

IIYearB. TechCSE-ISem LT/P/DC

3 -/-/- 3

SOFTWAREENGINEERING

OBJECTIVES:

 Tocomprehendthevarioussoftwareprocessmodels.

 Tounderstand thetypesofsoftwarerequirementsand SRSdocument.

 Toknowthedifferentsoftwaredesignandarchitecturalstyles.

 Tolearnthesoftwaretestingapproachesandmetricsusedinsoftwaredevelopment.

 Toknowaboutqualitycontrolandriskmanagement.

UNIT -I:

Introduction to Software Engineering: The evolving role of software, Changing Nature

ofSoftware,Softwaremyths.

AGenericviewofprocess:Softwareengineering-

Alayeredtechnology,aprocessframework,Process patterns,process assessment.
Process models: The waterfall model, Incremental process models, Evolutionary process models, The
Unifiedprocess, Agility and Agile Process model, Extreme Programming, Other process models of Agile

DevelopmentandTools

UNIT - II:

SoftwareRequirements:Functionalandnon-

functionalrequirements,Userrequirements,Systemrequirements,Interfacespecification,thesoftwarerequirements

document.

Requirementsengineeringprocess:Feasibilitystudies,Requirementselicitationandanalysis,

Requirementsvalidation,Requirementsmanagement.
System models: Context Models, Behavioral models, Data models, Object models, structured methods.

UMLDiagrams.

UNIT- III:

DesignEngineering:DesignprocessandDesignquality,

Designconcepts,thedesignmodel.Creating an architectural design: Software architecture,

Data design, Architectural stylesandpatterns,ArchitecturalDesign.

Object-OrientedDesign: Objectsandobjectclasses,AnObject-

Orienteddesignprocess,Designevolution.

PerformingUserinterfacedesign:Goldenrules,Userinterfaceanalysisanddesign,interface

analysis,interface designsteps,Designevaluation.

UNIT - IV:

TestingStrategies:Astrategicapproachtosoftwaretesting,teststrategiesforconventionalsoftware,Black-

BoxandWhite-Boxtesting,Validationtesting,Systemtesting,theartofDebugging.

Productmetrics:SoftwareQuality,Metrics forAnalysisModel,Metrics

forDesignModel,Metricsforsourcecode,Metricsfortesting,Metricsformaintenance.

MetricsforProcessandProducts:SoftwareMeasurement,Metricsforsoftwarequality.

UNIT-V:

Risk management: Reactive vs. Proactive Risk strategies, software risks, Risk
identification,Riskprojection,Riskrefinement,RMMM, RMMMPlan.

Quality Management:Quality concepts,Software quality assurance,Software

Reviews,Formal technical reviews, Statistical Software quality Assurance, The Capability

MaturityModelIntegration(CMMI),Softwarereliability,TheISO9000qualitystandards.

TEXTBOOKS:

1. SoftwareEngineeringApractitioner’sApproach,RogerSPressman,6the
dition.McGrawHillInternationalEdition.

2. SoftwareEngineering,IanSommerville, 7thedition,Pearsoneducation.

REFERENCEBOOKS:

1. SoftwareEngineering,APreciseApproach,PankajJalote,WileyIndia,2010.
2. Software Engineering: A Primer, Waman S Jawadekar, Tata McGraw-

Hill,2008

3. SoftwareEngineering,PrinciplesandPractices,DeepakJain,OxfordUni
versityPress.

4. Software Engineering1:Abstraction and modelling,
DinerBjorner,
SpringerInternationaledition,2006.

5. Software Engineering2: Specification of systems and languages,
DinerBjorner,SpringerInternationaledition2006.

6. Software Engineering Principles and Practice, Hans Van Vliet,
3rdedition,JohnWiley&SonsLtd.

7. Software Engineering3: Domains, Requirements, and
SoftwareDesign,D.Bjorner,SpringerInternationalEdition.

8. IntroductiontoSoftwareEngineering,R.J.Leach,CRCPress.

OUTCOMES:

Attheendofthecoursethestudentsareableto:

 Tocompareandselectaprocessmodelforabusinesssystem.

 Toidentifyandspecifytherequirementsforthedevelopmentofanapplic

ation.

 Todevelopand

maintainefficient,reliableandcosteffectivesoftwaresolutions.

 Tocriticallythink andevaluateassumptionsand argumentsoftheclient.

INDEX

UNITNO TOPIC PAGENO

1

IntroductiontoSoftwareEngineering 1-2

AGenericviewofprocess 2-22

2

SoftwareRequirements 23-32

Requirementsengineeringprocess 32-41

Systemmodels 41-48

3

DesignEngineering 49-56

Creatinganarchitecturaldesign 56-63

Object-OrientedDesign 64-66

PerformingUserinterfacedesign 66-73

4

TestingStrategies 74-80

Product metrics 80-81

MetricsforProcessand Products 81-84

5

Riskmanagement 85-89

QualityManagement 89-97

SOFTWAREENGINEERING

Software:Softwareis

UNIT-I

INTRODUCTIONTOSOFTWAREENGINEERING

Instructions(computerprograms)thatprovidedesiredfeatures,function,andperformance,whenexecut
ed
Datastructures thatenabletheprogramstoadequatelymanipulateinformation,Documents
thatdescribetheoperationanduseoftheprograms.

Characteristicsof Software:

Softwareis
developedorengineered;itisnotmanufacturedintheclassicalsense.Softwaredoesnot―wearo
ut‖

Although the industry is moving toward component-based construction, most software
continuestobecustom built.

SoftwareEngineering:
The systematic, disciplined quantifiable approach to the development, operation and
maintenanceofsoftware;thatis, theapplicationofengineeringtosoftware.

