineclauses if x >y :

X=y
print "case 1"

Nesting Selectors

® Java example
if (sum==0) if
(count==0)
result=0;
elseresult=1;

® Which if gets the else?

® Java's static semantics rule: else matches with the nearest if Nesting
Selectors (continued)

@ Toforceanalternative semantics, compound statements may beused: if (sum == 0) {
if (count==0)
result =0;

}

else result = 1;

® The above solution is used in C, C++, andC#

® Perl requires that all then and else clauses to be compound

@ Statementsequencesasclauses: Ruby if sum ==
0then

ifcount==0then
result =0

else
result=1

end

end

® Python
ifsum==0:
ifcount==0:
result =0
else : result=
1

Multiple-Way Selection Statements



® Allow the selection of one of any number of statements or statement groups

“® Design Issues:

® What is the form and type of the controlexpression?

® How are the selectable segments specified?

“® |s execution flow through the structure restricted to include just a single selectable segment?

® How are case values specified?

® What is done about unrepresented expression values?

Multiple-Way Selection: Examples

®_C, C++, and Java
switch (expression) {
case const_expr_1: stmt_1,

caseconst_expr_n:stmt_n;
[default: stmt_n+1]

® Design choices for C‘s switch statement
® Control expression can be only an integer type

® Selectable segments can be statement sequences, blocks, or compound statements

® Any number of segments can be executed in one execution of the construct (there is no implicit
branch at the end of selectable segments)

® default clause is for unrepresented values (if there is no default, the whole statement does
nothing)

Multiple-Way Selection: Examples

®C#
- Differs from C in that it has a static semantics rule that disallows the implicit
execution of more than one segment

- Each selectable segment must end with an unconditional branch (goto or break)

® Ada

case expression is
when choice list => stmt_sequence;



when choice list => stmt_sequence; when
others => stmt_sequence;]
end case;

® Morereliable than C*s switch (once astmt_sequence execution iscompleted, control is passed to
the first statement after the case statement

® Ada design choices:
1. Expression can be any ordinal type
2. Segments can be single or compound
3. Only one segment can be executed per execution of the construct
4. Unrepresented values are not allowed

® Constant List Forms:
1. A list of constants
2. Can include:
- Subranges
- Boolean OR operators (])

Multiple-Way Selection Using if

® Multiple Selectorscanappearasdirect extensionstotwo-wayselectors, using else-if clauses, for
example in Python:
ifcount<10:
bagl=True
elsifcount<100:
bag2 =True
elifcount<1000:
bag3 =True

Iterative Statements

®The repeated execution of a statement or compound statement is
accomplished either by iteration or recursion

® General design issues for iteration controlstatements:
1. How is iteration controlled?

2. Where is the control mechanism in the loop?
Counter-Controlled Loops

® A counting iterative statement has a loop variable, and a means of specifying the initial and
terminal, and stepsize values

® Design Issues:

® What are the type and scope of the loopvariable?



® What is the value of the loop variable at loop termination?

® Should it be legal for the loop variable or loop parameters to be changed in the loop body, and if
so, does the change affect loop control?

® Should the loop parameters be evaluated only once, or once for every iteration?

Iterative Statements: Examples

® FORTRAN 95 syntax
DO label var = start, finish [, stepsize]

® Stepsize can be any value but zero
® Parameters can be expressions

“® Design choices:

1. Loop variable must be INTEGER

2. Loop variable always has its last value

3. The loop variable cannot be changed in the loop, but the parameters can; because they are
evaluated only once, it does not affect loop control

4. Loop parameters are evaluated only once

®FORTRAN 95 : a second form:
[name:] Do variable = initial, terminal [,stepsize]
... End
Do [name]

- Cannot branch into either of Fortran‘s Do statements

® Ada
forvarin[reverse]discrete_rangeloop
end loop

® Design choices:
- Type of the loop variable is that of the discrete range (A discrete range is a sub-range of an
integer or enumerationtype).

- Loop variable does not exist outside the loop
- The loop variable cannot be changed inthe loop, butthe discrete range can; it does not affect

loop control
- The discrete range is evaluated justonce

® Cannot branch into the loop body

® C-based languages
for ([expr_1] ; [expr_2] ; [expr_3]) statement



- The expressions can be whole statements, or even statement sequences, with the statements
separated by commas

—The value of a multiple-statement expression is the value of the last statement in the expression
—If the second expression is absent, it is an infinite loop

® Design choices:
- There is no explicit loop variable
- Everything can be changed in the loop
- Thefirstexpression isevaluated once, butthe other two are evaluated with each iteration

® C++ differs from C in two ways:
“® The control expression can also be Boolean

“® The initial expression can include variable definitions (scope is from the definition to the end
of the loop body)

® Java and C#

—DiffersfromC++ inthatthe controlexpression mustbe Boolean Iterative
Statements: Logically-Controlled Loops

® Repetition control is based on a Booleanexpression
® Design issues:

—Pretest or posttest?

—Should the logically controlled loop be a special case of the counting loop statement or a
separate statement?

Iterative Statements: Logically-Controlled Loops: Examples

® C and C++ have both pretest and posttest forms, in which the control expression can be
arithmetic:
while (ctrl_expr) do
loop body loop body while
(ctrl_expr)

@ Java is like C and C++, except the control expression must be Boolean (and the body can only
be entered at the beginning -- Java has no goto
Iterative Statements: Logically-Controlled Loops: Examples

® Ada has a pretest version, but no posttest



®FORTRAN 95 has neither
® Perl and Ruby have two pretest logical loops, while and until. Perl also has two posttest loops

Iterative Statements: User-Located Loop Control Mechanisms

® Sometimes it is convenient for the programmers to decide a location for loop control (other than
top or bottom of the loop)

@ Simple design for single loops (e.g., break)
® Design issues for nested loops

“® Should the conditional be part of the exit?

“® Should control be transferable out of more than one loop?

Iterative  Statements: User-Located Loop Control Mechanisms break and
continue

® C,C++,Python, Ruby,and C#haveunconditionalunlabeledexits (break)
« Java and Perl have unconditional labeled exits (break in Java, last inPerl)

® C, C++, and Python have an unlabeled control statement, continue, that skips the remainder
of the current iteration, but does not exit the loop

® Java and Perl have labeled versions of continue
Iterative Statements: lteration Based on Data Structures

* Number of elements of in a data structure control loop iteration

@ Control mechanism is a call to an iterator function that returns the next element in some
chosen order, if there is one; else loop is terminate

@ C'sfor can be used to build auser-defined iterator: for (p=root;
p==NULL; traverse(p)){

}

® C#‘s foreach statement iterates on the elements of arrays and other collections:

Strings[] = strList = {"Bob", "Carol", "Ted"}; foreach
(Strings name in strL.ist)
Console.WriteLine ("Name: {0}", name);

- The notation {0} indicates the position in the string to be displayed

® Perl has a built-in iterator for arrays and hashes, foreach
Unconditional Branching



® Transfers execution control to a specified place in the program
“® Represented one of the most heated debates in 1960°s and 1970°s
® Well-known mechanism: goto statement

® Major concern: Readability

® Some languages do not support goto statement (e.g., Java)

® C# offers goto statement (can be used in switch statements)

® Loop exit statements are restricted and somewhat camouflaged goto‘s Guarded
Commands

® Designed by Dijkstra

®purpose:  to support a new programming methodology  that  supported
verification (correctness) during development

® Basis fortwo linguistic mechanisms for concurrent programming (in CSP and Ada)

® Basic Idea: if the order of evaluation is not important, the program should not specify one
Selection Guarded Command

®Form

if <Boolean exp> -> <statement> []
<Boolean exp> -> <statement>

[] <Boolean exp> -> <statement> fi

® Semantics: when construct is reached,

—Evaluate all Boolean expressions
—Ifmorethanonearetrue,choose onenon-deterministically If none are true,

=it is a runtimeerror
Selection Guarded Command: Hlustrated Loop Guarded
Command

® Form
do <Boolean> -> <statement> []
<Boolean> -> <statement>

[] <Boolean> -><statement> od



® Semantics: for each iteration

—Evaluate all Boolean expressions

—If more than one are true, choose one non-deterministically; then start loop again
—If none are true, exit loop

Guarded Commands: Rationale

® Connection between control statementsand programverification is intimate
® Verification is impossible with goto statements

® Verification is possible with only selection and logical pretest loops

® Verification is relatively simple with only guarded commands

Conclusion

Expressions

Operator precedence and associativity
Operator overloading

Mixed-type expressions

Various forms of assignment

Variety of statement-level structures

Choiceofcontrolstatementsbeyondselectionand logical pretest loops isa trade-off between
language size and writability

Functional and logic programming languages are quite different control structures



UNIT-V
Subprograms and Blocks

Topics

“ Introduction

® Fundamentals of Subprograms

“® Design Issues for Subprograms

® Local Referencing Environments

® Parameter-Passing Methods

® Parameters That Are Subprogram Names
® Overloaded Subprograms

® Generic Subprograms

“® Design Issues for Functions

® User-Defined Overloaded Operators

® Coroutines

Introduction

* Two fundamental abstraction facilities
—Process abstraction

® Emphasized from early days

—Data abstraction

® Emphasized in the1980s

Fundamentals of Subprograms
* Each subprogram has a single entry point
* The calling program is suspended during execution of the called subprogram

® Controlalwaysreturnstothecaller whenthecalled subprogram‘sexecution terminates

Basic Definitions



® A subprogram definition describes the interface to and the actions of the subprogram
abstraction

® A subprogram call is an explicit request that the subprogram be executed

® A subprogram header is the first part of the definition, including the name, the kind of
subprogram, and the formal parameters

® The parameter profile (aka signature) of a subprogram is the number, order, and types of
its parameters

® The protocol is a subprogram‘s parameter profile and, if it is a function, its return type
® Function declarations in C and C++ are often called prototypes
® Asubprogram declaration provides the protocol, but not the body, of the subprogram

® A formal parameter isadummy variable listed in the subprogram header and used in the
subprogram

® An actual parameter represents a value or address used in the subprogram call statement

Actual/Formal Parameter Correspondence

® Positional

—Thebinding ofactual parametersto formal parameters isby position: the first actual parameter
is bound to the first formal parameter and so forth

—Safe and effective

* Keyword

—The name of the formal parameter to which anactual parameter is to be bound is specified with
the actual parameter

—Parameters can appear in any order

Formal Parameter Default Values

* In certain languages (e.g., C++, Ada), formal parameters can have default values (if not
actual parameter is passed)

—InC++,defaultparametersmustappear lastbecause parametersare positionally
associated



* C#methods canacceptavariable number of parametersas longastheyare of the same type

Procedures and Functions

® There are two categories of subprograms
—Procedures arecollectionofstatementsthatdefine parameterized computations

Functions structurally resemble procedures butare semantically modeled on mathematical
fomctions

® They are expected to produce no side effects

“® In practice, program functions have side effects

Design Issues for Subprograms

* What parameter passing methods are provided?

* Are parameter types checked?

* Are local variables static or dynamic?

* Can subprogram definitions appear in other subprogram definitions?
© Can subprograms be overloaded?

© Can subprogram be generic?

Local Referencing Environments

® Local variables can be stack-dynamic (bound tostorage)
—Advantages

® Support for recursion

® Storage for locals is shared among somesubprograms
—Disadvantages

“ Allocation/de-allocation, initialization time

* |ndirect addressing

® Subprograms cannot be history sensitive

® | ocal variables can be static



—Muore efficient (no indirection)
—No run-time overhead

—Cannot support recursion

Parameter Passing Methods

* Ways in which parameters are transmitted to and/or from called subprograms
— Pass-by-value

— Pass-by-result

— Pass-by-value-result

— Pass-by-reference

— Pass-by-name

Models of Parameter Passing

Caller Callee
(sub (a, b, c)) Call (procedure sub (x, y, 2))
./ \ )
In mode

Return

Out mode Call
~_ o

Inout mode Return

Pass-by-Value (In Mode)



® Thevalue oftheactual parameter isusedto initialize the corresponding formal parameter
—Normally implemented by copying

—Canbe implemented by transmitting anaccess path but notrecommended (enforcing write
protection is not easy)

—When copies are used, additional storage is required
—Storage and copy operations can be costly

Pass-by-Result (Out Mode)

® When a parameter is passed by result, no value is transmitted to the subprogram; the
corresponding formal parameter acts asa local variable; its value istransmitted to caller‘s actual
parameter when controlisreturned tothe caller

—Require extra storage location and copy operation

* Potentialproblem:sub(pl,pl);whicheverformalparameteriscopiedback will represent the
current value of pl

Pass-by-Value-Result (inout Mode)

* A combination of pass-by-value and pass-by-result

* Sometimes called pass-by-copy

L
Formal parameters have local storage

* Disadvantages:

— Those of pass-by-result

— Those of pass-by-value

Pass-by-Reference (Inout Mode)

L
Pass an access path



* Also called pass-by-sharing
* Passing process is efficient (no copying and no duplicated storage)

* Disadvantages

— Slower accesses (compared to pass-by-value) to formal parameters
— Potentials for un-wanted side effects

— Un-wanted aliases (access broadened)

Pass-by-Name (Inout Mode)
* By textual substitution

* Formals are bound to an access method at the time of the call, but actual binding to a value
or address takes place at the time of a reference or assignment

* Allows flexibility in late binding

Implementing Parameter-Passing Methods
* Inmost language parameter communication takes place thru the run-time stack
* Pass-by-reference are the simplest toimplement; onlyanaddress isplaced in the stack

* Asubtle but fatal error can occur with pass-by-reference and pass-by-value- result: a formal
parameter corresponding to a constant can mistakenly be changed

Parameter Passing Methods of Major Languages
® Fortran

—Always used the inout semantics model

—Before Fortran 77: pass-by-reference

—Fortran 77 and later: scalar variables are often passed by value-result

®C



—Pass-by-value

—Pass-by-reference is achieved by using pointers as parameters
®C++

—A special pointer type called reference type for pass-by-reference
® Java

—All parameters are passed are passed by value

—Object parameters are passed by reference

® Ada

—Three semantics modes of parameter transmission: in, out, in out; inis the default mode

—Formalparametersdeclared outcanbeassignedbutnotreferenced;those declared in can be
referenced but not assigned; in out parameters can be referenced and assigned

®C#
—Default method: pass-by-value

—Pass-by-referenceisspecified byprecedingbothaformalparameterand its actual parameter
with ref

® PHP: very similar to C#

® Perl:allactualparametersareimplicitlyplaced inapredefinedarraynamed @ _

Type Checking Parameters

* Considered very important for reliability

* FORTRAN 77 and original C: none

* pascal, FORTRAN 90, Java, and Ada: it is always required
® ANSI C and C++: choice is made by theuser

—Prototypes

* Relatively new languagesPerl, JavaScript,and PHP do notrequiretype checking



Multidimensional Arrays as Parameters

* Ifamultidimensional array is passed to a subprogramand the subprogram is separately
compiled, the compiler needs to knowthe declared size of that array to build the storage mapping
function

Multidimensional Arrays as Parameters: C and C++

* Programmer isrequiredto includethe declared sizes ofall but the first subscript in the
actual parameter

* Disallows writing flexible subprograms

* Solution: pass a pointer to the array and the sizes of the dimensions as other parameters; the user
must include the storage mapping function in terms of the size parameters

Multidimensional Arrays as Parameters: Pascal and Ada

® Pascal

—Not a problem; declared size is part of the array‘s type

* Ada
—Constrained arrays - like Pascal

—Unconstrained arrays - declared size is part of the object declaration

Multidimensional Arrays as Parameters: Fortran

* Formal parameter that are arrays have a declaration after the header

— For single-dimension arrays, the subscript is irrelevant

— Formulti-dimensionalarrays, the subscriptsallowthe storage-mapping function

Multidimensional Arrays as Parameters: Java and C#
* Similar to Ada
* Arraysareobjects; theyareall single-dimensioned, butthe elementscanbe arrays

* Each array inherits a named constant (length in Java, Length in C#) that is



settothe length of the array whenthe array object is created Design
Considerations for Parameter Passing

* Two important considerations
—Efficiency

—One-way or two-way data transfer
® Byt the above considerations are in conflict

—Good programmingsuggest limitedaccesstovariables, whichmeansone- way whenever
possible

—But pass-by-reference is more efficient to pass structures of significant size

Parameters that are Subprogram Names

* |t is sometimes convenient to pass subprogram names as parameters
* |ssues:

® Are parameter types checked?

® What isthe correctreferencing environment forasubprogramthat wassent as a parameter?
Parameters that are Subprogram Names: Parameter Type Checking

* Cand C++: functions cannot be passed as parameters but pointersto functions can be
passed; parameters can be type checked

* FORTRAN 95 type checks

© Later versions of Pascal and

* Adadoesnotallowsubprogramparameters;asimilaralternative isprovided via Ada‘s generic
facility

Parameters that are Subprogram Names: Referencing Environment

® Shallow binding: The environment of the call statement that enacts the passed
subprogram

® Deep binding: The environment of the definition of the passed subprogram

® Ad hoc binding: The environment of the call statement that passed the subprogram

Overloaded Subprograms



® An overloaded subprogram is one that has the same name asanother subprogram
in the same referencingenvironment

—Every version of an overloaded subprogram has a unique protocol

® C++, Java, C#, and Ada include predefined overloaded subprograms

® In Ada, the return type of an overloaded function can be used to disambiguate
calls (thustwo overloaded functions can have the same parameters)

® Ada, Java, C++,and C#allowuserstowrite multiple versionsof subprograms
with the same name

Generic Subprograms

® A generic or polymorphic subprogram takes parameters of different types on different
activations

* Overloaded subprograms provide ad hoc polymorphism

* Asubprogram that takes a generic parameter that is used in a type expressionthat
describesthetype ofthe parametersofthe subprogram provides parametric
polymorphism

Examples of parametric polymorphism: C++

template <class Type>

Type max(Type first, Type second) { returnfirst
>second ?first: second,;

}

® Theabovetemplate canbe instantiated for anytype forwhichoperator >is defined
int max (int first, int second) {

return first > second? first : second;
}

Design Issues for Functions

® Are side effects allowed?

—Parameters should always be in-mode to reduce side effect (like Ada)

* What types of return values are allowed?

—Most imperative languages restrict the return types



—C allows any type except arrays and functions

—C++ is like C but also allows user-defined types

—Ada allows any type

—Java and C# do not have functions but methods can have any type

User-Defined Overloaded Operators
® Operators can be overloaded in Ada and C++

® An Ada example

Function —*l(A,B: in Vec_Type): return Integeris Sum:
Integer :=0;
begin
for Index in A‘range loop

Sum:=Sum+A(Index)*B(Index) end

loop
return sum; end

*;

é“: a*b;--a b, and c are of type Vec_Type

Coroutines

® A coroutine is a subprogram that has multiple entries and controls them itself

® Also called symmetric control: caller and called coroutines are onamore equal basis

® A coroutine call is named a resume

® The first resume of a coroutine isto its beginning, but subsequent calls enter at the point just after

the last executed statement in the coroutine

® Coroutines repeatedly resume each other, possibly forever

® Coroutines provide quasi-concurrent execution of program units (the

coroutines); their execution is interleaved, but not overlapped

Coroutines Illustrated: Possible Execution Control
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Summary
® Asubprogramdefinitiondescribestheactionsrepresentedbythe subprogram
® Subprograms can be either functions or procedures
® Local variables in subprograms can be stack-dynamic or static
® Three models of parameter passing: in mode, out mode, and inout mode
® Some languages allow operator overloading
® Subprograms can be generic

® A coroutine is a special subprogram with multipleentries



UNIT-VI
Abstract Data types

Topics

- The Concept of Abstraction

*® Introduction to Data Abstraction

*® Design Issues for Abstract Data Types

®  Language Examples

®  Parameterized Abstract Data Types

®  Encapsulation Constructs

®  Naming Encapsulations

- Object-Oriented Programming

- Design Issues for Object-Oriented Languages

- Support for Object-Oriented Programming inSmalltalk
- Support for Object-Oriented Programming inC++
- Support for Object-Oriented Programming inJava
- Support for Object-Oriented Programming in C#
- Support for Object-Oriented Programming in Ada95
- Implementation of Object-Oriented Constructs

- Concurrency Introduction

- Introduction to Subprogram-Level Concurrency
®  Semaphores

®  Monitors

e

Message Passing



Ada Support for Concurrency
Java Threads
®  C#Threads

®  Statement-Level Concurrency

The Concept of Abstraction

® An abstraction isaview or representation of an entity that includes only the most significant
attributes

* The concept of abstraction is fundamental in programming (and computer science)

* Nearly all programming languages support process abstraction with
subprograms

* Nearlyallprogramming languagesdesignedsince 1980supportdata abstraction

Introduction to Data Abstraction

® An abstract data type is a user-defined data type that satisfies the following two
conditions:

—Therepresentation of, and operations on, objects ofthe type are defined ina single syntactic unit
The representation of objects of the type is hidden from the program units that use these

objects, sothe only operations possible are those provided in the type's definition

Advantages of Data Abstraction

* Advantage of the first condition

—Program organization, modifiability (everything associated with a data structure is
together), and separate compilation

* Advantage the second condition

—Reliability--by hiding the data representations, user code cannot directly



accessobjectsofthetype ordependontherepresentation, allowing the representation to be
changed without affecting user code
Language Requirements for ADTSs

* A syntactic unit in which to encapsulate the type definition

* Amethod of making type names and subprogramheadersvisible to clients, while hiding actual
definitions

* Someprimitiveoperationsmustbe builtinto the language processor Design Issues

® Can abstract types be parameterized?
* What access controls are provided?

Language Examples: Ada

® The encapsulation construct is called a package

—Specification package (the interface)

—Body package (implementation of the entities named in the specification)

® |Information Hiding

—The spec package has two parts, public and private

—The name ofthe abstract type appears inthe public part ofthe specification package. This part may
also include representations of unhidden types

—Therepresentationoftheabstracttypeappearsinapartofthe specification called the private
part

* More restricted form with limited private types
Privatetypeshavebuilt-inoperationsforassignmentand comparison Limited private
types have NO built-inoperations

* Reasons for the public/private spec package:
1. Thecompiler mustbeableto seetherepresentationafter seeingonlythe spec package (it

cannot see the private part)
2. Clients must see the type name, but notthe representation (they also cannot see the private part)

* Havingpartofthe implementationdetails (the representation) inthe spec package and part
(the method bodies) in the body package is not good

One solution: make all ADTs pointers



Problems with this:

1. Difficulties with pointers
2. Object comparisons
3. Control of object allocation is lost

An Example in Ada package

Stack Pack is
typestack_typeislimitedprivate;
max_size: constant :=100;
function empty(stk: in stack_type) return Boolean; procedure push(stk:
in out stack_type; elem:in Integer); procedure pop(stk: in out stack_type);
function top(stk: in stack_type) return Integer;

private -- hidden from clients
type list_type is array (1..max_size) of Integer; type
stack_type is record
list: list_type;
topsub: Integer range 0..max_size) :=0; end
record,;
end Stack Pack
Language Examples: C++
* Based on C struct type and Simula 67 classes
* The class is the encapsulation device
* All ofthe class instances of a class share a single copy of the member functions
® Each instance of a class has its own copy of the class data members

* Instances can be static, stack dynamic, or heap dynamic Language
Examples: C++ (continued)

* Information Hiding
= Private clause for hidden entities
—Public clause for interface entities

— Protected clause for inheritance (Chapter 12)
Language Examples: C++(continued)

® Constructors:



—Functionsto initialize the datamembers of instances (they do not create the objects)
—May also allocate storage if part of the object is heap-dynamic

—Can include parameters to provide parameterization of the objects

—Implicitly called when an instance is created

—Can be explicitly called

—Name is the same as the class name Language
Examples: C++(continued)

* Destructors

—Functionsto cleanup after an instance is destroyed; usually just to reclaim heap storage
—Implicitly called when the object‘s lifetime ends

—Can be explicitly called

—Nameistheclassname, preceded byatilde (~) An Example
in C++
class stack {
private:
int*stackPtr,maxLen,topPtr; public:
stack() {// a constructor stackPtr=
newint[100]; maxLen =99;
topPtr = -1,
%
~stack () {delete [] stackPtr;}; void
push (int num) {...}; void pop ()
{}
inttop () {...};
intempty () {...};
}

Evaluation of ADTs in C++ and Ada

® C++ support for ADTs is similar to expressive power of Ada



* Both provide effective mechanisms for encapsulationand information hiding

* Adapackagesare moregeneralencapsulations;classesaretypes Language
Examples: C++ (continued)

* Friend functions or classes - to provide access to private members to some unrelated units or
functions

—Necessary in C++

Language Examples: Java

* Similarto C++, except:
—All user-defined types are classes
—Allobjectsareallocated fromthe heapandaccessedthroughreference variables

Individualentitiesinclasseshaveaccesscontrolmodifiers(privateorpublic), rather than clauses

Java has a second scoping mechanism, package scope, which can be used in place of friends

® Allentities inall classes in a package that do not have access control modifiers are
visible throughout the package
An Example in Java
class StackClass {
private:
private int [] *stackRef;
private int [] maxLen, topIndex; public
StackClass() {//aconstructor
stackRef=new int[100];
maxLen = 99;
topPtr = -1,
%
public void push (int num) {...}; public
void pop () {...};
public int top () {...};
public boolean empty () {...};

}

Language Examples: C#

® Based on C++ and Java



* Adds two access modifiers, internal and protected internal

* All class instances are heap dynamic

* Default constructors are available for all classes

* Garbage collectionisused for most heap objects, sodestructorsarerarely used

e structs are lightweight classes that do not support inheritance

Language Examples: C# (continued)

* Commonsolutionto need for accessto datamembers: accessor methods (getter and setter)

* C#provides properties asawayofimplementing gettersand setterswithout requiring explicit
method calls

C# Property Example
public class Weather {
publicint DegreeDays{//** DegreeDays isaproperty get {return
degreeDays;}
set {
if(value<0]|value>30)
Console.WriteLine(
"Valueisoutof range: {0}", value); else
degreeDays =value;}
}

private int degreeDays;

Weather w = new Weather();
int degreeDaysToday, oldDegreeDays;

w.DegreeDays = degreeDaysToday;
oldDegreeDays = w.DegreeDays;

Parameterized Abstract Data Types

* parameterized ADTsallowdesigningan ADT that canstore anytype elements (among other
things)

* Also known as generic classes



® C++,Ada,Java5.0,and C#2005provide supportfor parameterized ADTs Parameterized

ADTs in Ada

® Ada Generic Packages

—Make the stack type more flexible by making the element type and the size of the stack generic

generic

Max_Size: Positive;

type Elem_Type is private;

package Generic_Stack is

Type Stack_Type is limited private;

function Top(Stk: in out StackType) return Elem_type;

é.rid Generic_Stack;

Package Integer_Stack is new Generic_Stack(100,Integer); Package
Float_Stack is new Generic_Stack(100,Float);

Parameterized ADTSs in C++

Classes can be somewhat generic by writing parameterized constructor functions
class stack {

stack (int size) { stk_ptr=
newint[size]; max_len =
size - 1;

top =-1;

%

stack stk(100);
Parameterized ADTSs in C++ (continued)

® The stack element type can be parameterized by making the classa templated class
template<classType> class
stack {

private:



Type *stackPtr; const
int maxLen; int topPtr;
public:

stack() {
stackPtr = new Type[100];
maxLen = 99;
topPtr = -1,

}

-

Parameterized Classes in Java 5.0

* Generic parameters must be classes

* Mostcommongenerictypesarethecollectiontypes, suchas LinkedListand ArrayL.ist
* Eliminate the need to cast objects that areremoved

* Eliminate the problem of having multiple types inastructure Parameterized
Classes in C# 2005

® Similar to those of Java 5.0

* Elementsofparameterizedstructurescanbeaccessedthroughindexing Summary

The conceptof ADTsand their use in programdesign was a milestone inthe development of
[®hguages

® Two primary features of ADTsare the packaging of datawiththeir associated
operations and information hiding

® Ada provides packages that simulate ADTs

® C++ data abstraction is provided by classes

® Java‘s data abstraction is similar to C++

® Ada, C++, Java 5.0, and C# 2005 support parameterized ADTS

Object-Oriented Programming
* Abstract data types
® nheritance



—Inheritance is the central theme in OOP and languages that support it

* Polymorphism
Inheritance

* Productivity increases can come from reuse
—ADTs are difficult to reuse—always need changes

—All ADTs are independent and at the same level

* Inheritance allows new classes defined intermsofexisting ones, i.e., by allowing them to
inherit common parts

* Inheritanceaddresses bothoftheabove concerns--reuse ADTsafter minor changes and define
classes in a hierarchy
Object-Oriented Concepts

® ADTs are usually called classes

® Class instances are called objects

® A class that inherits is a derived class or a subclass

* The class from which another class inherits is a parent class or superclass

* Subprograms that define operations on objects are called methods
Object-Oriented Concepts (continued)

* Calls to methods are called messages

* The entire collection of methods of an object is called its message protocol or
message interface

* Messages have two parts--a method name and the destination object

* Inthe simplest case, a class inherits all of the entities of its parent Object-Oriented
Concepts (continued)

* Inheritance can be complicated by access controls to encapsulated entities
—A class can hide entities from its subclasses
—A class can hide entities from its clients

—Aclass canalso hide entities for its clients while allowing its subclasses to see them

* Besides inheriting methods as is, a class can modify an inherited method



—The new one overrides the inherited one The
—method in the parent is overriden
Object-Oriented Concepts (continued)

® There are two kinds of variables in aclass:
—Class variables - one/class

—Instance variables - one/object

® There are two kinds of methods in aclass:
—Class methods — accept messages to the class

—Instance methods — accept messages to objects
* Single vs. Multiple Inheritance

* One disadvantage of inheritance for reuse:

—Creates interdependencies among classes that complicate maintenance Dynamic Binding

*® A polymorphic variable can be defined inaclass that is able to reference (or point to)
objects of the class and objects of any of its descendants

* When a class hierarchy includes classes that override methods and such methodsare called
throughapolymorphic variable, the binding tothe correct method will be dynamic

* Allowssoftwaresystemstobemoreeasilyextendedduringbothdevelopment and maintenance
Dynamic Binding Concepts

® An abstract method is one that does not include a definition (it only defines a protocol)
® An abstract class is one that includes at least one virtual method

* Anabstract class cannot be instantiated Design
Issues for OOP Languages

* The Exclusivity of Objects
* Are Subclasses Subtypes
* Type Checking and Polymorphism

* Single and Multiple Inheritance



* Object Allocation and DeAllocation
* Dynamic and Static Binding
* Nested Classes

The Exclusivity of Objects

® Everything is an object

—Advantage - elegance and purity

—Disadvantage - slow operations on simple objects
® Add objects to a complete typing system
—Advantage - fast operations on simple objects

—Disadvantage - results in a confusing type system (two kinds of entities)
® Includeanimperative-styletyping systemfor primitivesbut make everything else objects
—Advantage - fast operationsonsimple objectsand arelatively small typing system

—Disadvantage - still some confusion because of the two type systems

Are Subclasses Subtypes?

*® Doesan—is-al relationship hold betweenaparent classobjectandanobject of the subclass?

Ifaderived class is-a parent class, then objects of the derived class must behave the same as the
parent classobject

* Aderived class is a subtype if it has an is-a relationship with its parent class

—Subclass canonlyadd variables and methods and override inherited methods in
—compatiblel ways

Type Checking and Polymorphism

* Polymorphismmayrequiredynamictype checking ofparametersandthe return value

—Dynamic type checking is costly and delays error detection

* Ifoverriding methodsare restricted to having the same parameter typesand



returntype, the checking can be static Single and
MultipleInheritance

* Multiple inheritance allows a new class to inherit from two or more classes

* Disadvantages of multiple inheritance:
—Language and implementation complexity (in part due to name collisions)

—Potential inefficiency-dynamicbindingcostsmorewithmultiple inheritance (but not much)

* Advantage:

—Sometimes itisquite convenientand valuable Allocation
and DeAllocation ofObjects

* From where are objects allocated?

—If they behave line the ADTSs, they can be allocated from anywhere

® Allocated from the run-time stack

® Explicitly create on the heap (via new)

—Iftheyare all heap-dynamic, references can be uniformthru a pointer or reference variable
® Simplifies assignment - dereferencing can beimplicit

—If objects are stack dynamic, there is a problem with regard to subtypes

* |sdeallocationexplicitorimplicit?
Dynamic and Static Binding

* Should all binding of messages to methods bedynamic?
—If none are, you lose the advantages of dynamic binding

=—If all are, it is inefficient

* Allow the user to specify

Nested Classes

* Ifanew class is needed by only one class, there is no reason to define so it can be seen by
other classes

=—Can the new class be nested inside the class that uses it?



—Insome cases, the new class is nested inside asubprogramrather than directly in another
class

® Other issues:
—Which facilities of the nesting class should be visible to the nested class and vice versa

Support for OOP in Smalltalk
* Smalltalk is a pure OOP language

—Everything is an object

—All objects have local memory

—All computation is through objects sending messages to objects
—None of the appearances of imperative languages
—Allobjectedareallocatedfromtheheap All

—deallocation is implicit
Support for OOP in Smalltalk (continued)

* Type Checking and Polymorphism

—All binding of messages to methods is dynamic

® The process is to search the object to which the message is sent for the method; if not found,
search the superclass, etc. up to the system class which has no superclass

The only type checking in Smalltalk is dynamic and the only type error occurs whena
mmessage is sent to an object that has no matching method

Support for OOP in Smalltalk (continued)

® |nheritance

—A Smalltalk subclass inherits all of the instance variables, instance methods, and class methods
of its superclass

—All subclasses are subtypes (nothing can be hidden)

—All inheritance is implementation inheritance



—No multiple inheritance
Support for OOP in Smalltalk (continued)

* Evaluation of Smalltalk

—The syntax of the language is simple and regular

—Good example of power provided by a small language

—Slow compared with conventional compiled imperative languages
—Dynamic binding allows type errors to go undetected until run time
—Introduced the graphical user interface Greatest

—impact: advancementofOOP
Support for OOP in C++

® General Characteristics:

—Evolved from C and SIMULA 67

—Among the most widely used OOP languages
—Muixed typing system

—Constructors and destructors

—Elaborateaccesscontrolstoclassentities Support for
OOP in C++ (continued)

® nheritance

—A class need not be the subclass of any class

—Access controls for members are

—Private (visibleonlyintheclassand friends) (disallowssubclasses frombeing subtypes)

—Public (visible in subclasses and clients)

—Protected (visible inthe class and in subclasses, but not clients) Support for OOP
in C++ (continued)

* Inaddition, the subclassing process can be declared with access controls



(private or public), which define potential changes in access by subclasses
—Privatederivation-inherited publicand protected membersareprivate inthe subclasses

Publicderivationpublicand protected membersarealso publicand protected in subclasses
trheritance Example in C++ class
base_class {

private:
int a;
floatx;
protected: int
b; float y;
public:
int c;
float z;

h

class subclass_1 : public base_class { ... };
// In this one, b and y are protected and
// c and z arepublic

class subclass_2 : private base_class{ ... };
//  Inthisone, b, y, ¢, and z are private,
//  and no derived class has access to any
// member of base_class

Reexportation inC++

< Amemberthatisnotaccessible inasubclass (because of private derivation) canbe declaredtobe
visiblethere usingthe scoperesolutionoperator(::),e.g.,

classsubclass_3:privatebase class{
base_class :: c;

}

Reexportation (continued)

* One motivation for using private derivation

—A class provides members that must be visible, so they are defined to be public members;a
derived class adds some new members, but does notwant its clients to see the members of the
parent class, eventhoughthey had to be public in the parent class definition

Support for OOP in C++ (continued)



* Multiple inheritance is supported

—Ifthere aretwo inherited members with the same name, they can both be referenced using the
scope resolution operator
Support for OOP in C++ (continued)

* Dynamic Binding

—A method can be defined to be virtual, which means that they can be called through
polymorphic variables and dynamically bound to messages

—A pure virtual function has no definition at all

—A class that has at least one pure virtual function is an abstract class
Support for OOP in C++ (continued)

* Evaluation
—C++ provides extensive access controls (unlike Smalltalk)
—C++ provides multiple inheritance

—InC++,theprogrammer must decideat designtimewhichmethodswill be statically bound and
which must be dynamically bound

® Static binding is faster!

—Smalltalk type checking is dynamic (flexible, but somewhat unsafe)

—Because of interpretationand dynamic binding, Smalltalk is~10times slower than C++
Support for OOP in Java

® Becauseofitscloserelationshipto C++, focus isonthedifferences fromthat language
® General Characteristics

—All data are objects except the primitive types

—All primitive types have wrapper classes that store one data value

—All objects are heap-dynamic, are referenced through reference variables, and most are allocated
with new

—Afinalize methodisimplicitly called whenthe garbage collectorisaboutto reclaim the storage
occupied by the object



Support for OOP in Java (continued)

*® |nheritance

—Singleinheritance supportedonly, butthere isanabstractclass category that provides some
of the benefits of multiple inheritance (interface)

—An interface can include only method declarations and named constants, e.g.,
public interface Comparable {
public int comparedTo (Object b);
}

—Methodscanbefinal (cannotbeoverriden) Support
for OOP in Java(continued)

* Dynamic Binding

—InJava, all messages are dynamically bound to methods, unless the method is final (i.e., it cannot
be overriden, therefore dynamic binding serves no purpose)

Static binding is also used if the methods is static or private both of which disallow overriding
Support for OOP in Java (continued)

* Several varieties of nested classes
« Allare hidden fromall classes in their package, except for the nesting class
* Nested classes can be anonymous

* A local nested class is defined in a method of its nesting class
—No access specifier is used Support for

OOP inJava (continued)

* Evaluation

—Design decisions to support OOP are similar to C++
—No support for procedural programming

—No parentless classes

—Dynamicbinding isused as—normall wayto bind method callsto method definitions



—Uses interfacesto provideasimple formofsupportfor multiple inheritance Support for OOP in
Ct

® General characteristics
—Support for OOP similar to Java
—Includes both classes and structs

—Classes are similar to Java‘s classes

— structsarelesspowerfulstack-dynamicconstructs(e.g., noinheritance) Support for OOP in
C# (continued)

® Inheritance
—Uses the syntax of C++ for defining classes

—Amethod inherited fromparent class can be replaced in the derived class by marking its
definition with new

—The parent class version canstill be called explicitly with the prefix base: base.Draw()

Support for OOP in C#

* Dynamic binding

—To allow dynamic binding of method calls tomethods:
® The base class method is marked virtual

® The corresponding methods in derived classes are marked override
—Abstract methods are marked abstract and must be implemented inall subclasses

AllC#classesareultimatelyderived fromasingle rootclass, Object Support for OOP
C# (continued)

* Nested Classes
—A C# class that isdirectly nested in a nesting class behaves like a Java static nested class

—C# does not support nested classes that behave like the non-static classes of



Java
Support for OOP in C#

* Evaluation
—C# is the most recently designed C-based OO language

—ThedifferencesbetweenC#‘sandJava‘ssupportforOOParerelativelyminor Support for OOP in
Ada 95

* General Characteristics
—OOP was one of the most important extensions to Ada 83
—Encapsulation container is a package that defines a tagged type

—Ataggedtype isone inwhich everyobject includes atag to indicate during execution its type
(the tags are internal)

—Taggedtypescanbeeitherprivatetypesorrecords No

—constructorsordestructorsareimplicitlycalled
Support for OOP in Ada 95 (continued)

* Inheritance

—Subclasses can be derived from tagged types

—Newentitiesareaddedtothe inherited entities by placingtheminarecord definition
—All subclasses are subtypes

—No support for multiple inheritance

*® Acomparableeffectcanbeachievedusinggenericclasses Example of a
Tagged Type
Package Person_Pkg is
type Person is tagged private; procedure
Display(P:inoutPerson); private
type Person is tagged record
Name : String(1..30); Address
: String(1..30); Age : Integer;
end record;



end Person_PKg;
with Person_Pkg; use Person_PKg;
package Student_Pkg is
type Student is new Personwith record
Grade_Point_Average : Float;
Grade_Level : Integer;
end record;
procedureDisplay(St:inStudent); end
Student_Pkg;

//Note:DisplayisbeingoverriddenfromPerson_Pkg Support for
OOP in Ada 95(continued)

* Dynamic Binding

—Dynamic binding isdone using polymorphic variables called classwide types
“® For the tagged type Prtdon, the classwide type is Person‘ class
—Other bindings are static

—Any method may be dynamically bound

—Purelyabstract base types can be defined in Ada 95 by including the reserved word abstract
Support for OOP in Ada 95 (continued)

* Evaluation

—Ada offers complete support for OOP

—C++ offers better form of inheritance thanAda

—Ada includes no initialization of objects (e.g., constructors)

—Dynamic binding in C-based OOP languages is restricted to pointers and/or references to
objects; Adahas no suchrestriction and isthus more orthogonal Implementing OO Constructs

* Two interesting and challenging parts
—Storagestructuresforinstancevariables Dynamic

—binding of messagesto methods
Instance Data Storage



* Class instance records (CIRs) store the state of an object

—Static (built at compile time)
® [faclass has aparent, the subclass instance variables are added to the parent CIR

® Because CIR is static, access to all instance variables is done as it is in records
—Efficient

Dynamic Binding of Methods Calls

* Methods ina class that are statically bound need not be involved inthe CIR; methods that will be
dynamically bound must have entries in the CIR

—Callsto dynamically bound methods can be connected to the corresponding code thru a pointer
in the CIR

—The storage structure is sometimes called virtual method tables (vtable) Methodcallscan

—berepresented asoffsetsfromthe beginning ofthe vtable
Summary

® 00 programming involves three fundamental concepts: ADTS, inheritance, dynamic binding

® Major design issues: exclusivity of objects, subclasses and subtypes, type checkingand
polymorphism, singleand multiple inheritance, dynamicbinding, explicit and implicit de-allocation
of objects, and nested classes

® Smalltalk is a pure OOL

® C++ has two distinct type system (hybrid)

® Java is not a hybrid language like C++; it supports only OO programming
® C# is based on C++ and Java

® Implementing OOP involves some new datastructures

Concurrency Introduction

®  Concurrency can occur at four levels:

— Machine instruction level



— High-level language statement level
— Unit level

— Program level

®  Becausethereareno language issues ininstruction- and program-level concurrency, they
are not addressed here
Multiprocessor Architectures

®  Late 1950s-one general-purpose processor and one or more special- purpose
processors for input and outputoperations

®  Early1960s- multiplecomplete processors, used for program-level concurrency

- Mid-1960s- multiple partial processors, used for instruction-level concurrency

[

Single-Instruction Multiple-Data (SIMD) machines

®  Multiple-Instruction Multiple-Data (MIMD) machines

— Independentprocessorsthatcanbesynchronized (unit-level concurrency)

Categories of Concurrency

® Athread of control inaprogram is the sequence of program points reached as control
flows through the program

®  Categories of Concurrency:

— Physical concurrency - Multiple independent processors ( multiple threads of
control)

— Logical concurrency - The appearance of physical concurrency is presented by
time-sharing one processor (software can be designed as if there were multiple
threads of control)

®  Coroutines (quasi-concurrency) have a single thread of control

Motivations for Studying Concurrency

® Involvesadifferentwayofdesigning softwarethat canbe veryuseful— many real-world
situations involve concurrency



®  Multiprocessor computers capable of physical concurrency are now widely used

Introduction to Subprogram-Level Concurrency

® Atask or process is a program unit that can be in concurrent execution with other
program units

®  Tasks differ from ordinary subprograms inthat:
— Attask may be implicitly started

— When a program unit starts the execution of a task, it is not necessarily
suspended

— Whenatask‘s execution iscompleted, control may not returnto the caller

®  Tasks usually work together

Two General Categories of Tasks
®  Heavyweight tasks execute in their own address space
®  Lightweight tasks all run in the same address space

® Ataskisdisjoint if it does not communicate with or affect the execution of any other task in
the program in any way

Task Synchronization

* A mechanism that controls the order in which tasks execute

®  Two kinds of synchronization
— Cooperation synchronization

— Competition synchronization

®  Task communication is necessary for synchronization, provided by:
- Shared nonlocal variables
- Parameters
- Message passing

Kinds of synchronization

®  Cooperation: Task A must wait for task B to complete some specific activity before task A
can continue its execution, e.g., the producer-consumer problem



®  Competition: Two or more tasks must use some resource that cannot be simultaneously

used, e.g., a shared counter

— Competitionisusually provided by mutuallyexclusive access (approaches
are discussed later)

Need for Competition Synchronization
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Scheduler

®  Providingsynchronizationrequiresamechanismfordelayingtask execution

®  Task execution control is maintained by a program called the scheduler, which maps
task execution onto available processors

Task Execution States

®  New - created but not yet started

®  Ready - ready to run but not currently running (no available processor)
®  Running

Blocked - has been running, but cannot now continue (usually waiting for some event to
occur)

® Dead - no longer active in any sense

Liveness and Deadlock

® Liveness is a characteristic that a program unit may or may not have

- Insequential code, it means the unit will eventually
complete itsexecution



In a concurrent environment, a task can easily lose its liveness

If all tasks in a concurrent environment lose their liveness, it is called
deadlock

Design Issues for Concurrency

Competition and cooperation synchronization
Controlling task scheduling
How and when tasks start and end execution

How and when are tasks created

Methods of Providing Synchronization

®  Semaphores

®  Monitors

®  Message Passing

Semaphores

®  Dijkstra - 1965

® Asemaphore is a data structure consisting of a counter and a queue for storing task
descriptors

®  Semaphores canbe used to implement guards onthe code that accesses shared data structures
Semaphores have only two operations, wait and release (originally called P

® and V by Dijkstra)

. 3

Semaphorescanbe usedto provide bothcompetitionand cooperation synchronization

Cooperation Synchronization with Semaphores

Example: A shared buffer

The buffer isimplemented asan ADT with the operations DEPOSIT and FETCH as the
only ways to access the buffer

Use two semaphores for cooperation: emptyspots and fullspots

The semaphore counters are used to store the numbers of empty spots and full spots in the
buffer



e DEPOSIT must first check emptyspots to see if there isroom in the buffer

®  Ifthereisroom, the counter of emptyspots is decremented and the value is inserted

® Ifthere is no room, the caller is stored in the queue of emptyspots

®  When DEPOSIT is finished, it must increment the counter of fullspots
e  FETCH must first check fullspots to see if there is a value

— Ifthereisafull spot, the counter of fullspots is decremented and the value is removed

Ifthere are no values in the buffer, the caller must be placed inthe queue of fullspots

— When FETCH is finished, it increments the counter of emptyspots

®  The operations of FETCH and DEPOSIT on the semaphores are accomplished through
two semaphore operations named wait and release

Semaphores: Wait Operation
wait(aSemaphore)
if aSemaphore‘s counter > 0 then
decrement aSemaphore‘s counter
else
put the caller in aSemaphore‘s queue attempt to
transfer controlto areadytask
-- if the task ready queue is empty,
-- deadlockoccurs end

Semaphores: Release Operation

release(aSemaphore)

ifaSemaphore‘squeue isemptythen
increment aSemaphore‘scounter

else
put the calling task in the task ready queue transfer controltoa
task fromaSemaphore‘s queue

end

Producer Consumer Code
semaphore fullspots, emptyspots;
fullstops.count = 0; emptyspots.count =
BUFLEN; task producer;

loop



-- produce VALUE —
wait(emptyspots);{waitforspace}
DEPOSIT(VALUE);
release(fullspots); {increase filled} end
loop;

end producer;

Producer Consumer Code

task consumer;
loop
wait (fullspots);{wait till not empty}}
FETCH(VALUE);
release(emptyspots); {increase empty}
--consumeVVALUE—
end loop;

end consumer;

Competition Synchronization with Semaphores

®  Athirdsemaphore, named access, isusedto controlaccess (competition synchronization)

— The counter of access will only have the values 0 and1

— Such a semaphore is called a binary semaphore
®  Note that wait and release must be atomic!

Producer Consumer Code

semaphore access, fullspots, emptyspots; access.count = 0;
fullstops.count = 0; emptyspots.count =

BUFLEN; task producer;

loop
-- produce VALUE —- wait(emptyspots);
{wait for space} wait(access); {wait

foraccess) DEPOSIT(VALUE);

release(access); {relinquish access}

release(fullspots); {increase filled} end loop;
end producer;

Producer Consumer Code
task consumer;



loop
wait(fullspots);{wait till not empty}
wait(access); {wait for access}
FETCH(VALUE);
release(access); {relinquish access}
release(emptyspots); {increase empty}
--consumeVVALUE—
end loop;

end consumer;

Evaluation of Semaphores

®  Misuseofsemaphorescancause failuresincooperationsynchronization, e.g., the buffer will
overflow if the wait of fullspots is left out

®  Misuseofsemaphorescancause failuresincompetitionsynchronization, e.g., the program
will deadlock if the release of access is left out

Monitors
® Ada, Java, C#
® Theidea: encapsulate the shared dataand its operations to restrict access

® A monitor is an abstract data type for shareddata

Competition Synchronization

® Shared data is resident in the monitor (rather than in the client units)

®  All access resident in the monitor

— Monitor implementation guarantee synchronized access by allowing only one access at a
time

— Callstomonitor proceduresare implicitly queued ifthe monitor is busy at the time
of the call

Cooperation Synchronization

®  Cooperation between processes is still a programming task

— Programmer must guarantee thatashared buffer doesnot experience
underflow or overflow
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Evaluation of Monitors

®  Abetterwayto provide competition synchronization than are semaphores
®  Semaphorescanbeusedto implement monitors

®  Monitorscanbeusedtoimplement semaphores

®  Supportforcooperationsynchronizationisverysimilaraswith semaphores, so
it has the same problems

Message Passing

®  Message passing is a general model forconcurrency

It can model both semaphores and monitors

Itis not just for competitionsynchronization

®  Centralidea: task communication is like seeing a doctor--most of the time she waits for you or
you wait for her, but when you are both ready, you get together, or rendezvous

Message Passing Rendezvous
®  Tosupport concurrent tasks with message passing, a language needs:
- A mechanismto allow atask to indicate when it is willing to accept messages

- Away to remember who is waiting to have its message accepted and



some —fairl way of choosing the nextmessage

®  Whenasender task‘s message isaccepted by areceiver task, the actual message
transmission is called a rendezvous

Ada Support for Concurrency
® The Ada 83 Message-Passing Model

— Adatasks have specificationand body parts, like packages; the spec has the interface,
which is the collection of entry points:

task Task_Example is
entry ENTRY_ 1 (Item : in Integer);
end Task_Example;

Task Body

®  Thebodytask describesthe action that takes place when arendezvous occurs

®  Ataskthat sendsamessage is suspended while waiting for the message to be accepted and

during the rendezvous

Entry points inthe spec are described with accept clauses in the body accept entry_name
(formal parameters) do

end entry_name

Example of a Task Body
task body Task_Example is begin
loop
accept Entry_1 (Item: in Float) do

end Entry 1;
end loop;
end Task_Example;

Ada Message Passing Semantics

®  Thetask executesto the top of the accept clause and waits for a message

* During execution of the accept clause, the sender is suspended
e acceptparameterscantransmitinformationineitherorbothdirections

Everyaccept clause hasanassociated queueto store waiting messages

Rendezvous Time Lines
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(b) SENDER waits for TASK_EXAMPLE

Message Passing: Server/Actor Tasks

®  Atask that has accept clauses, but no other code is called a server task
(the example above is a server task)

®  Atask without accept clauses is called an actor task

— An actor task can send messages to othertasks

— Note: Asender must know the entry name of the receiver, but not vice versa
(asymmetric)

Graphical Representation of a Rendezvous

Task &

accept

JOB1
Clases Task body
JOB2

B.JOB3 (Value)

Task B

JOB3 %/

accept
clauses

Example: Actor Task




task Water_Monitor; -- specificationtask body body Water _Monitoris -- body begin
loop
ifWater_Level>Max_Level then
Sound_Alarm;
end if;
delay 1.0; -- No further execution
-- for at least 1 second
end loop;
end Water_Monitor;

Multiple Entry Points

®  Tasks can have more than one entry point
— The specification task has an entry clause foreach

— Thetask body has an accept clause for each entry clause, placed ina select clause,
which is in a loop

A Task with Multiple Entries
task body Teller is
loop
select
accept Drive_Up(formal params) do

end Drive_Up;

or
accept Walk_Up(formal params) do

éﬁd Walk_Up;

end select;
end loop;
end Teller;

Semantics of Tasks with Multiple accept Clauses

®  |fexactly one entry queue is nonempty, choose a message from it

® |fmorethanone entry queue is nonempty, choose one,
nondeterministically, fromwhichto acceptamessage

If all are empty, wait



®  The construct is often called a selective wait

® Extendedacceptclause-code followingthe clause, butbeforethe next clause

— Executed concurrently with the caller

Cooperation Synchronization with Message Passing

®  Provided by Guarded accept clauses when
not Full(Buffer) =>
accept Deposit (New_Value) do

An accept clause with a with a when clause is either open or closed
— Aclause whose guard is true is called open
— Aclause whose guard is false is called closed

— Acclause without a guard is always open

Semantics of select with Guarded accept Clauses:

®  select first checks the guards on all clauses

®  Ifexactly one is open, its queue is checked for messages

®  |fmorethanoneareopen, non-deterministically chooseaqueue among them to check for
messages

® Ifallare closed, it is a runtime error

o

Aselect clause can include an else clause to avoid the error
— Whentheelseclause completes, the looprepeats

Example of a Task with Guarded accept Clauses

®  Note: The station may be out of gas and there may or may not be a position available
in the garage

task Gas_Station_Attendantis
entry Service_Island (Car :Car_Type); entry
Garage (Car : Car_Type);



end Gas_Station_Attendant;

Example of a Task with Guarded accept Clauses
taskbodyGas_Station_Attendant is begin
loop
select
when Gas_Available =>
accept Service_Island (Car : Car_Type) do
Fill_With_Gas (Car);
end Service_lsland;
or
when Garage_Available =>
acceptGarage(Car:Car_Type)do Fix
(Car);
end Garage;
else
Sleep;
end select; end
loop;
end Gas_Station_Attendant;

Competition Synchronization with Message Passing
®  Modeling mutually exclusive access to shared data
®  Example--a shared buffer

®  Encapsulate the buffer and its operations in atask

®  Competition synchronization is implicit in the semantics of accept clauses

Only one accept clause in a task can be active at any given time
Task Termination
® Theexecution of atask is completed if control has reached the end of its code body

®  |fatask has created no dependent tasks and is completed, it is terminated

® Ifatask has created dependent tasks and is completed, it is not terminated until
all its dependent tasks are terminated

The terminate Clause

®  Aterminate clause in a select is just a terminate statement

®  Aterminate clause is selected when no accept clause is open



® Whenaterminate is selected in a task, the task is terminated only when its master and all of
the dependents of its master are either completed or are waiting at a terminate

®  Ablock or subprogramis not left until all of its dependent tasks are terminated

Message Passing Priorities

®  The priority of any task can be set with the pragma priority
pragma Priority (expression);

®  Thepriority ofa task applies to it only when it is in the task ready queue
Binary Semaphores

®  Forsituations where the datato which access is to be controlled is NOT encapsulated in a
task

taskBinary_Semaphoreis entry
Wait;
entry release;

end Binary_Semaphore;

taskbodyBinary Semaphoreis begin
loop
accept Wait; accept
Release;
end loop;
end Binary_Semaphore;

Concurrency in Ada 95

®  Ada95includes Ada 83 features for concurrency, plus two new features

— Protectedobjects: Amoreefficientwayofimplementingshareddata to allow access to
a shared data structure to be done without rendezvous

— Asynchronous communication

Ada 95: Protected Objects
® A protected object is similar to an abstract data type

®  Accesstoaprotected object is either through messages passed to entries,



as with a task, or through protected subprograms
® A protected procedure provides mutually exclusive read-write access to protected objects

® A protected function provides concurrent read-only access to protected objects

Asynchronous Communication
®  Provided through asynchronous select structures

®  Anasynchronousselect hastwotriggeringalternatives, anentryclauseor a delay

— Theentry clause is triggered when sent a message
— The delay clause is triggered when its time limit is reached

Evaluation of the Ada
®  Message passing model of concurrency is powerful and general
®  Protected objects are a better way to provide synchronized shared data

® Intheabsenceofdistributed processors, the choice betweenmonitorsand tasks with message
passing is somewhat a matter of taste

®  Fordistributed systems, message passing isabetter model for concurrency

Java Threads

®  The concurrent units in Java are methods named run
— Arun method code can be in concurrent execution with other such methods

— The process in which the run methods execute is called a thread

ClassmyThreadextendsThread public
voidrun() {...}
}

'.I"r.lread myTh = new MyThread ();
myTh.start();

Controlling Thread Execution

®  The Thread class has several methods to control the execution of threads



Theyield isarequest fromthe running thread to voluntarily surrender the
processor

— Thesleep method can be used by the caller ofthe method to block the thread

The join method is used to force a method to delay its execution until the run method of
another thread has completed its execution

Thread Priorities

®  Athread‘s default priority is the same as the thread that create it
— If main creates a thread, its default priority is NORM_PRIORITY
®  Threads defined two other priority constants, MAX_PRIORITY and
MIN_PRIORITY
[ _J

The priority of a thread can be changed with the methods setPriority

Competition Synchronization with Java Threads

®  Amethodthatincludesthe synchronized modifier disallowsany other method from
running on the object while it is in execution

b.u.blic synchronized void deposit(inti) {...} public
synchronized int fetch() {...}

Theabovetwo methodsaresynchronizedwhichpreventsthemfrom interfering with
each other

If onlya part of a method must be run without interference, it can be synchronized thru
synchronized statement

synchronized (expression)
statement

Cooperation Synchronization with Java Threads

Cooperationsynchronization in Java is achieved via wait, notify, and notifyAll
methods

— All methods are defined in Object, which is the root class in Java, so all objects inherit
them

®  The wait method must be called in aloop



®  Thenotify method is called to tell one waiting thread that the event it was waiting has
happened

®  The notifyAll method awakens all of the threads on the object ‘s wait list

Java’s Thread Evaluation
®  Java‘ssupport for concurrency is relatively simple but effective

®  Not as powerful as Ada‘s tasks

C# Threads

®  Loosely based on Java but there are significant differences

®  Basic thread operations
— Any method can run in its own thread
— Athread is created by creating a Threadobject

— Creatingathread does not start its concurrent execution; it must be requested through
the Start method

— Athread can be made to wait for another thread to finish with Join
— Athread canbe suspended with Sleep

— Athread canbeterminated with Abort

Synchronizing Threads

®  Three ways to synchronize C# threads

— The Interlocked class

® Usedwhenthe only operations that need to be synchronized are incrementing or
decrementing of aninteger

— The lock statement

® Usedto mark a critical section of code inathread lock
(expression) {...}

— The Monitor class

® Provides four methods that can be used to provide more sophisticated
synchronization



C#’s Concurrency Evaluation

®  Anadvance over Java threads, e.g., any method can run its own thread
®  Thread termination is cleaner than in Java

®  Synchronization is more sophisticated

Statement-Level Concurrency

®  Objective: Provide amechanism that the programmer can use to inform compiler ofwaysit
can mapthe programonto multiprocessorarchitecture

®  Minimizecommunicationamong processorsandthememoriesoftheother processors

High-Performance Fortran

®  Acollection of extensions that allow the programmer to provide informationtothe
compilertohelpitoptimize code formultiprocessor computers

®  Specifythenumber ofprocessors, thedistributionof dataover the memories of those
processors, and the alignment of data

Primary HPF Specifications

®  Number of processors
IHPF$ PROCESSORS procs (n)

®  Distribution of data
IHPF$DISTRIBUTE (kind) ONTO procs:: identifier_list

— kind canbe BLOCK (distribute datato processorsin blocks) or CYCLIC
(distribute datato processorsone element at atime)

®  Relatethedistributionofonearraywiththat ofanother ALIGN
arrayi_element WITH array2_element

Statement-Level Concurrency Example
REAL list_1(1000), list_2(1000) INTEGER
list_3(500), list_4(501)

IHPF$ PROCESSORS proc (10)

IHPF$ DISTRIBUTE (BLOCK) ONTO procs ::

list_1, list_ 2
IHPF$ ALIGN list_1(index) WITH list_4
(index+1)



list_1 (index) = list_2(index)
list_3(index) = list_4(index+1)
e  FORALL statementis used to specify a list of statements that may be executed
concurrently
FORALL (index = 1:1000)
list_1(index) = list_2(index)

®  Specifiesthatall 1,000 RHSsoftheassignments canbeevaluated before any assignment
takes place

Summary

®  Concurrentexecution canbe atthe instruction, statement, or subprogram level

Physicalconcurrency: whenmultiple processorsare usedtoexecute concurrent units
[
®  Logicalconcurrency: concurrent united are executed onasingle processor

®  Two primary facilities to support subprogram concurrency: competition synchronization and
cooperation synchronization

Mechanisms: semaphores, monitors, rendezvous, threads

® High-Performance Fortran provides statements for specifying how data is tobedistributed
overthe memoryunitsconnectedto multiple processors



UNIT-VII
Exception Handling
Topics
* Introduction to Exception Handling
* ExceptionHandlinginAda

* Exception Handling in C++
* Exception Handling in Java

® Functional Programming Language Introduction

® Mathematical Functions

® Fundamentals of Functional Programming Languages
® The First Functional Programming Language: LISP
*® ML

® Haskell

® Applications of Functional Languages

® Comparison of Functional and Imperative Languages

Introduction to Exception Handling

* In a language without exception handling

—Whenanexceptionoccurs, controlgoestothe operating system, where a message is
displayed and the program is terminated

*® In a language with exception handling

—Programsareallowedtotrapsomeexceptions, therebyprovidingthe possibility of
fixing the problem and continuing

Basic Concepts

® Many languages allow programs to trap input/output errors (including EOF)



® Anexception is any unusual event, either erroneous or not, detectable by either hardware or
software, that may require special processing

® Thespecial processing that may be required after detectionofanexception is called exception
handling

® The exception handling code unit is called an exception handler

Exception Handling Alternatives
® An exception is raised when its associated eventoccurs

® A language that does not have exception handling capabilities can still define, detect, raise, and
handle exceptions (user defined, software detected)

® Alternatives:

—Sendan auxiliary parameter or use the returnvalue to indicate the return status of a
subprogram

—Pass an exception handling subprogram to all subprograms
Advantages of Built-in Exception Handling

* Error detection code is tedious to write and it clutters the program
* Exception handling encourages programmers to consider many different possible errors

* Exceptionpropagationallowsahighlevel ofreuse of exception handling code

Design Issues

* How are user-defined exceptions specified?

* Shouldthere be default exceptionhandlers for programsthat do not provide their own?
* Can built-in exceptions be explicitly raised?

< Are hardware-detectable errorstreated as exceptions that can be handled?

* Are there any built-in exceptions?

* How can exceptions be disabled, if at all?

* How and where are exception handlers specified and what is their scope?

* How is an exception occurrence bound to an exception handler?

* Can information about the exception be passed to the handler?



* Wheredoesexecutioncontinue, ifatall, afteranexceptionhandler completes its execution?
(continuation vs. resumption)

* |s some form of finalization provided?
Exception Handling Control Flow

Executing code Exception handlers

when ..

begin
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Termination

Exception Handling in Ada

* The frame ofanexception handler in Ada is either asubprogram body, a package body, a
task, or ablock

* Because exception handlers are usually local to the code inwhichthe exception can be
raised, they do not have parameters

Ada Exception Handlers

® Handler form:
when exception_choice{|exception_choice} => statement_sequence

[when others =>
statement_sequence]

exception__choice form:
exception_name | others

® Handlers are placed at the end of the block or unit in which they occur

Binding Exceptions to Handlers

* |fthe block or unit in which an exception is raised does not have a handler



for that exception, the exception is propagated elsewhere to be handled
—Procedures - propagate it to the caller
—Blocks - propagate it to the scope in which it appears

—Package body - propagate it to the declaration part of the unit that declaredthe
package (if itisalibraryunit, the programisterminated)

—Task - no propagation; if it has a handler, execute it; in either case, mark it "completed"

Continuation

* The block or unit that raises an exception but does not handle it isalways terminated (also
any block or unit to which it is propagated that does not handle it)

Other Design Choices

® User-defined Exceptions form:
exception_name_list : exception;

* Raising Exceptions form: raise
[exception_name]

—(the exception name is not required if it is in a handler--in this case, it propagates the
same exception)

* Exceptionconditions can bedisabled with: pragma
SUPPRESS(exception_list)

Predefined Exceptions
® CONSTRAINT_ERROR - index constraints, range constraints, etc.

® NUMERIC_ERROR-numericoperationcannotreturnacorrectvalue (overflow,
division by zero, etc.)

® PROGRAM_ERROR - call to asubprogramwhose body has not been elaborated
® STORAGE_ERROR - system runs out of heap

® TASKING_ERROR - an error associated with tasks

Evaluation

*® The Ada design for exception handling embodies the state-of-the-art in



language design in 1980
® A significant advance over PL/I
® Adawas the only widely used language with exception handling until it was added to C++

Exception Handling in C++
® Added to C++ in 1990
* Design is based on that of CLU, Ada, and ML

C++ Exception Handlers

® Exception Handlers Form: try {
-- code that is expected to raise an exception

}

catch (formal parameter) {
-- handler code

}

é{;ltch (formal parameter) {
-- handler code

}

The catch Function

e catch is the name of all handlers--it is an overloaded name, so the formal parameter of each
must be unique

* The formal parameter need not have avariable

—It can be simply a type name to distinguish the handler it is in from others
* The formal parameter can be used to transfer information to the handler
* The formal parameter can be an ellipsis, inwhich case it handles all exceptions not yet
handled
Throwing Exceptions

* Exceptionsareallraised explicitly bythestatement: throw
[expression];

* The brackets are metasymbols

* Athrow without an operand can only appear ina handler; when it appears, it simply re-raises
the exception, which is then handled elsewhere



* The type of the expression disambiguates the intended handler

Unhandled Exceptions

* Anunhandled exception is propagated to the caller of the function inwhich it is raised
* This propagation continues to the main function

Continuation

* Afterahandler completesitsexecution, control flowstothe first statement after the last handler
in the sequence of handlers of which it isan element

* Other design choices
—All exceptions are user-defined
—Exceptions are neither specified nor declared
—Functions can list the exceptions they may raise

—Withoutaspecification, a function canraise any exception (the throw clause)
Evaluation

* Itis odd that exceptions are not named and that hardware- and system software-detectable
exceptions cannot be handled

* Bindingexceptionstohandlersthroughthetype ofthe parameter certainly does not promote
readability

Exception Handling in Java
* Based on that of C++, but more in line with OOP philosophy

* Allexceptionsareobjectsofclassesthatare descendantsofthe Throwable class
Classes of Exceptions

® The Java library includes two subclasses of Throwable:
—Error
® Thrown by the Java interpreter for events such as heap overflow
“® Never handled by user programs

—Exception



® User-defined exceptions are usually subclasses of this

® Has two predefined subclasses, IOException and RuntimeException (e.g.,
ArraylndexOutOfBoundsException and NullPointerException

Java Exception Handlers

* LikethoseofC++,excepteverycatchrequiresanamedparameterandall parameters must be
descendants of Throwable

* Syntax of try clause is exactly that of C++

* Exceptionsarethrownwiththrow, asin C++, butoftenthe throw includes the new operator to
create the object, as in: throw new MyException();

Binding Exceptions to Handlers

* Binding an exception to a handler is simpler in Java than it is in C++

—An exception is bound to the first handler with a parameter is the same class as the thrown object or
an ancestor of it

* Anexception can be handled and rethrown by including athrow in the handler (a handler
could also throw a different exception)

Continuation

® |£no handler is found in the method, the exception is propagated to the method*s caller
® |f no handler is found (all the way to main), the program is terminated

@ To ensure that all exceptions are caught, a handler can be included inany try construct that
catches all exceptions

—Simply use an Exception class parameter

—Of course, it must be the last in the try construct

Checked and Unchecked Exceptions
* The Java throws clause is quite different from the throw clause of C++

* Exceptionsofclass Errorand RunTimeExceptionand all oftheir descendants are called
unchecked exceptions; all other exceptions are called checked exceptions

* Checked exceptions that may be thrown by a method must be either:



=—L.isted in the throws clause, or
—Handled in the method
Other Design Choices

® A method cannot declare more exceptions in its throws clause than the method it
overrides

® A method that calls a method that lists a particular checked exception in its throws clause has
three alternatives for dealing with that exception:

—Catch and handle the exception

—Catchthe exceptionand throw an exceptionthat is listed in its own throws clause
—Declare it in its throws clause and do not handle it

The finally Clause

© Can appear at the end of a try construct

®Form:
finally {

}

* Purpose: To specify codethat isto be executed, regardless of what happens in the try construct

Example

® Atryconstruct with a finally clause can be used outside exception handling try {
for (index = 0; index < 100; index++) {

if (...) {
return;
}1/** end of if
} /I**end oftry clause
finally {

}1/** end of try construct

Assertions



® Statementsintheprogramdeclaringabooleanexpressionregardingthe current state of the
computation

® When evaluated to true nothing happens
® When evaluated to false an AssertionError exception is thrown Canbedisabled

® during runtime without program modificationor
recompilation

*® Two forms

—assert condition;

—assert condition: expression;

Evaluation
® The types of exceptions makes more sense than in the case of C++

* Thethrowsclause isbetterthanthatof C++ (Thethrowclause inC++says little to the
programmer)

* The finally clause is often useful

* The Java interpreter throws avariety of exceptions that can be handled by user programs

Functional Programming Language Introduction
* The design of the imperative languages is based directly onthe von Neumann architecture
Efficiency isthe primary concern, rather than the suitability ofthe language for

software development

* The design of the functional languages is based on mathematical functions
—Asolid theoretical basis that is also closer to the user, but relatively unconcerned with
thearchitecture ofthe machinesonwhichprograms will run

Mathematical Functions

* A mathematical function is a mapping of members of one set, called the
domain set, to another set, called the range set

® A lambda expression specifies the parameter(s) and the mapping of a function in the
following form



A(X) X * X *x
for the function cube (X) = X * X * x

Lambda Expressions
* Lambda expressions describe nameless functions

* Lambda expressions are applied to parameter(s) by placing the parameter(s) after the expression

e.g., (AX)x*x*x)(2)
which evaluates t08

Functional Forms

* A higher-order function, or functional form, is one that either takes functions as parameters or
yields a function as its result, orboth

Function Composition

< A functional form that takes two functions as parameters and yields a functionwhose
value isthe first actual parameter function applied to the application of the second
Form: h f°g
which means h (x) f(g(x))
Forf(x) x+2 andg(X) 3 *X,
h f°gyields (3 *x)+2

Apply-to-all

* A functional formthat takes a single function as a parameter and yields a list of values obtained
by applying the given function to each element of a list of parameters
Form:
For h (x) X* X
(h, (2, 3, 4)) yields (4, 9, 16)

Fundamentals of Functional Programming Languages

® The objective ofthe design ofa FPL is to mimic mathematical functionsto the greatest extent
possible

® The basic process of computation is fundamentally different ina FPL than in an imperative
language

—Inanimperative language, operationsare doneand theresultsare stored in variables
for later use

—Management of variables is a constant concern and source of



complexity for imperative programming
® Inan FPL, variables are not necessary, as is the case in mathematics

Referential Transparency

® Inan FPL, the evaluation ofa function always produces the same result given the same parameters

LISP Data Types and Structures
® Data object types: originally only atoms and lists

® List form: parenthesized collections of sublists and/or atoms e.g., (A B (C
D) E)

* Originally, LISP was a typeless language
© LISP lists are stored internally as single-linked lists

LISP Interpretation

® |_ambda notation is used to specify functions and function definitions.
Function applications and data have the same form. e.g., Ifthe list
(ABC)isinterpreted asdata it is a simple list of three
atoms, A, B,and C
Ifitisinterpretedasafunctionapplication, it means
that the function named A is applied to the two
parameters, B and C

® Thefirst LISP interpreter appearedonlyasa demonstrationofthe universality of the
computational capabilities of the notation

ML
® Astatic-scoped functional language with syntax that is closer to Pascal than to LISP

Uses type declarations, but also does type inferencing to determine the types of undeclared

Wiables
® |tisstrongly typed (whereas Scheme is essentially typeless) and has no type coercions

Includesexceptionhandlingandamodule facility forimplementingabstract data types
e



® Includes lists and list operations

ML Specifics

® Function declaration form:
fun name (parameters) = body; e.g.,
funcube (X : int) =x*x* x;

- The type could be attached to return value, as in fun cube (x)
Dint = X * X *X;
- With notype specified, itwould default to int (the
default for numeric values)
- User-definedoverloaded functionsare notallowed, so ifwe wanted acube function for real
parameters, it would need to have a different name
- There are no type coercions in ML

* ML selection
if expression then then_expression
else else_expression
where the first expression must evaluate to a Boolean value

* pPatternmatching isusedto allow a functionto operate ondifferent parameter forms
fun fact(0) =1
| fact(n : int) : int =
n* fact(n — 1)

® Lists
Literallistsarespecifiedinbrackets [3, 5, 7]
[] is the empty list
CONS is the binary infix operator, ::
4::[3,5, 7], which evaluates to [4, 3, 5, 7] CAR is
the unary operator hd
CDR isthe unary operatortl fun
length([]) =0
| length(h ::t) = 1 +length(t);

fun append([], lis2) = lis2
| append(h ::t, lis2) = h :: append(t, lis2);

* The val statement bindsaname to avalue (similar to DEFINE in Scheme) val distance = time
* speed;

- As is the case with DEFINE, val is nothing like an assignment statement in



an imperative language

Haskell

® Similarto ML (syntax, staticscoped, stronglytyped, type inferencing, pattern matching)

® Different from ML (and most other functional languages) in that it is purely functional (e.g.,no
variables, noassignment statements, and no side effectsof any kind)
Syntax differences from ML fact 0
=1
fact n=n* fact (n — 1)

fibo=1
fibl=1
fib (n +2) = fib (n + 1) + fib n

Function Definitions with Different Parameter Ranges
fact n

|n==0=1

| n>0=n%*fact(n—1)

sub n
[n<10 =0
| n>100 =2
| otherwise =1

square X = X * X

- Works for any numeric type of x
Lists

® | _ist notation: Put elements in brackets
e.g.,directions=["north", "south", "east", "west"]

® |ength: #
e.g., #directions is 4

® Arithmeticserieswiththe..operator e.g., [2,
4.10]is[2, 4, 6,8, 10]

® Catenation is with ++



e.g., [1, 3] ++ [5, 7] results in [1, 3, 5, 7]

® CONS, CAR, CDRVviathecolonoperator (asinProlog) e.g., 1:[3, 5,
7] results in [1, 3, 5,7]

Factorial Revisited
product [] =1
product (a:x) =a* product x fact n

= product[1..n]

List Comprehension
* Set notation
® List of the squares of the first 20 positive integers: [n* n | n <« [1..20]]

* Allofthe factorsofitsgivenparameter: factors n
=[i]i<[1.n div 2],
n mod i==0]

Quicksort

sort[] =11

sort(a:x)=
sort[b|b«— x;b<=a] ++
[a] ++
sort [b |b « x; b > a]

Lazy Evaluation
® A language is strict if it requires all actual parameters to be fully evaluated

® A language is nonstrict if it does not have the strict requirement

“® Nonstrict languagesare moreefficientandallowsome interestingcapabilities
— infinite lists

® Lazy evaluation - Only compute those values that are necessary

® Positive numbers
positives = [0..]

® Determining if 16 isa square number member
[] b =False

member(a:x) b=(a == b)||/member x b squares = [n
*Nn|n<—[0.]]
member squares 16

Member Revisited



® The member function could be writtenas: member []
b =False
member(a:x) b=(a == b)||member x b
*® However, thiswould onlywork ifthe parameter to squares wasa perfect square; ifnot, itwill
keepgeneratingthemforever. Thefollowingversionwill always work:
member2 (m:x) n
| m<n=member2 xn
| m==n=True
| otherwise = False

Applications of Functional Languages
* APL isused forthrow-awayprograms
* LISP is used for artificial intelligence

—Knowledge representation
—Machine learning
—Natural language processing

—Modeling of speech and vision

* Scheme is used to teach introductory programming at some universities

Comparing Functional and Imperative Languages

* Imperative Languages:
—Efficient execution
—Complex semantics
—Complex syntax

—Concurrency is programmer designed

* Functional Languages:
—Simple semantics

—Simple syntax



—Inefficient execution

—Programs can automatically be made concurrent
Summary

® Ada provides extensive exception-handling facilities with a comprehensive set of built-in
exceptions.

® C++includesnopredefinedexceptionsExceptionsareboundtohandlersby connecting the type
ofexpression inthe throw statement to that of the formal parameter of the catch function

Javaexceptionsaresimilarto C++exceptionsexcept thataJavaexception must be a
®scendant of the Throwable class. Additionally Java includes a finally clause

“® Functional programming languages use function application, conditional expressions,
recursion, and functional formsto control programexecution instead of imperative features
such as variables and assignments

® LISP beganasapurelyfunctional languageand later included imperative features
® Schemeisarelatively simpledialect of LISP that usesstatic scoping exclusively
® COMMON LISP is a large LISP-based language

® ML isastatic-scoped and strongly typed functional language which includes type inference,
exception handling, and a variety of data structures and abstract data types

® Haskell isa lazy functional language supporting infinite lists and set comprehension.

*® Purelyfunctional languages have advantages over imperative alternatives, buttheir lower
efficiencyonexisting machinearchitectureshaspreventedthem from enjoying widespread use



Unit-VIII
Logic Programming Languages

Topics
® Introduction

* ABriefIntroductiontoPredicate Calculus
* Predicate Calculus and Proving Theorems
* An Overview of Logic Programming

* The Origins of Prolog

* The Basic Elements of Prolog

* Deficiencies of Prolog

< Applications of Logic Programming

Introduction
® Logicprogramming languages, sometimescalleddeclarative programming languages

* Express programs in a form of symbolic logic
* Use a logical inferencing process to produceresults

® Declarative rather that procedural:
—Only specification of results are stated (not detailed procedures for producing them)

Proposition

* A logical statement that may or may not betrue
—Consists of objects and relationships of objects to each other

Symbolic Logic

* Logic which can be used for the basic needs of formal logic:
—EXxpress propositions
—Express relationships between propositions

—Describe how new propositions can be inferred from other propositions



® Particular formofsymbolic logic used for logic programming called predicate calculus

Object Representation
* Objectsinpropositionsare represented bysimpleterms: either constantsor variables

® Constant: a symbol that represents an object
® Variable: asymbol that can represent different objects at different times

—Different from variables in imperative languages

Compound Terms
® Atomic propositions consist of compound terms

® Compound term: one element of a mathematical relation, written like a mathematical
function

—Mathematical function is a mapping
=—Can be written as a table

Parts of a Compound Term

* Compound term composed of two parts

—Functor: function symbol that names the relationship

—Ordered list of parameters (tuple)

® Examples:
student(jon) like(seth,
0OSX) like(nick,
windows) like(jim,
linux)

Forms of a Proposition

* Propositions can be stated in two forms:
—Fact: proposition is assumed to be true

—Query: truth of proposition is to be determined

* Compound proposition:



—Have two or more atomic propositions

—Propositions are connected by operators

Logical Operators

Name Symbol Example Meaning
negation — —a not a
conjunction a amb aandb
disjunction U aub aorb
equivalence = a=b a is equivalent to b
implication > aob a impliesb
s achb b impliesa
Quantifiers
Name Example | Meaning
universal | ¥X.P For all X, P is true
existential | 3X.P There exists a value of X such thatPis true

Clausal Form

* Too many ways to state the same thing

* Use a standard form for propositions

® Clausal form:

—BiuBu..uBrhcAInN AN .. An

—means if all the As are true, then at least one B is true




® Antecedent: right side

® Consequent: left side

Predicate Calculus and Proving Theorems

* Ause ofpropositions isto discover new theorems that can be inferred from known axioms and
theorems

® Resolution:aninference principle thatallows inferred propositions to be computed from
given propositions
Resolution

® Unification: finding values for variables in propositions that allows matching process to
succeed

® Instantiation: assigning temporary valuesto variablesto allow unificationto succeed
* After instantiating a variable with a value, if matching fails, may need to

backtrack and instantiate with a different value

Theorem Proving

* Basis for logic programming

* When propositions used for resolution, only restricted form can be used

® Horn clause - can have only two forms
—Headed: single atomic proposition on left side

—Headless: empty left side (used to state facts)

* Most propositions can be stated as Horn clauses

Overview of Logic Programming

® Declarative semantics
—There is a simple way to determine the meaning of each statement

—Simpler than the semantics of imperative languages

*® Programming is nonprocedural

—Programs do not state now a result is to be computed, but rather the form of the result



The Origins of Prolog

* University of Aix-Marseille

—Natural language processing
* University of Edinburgh

—Automated theorem proving

Terms

* Edinburgh Syntax

® Term: a constant, variable, or structure
® Constant: an atom or an integer

® Atom: symbolic value of Prolog

* Atom consists of either:
—astring of letters, digits, and underscores beginning with a lowercase letter

—a string of printable ASCII characters delimited by apostrophes

Terms: Variables and Structures

® Variable: anystring of letters, digits, and underscores beginning withan uppercase letter

® Instantiation: binding of a variable to a value

—Lasts only as long as it takes to satisfy one complete goal

® Structure:representsatomicproposition
functor(parameter list)

Fact Statements

* Used for the hypotheses

* Headless Horn clauses
female(shelley).
male(bill). father(bill,
jake).

Rule Statements

©® Used for the hypotheses



® Headed Horn clause
® Right side: antecedent (if part)

—May be single term or conjunction

® |_eft side: consequent (then part)

—Must be single term

* Conjunction: multiple terms separated by logical AND operations (implied)

Example Rules
ancestor(mary,shelley):- mother(mary,shelley).

® Canuse variables (universal objects) to generalize meaning:
parent(X,Y):- mother(X,Y).
parent(X,Y):- father(X,Y).
grandparent(X,Z):- parent(X,Y), parent(Y,Z).
sibling(X,Y):- mother(M,X), mother(M,Y), father(F,X),
father(F,Y).
Goal Statements

® Fortheoremproving, theoremis in formofproposition that we want system to prove or disprove
— goal statement

® Same formatasheadlessHorn
man(fred)

* Conjunctivepropositionsandpropositionswithvariablesalso legalgoals father(X,mike)
Inferencing Process of Prolog

® Queries are called goals
® |fagoal is a compound proposition, each of the facts is a subgoal

® T0 prove a goal is true, must find a chain of inference rules and/or facts.

For goal Q:
B:-A
C:-B

Q P



® Process of proving a subgoal called matching, satisfying, or resolution

Approaches

® Bottom-up resolution, forward chaining

—Beginwith factsand rules ofdatabase and attempt to find sequence that leads to goal

—Works well with a large set of possibly correct answers

® Top-down resolution, backward chaining

—Beginwith goal and attempt to find sequence that leads to set of facts in database

—Works well with a small set of possibly correct answers

® Prolog implementations use backward chaining

Subgoal Strategies

* When goal has more than one subgoal, can useeither
—Depth-firstsearch: findacomplete proofforthe first subgoal before working on others

—Breadth-first search: work on all subgoals inparallel

* Prolog uses depth-first search
—Can be done with fewer computer resources

Backtracking

< With agoal with multiple subgoals, if fail to show truth of one of subgoals, reconsider
previous subgoal to find an alternative solution: backtracking

* Begin search where previous search left off

* Cantake lots of time and space because may find all possible proofs to every subgoal

Simple Arithmetic

* Prolog supports integer variables and integerarithmetic
e isoperator: takes anarithmetic expressionas right operand and variable as left operand



AisB/17+C

“ Not the same as an assignment statement!

Example
speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).

time(chevy,21).
time(dodge,24).
time(volvo,24).
distance(X,Y) :- speed(X,Speed),
time(X,Time),
Y is Speed * Time.
Trace

® Built-in structure that displays instantiations at each step

® Tracing model of execution - fourevents:
—Call (beginning of attempt to satisfy goal)
—Exit (when a goal has been satisfied)
—Redo (when backtrack occurs)

—Fail (when goal fails)

Example

likes(jake,chocolate). likes(jake,apricots).
likes(darcie,licorice). likes(darcie,apricots).

trace.

likes(jake, X),
likes(darcie, X).

List Structures



® Otherbasicdatastructure (besidesatomicpropositionswe havealready seen): list

® List is a sequence of any number of elements

“® Elementscanbeatoms, atomic propositions, or otherterms (including other lists)
[apple, prune, grape, kumquat] []

(empty list)
[X]Y] (head X and tail Y)

Append Example
append([], List, List).
append([Head | List_1], List_2, [Head |List_3]) :- append
(List_1, List_2,List_3).

Reverse Example

reverse([], [)-

reverse([Head | Tail], List) :-
reverse (Tail, Result), append
(Result, [Head], List).
Deficiencies of Prolog

® Resolution order control
® The closed-world assumption
“ The negation problem

® Intrinsic limitations

Applications of Logic Programming
* Relational database management systems
® Expert systems

* Natural language processing

Summary

* Symbolic logic provides basis for logicprogramming

® Logic programs should be nonprocedural

® Prolog statements are facts, rules, or goals

* Resolution is the primary activity of a Prolog interpreter

* Although there are a number of drawbacks with the current state of logic



programming it has been used in a number of areas
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