Thestudyofapproachesasin(1)

EVOLVINGROLEOFSOFTWARE:

Softwaretakes dualrole.Itis bothaproductandavehiclefordeliveringaproduct.
As a product: It delivers the computing potential embodied by computer Hardware or

byanetworkofcomputers.

Asavehicle:Itisinformationtransformer-producing,managing,acquiring,modifying,displaying, or

transmitting information that can be as simple as single bit or as complex as a
multimediapresentation.Softwaredeliversthemostimportantproductofourtime-information.

Ittransformspersonaldata

ItmanagesbusinessinformationtoenhancecompetitivenessItpr

ovides agatewayto worldwideinformationnetworks

Itprovidesthemeansforacquiringinformation

Theroleofcomputer softwarehasundergonesignificantchangeover aspanoflittlemorethan50

yearsDramaticImprovementsinhardwareperformance
Vastincreasesinmemory
andstoragecapacityAwide varietyofexoticinput
andoutputoptions

1970sand1980s:

Osborne characterizeda ―newindustrialrevolution‖

Tofflercalledtheadventofmicroelectronicspartof―thethirdwaveofchange‖inhumanhistory

Naisbittpredictedthetransformationfromanindustrialsocietytoan―informationsociety‖

Feigenbaum and McCorduck suggested that information and knowledge would be the

focalpointforpowerinthetwenty-firstcentury

Stollarguedthatthe―electroniccommunity‖createdbynetworksandsoftwarewasthekeyto
knowledgeinterchangethroughouttheworld

1990sbegan:

Toffierdescribeda―powershift‖inwhicholdpowerstructuresdisintegrateascomputersand

softwareleadtoa―democratizationofknowledge‖.

YourdonworriedthatU.Scompaniesmightlosetheircompetitiveedgeinsoftwarerelatedbusinessan

dpredicted―thedeclineandfalloftheAmericanprogrammer‖.
HammerandChampyarguedthatinformationtechnologiesweretoplayapivotalroleinthe

―reengineeringofthecorporation‖.
Mid-1990s:

Thepervasiveness ofcomputersandsoftwarespawnedarashofbooks byneo-luddites.

Page1

SOFTWAREENGINEERING

Page2

Later1990s:

Yourdonreevaluatedtheprospectsofthesoftwareprofessionalandsuggested―therise

andresurrection‖oftheAmericanprogrammer.

TheimpactoftheY2K―timebomb‖wasattheendof20
th

century

2000sprogressed:

Johnsondiscussedthepowerof―emergence‖aphenomenonthatexplainswhathappenswhen

interconnectionsamongrelativelysimpleentitiesresultinasystemthat―self-organizes

toformmoreintelligent, moreadaptivebehavior‖.

Yourdonrevisitedthetragiceventsof9/11todiscussthecontinuingimpactofglobalterrorismontheITc

ommunity

Wolframpresentedatreatiseona―newkindofscience‖thatpositsaunifyingtheorybasedprimaril

yonsophisticatedsoftwaresimulations

Dacontaandhiscolleaguesdiscussedtheevolutionof―thesemanticweb‖.

Today ahugesoftwareindustryhasbecomeadominantfactorin theeconomiesoftheindustrializedworld.

THECHANGINGNATUREOFSOFTWARE:

The7broadcategoriesofcomputersoftwarepresentcontinuingchallengesforsoftwareengineers:System

software

ApplicationsoftwareEngineerin

g/scientific

softwareEmbeddedsoftware

Product-line

softwareWeb-

applications

Artificialintelligencesoftware.

System software: System software is a collection of programs written to service

otherprograms.Thesystemssoftwareischaracterizedby

heavy interaction with computer

hardwareheavyusage bymultipleusers

concurrentoperation thatrequiresscheduling,resourcesharing,andsophisticatedprocess
management

complex

datastructuresmultipleexter

nalinterfaces

E.g.compilers,editorsandfilemanagementutilities.

Applicationsoftware:

Applicationsoftwareconsistsofstandaloneprogramsthatsolveaspecificbusinessneed.Itfacilit
ates businessoperations ormanagement/technicaldecisionmaking.

Itisusedtocontrolbusinessfunctionsinreal-time

E.g.point-of-saletransactionprocessing,real-timemanufacturingprocesscontrol.

Engineering/Scientificsoftware:Engineeringand scientificapplicationsrange

-fromastronomytovolcanology

- fromautomotivestressanalysistospaceshuttleorbitaldynamics

- frommolecularbiologytoautomatedmanufacturing

E.g. computeraideddesign,system simulationandotherinteractiveapplications.

Embeddedsoftware:
Embedded software resides within a product or system and is used to
implementandcontrolfeaturesandfunctionsfortheend-user andforthesystemitself.

SOFTWAREENGINEERING

Page3

It can perform limited and esoteric functions or provide significant function
andcontrolcapability.

SOFTWAREENGINEERING

Page4

E.g.Digital functionsinautomobile,dashboarddisplays,brakingsystemsetc.

Product-line software: Designed to provide a specific capability for use by many

differentcustomers, product-line software can focus on a limited and esoteric market place or

address massconsumermarkets

E.g. Word processing, spreadsheets, computer graphics, multimedia,
entertainment,databasemanagement,personalandbusinessfinancialapplications

Web-applications: WebApps are evolving into sophisticated computing environments that notonly

provide standalone features, computing functions, and content to the end user, but also

areintegratedwithcorporatedatabasesandbusinessapplications.

Artificial intelligence software: AI software makes use of nonnumerical algorithms to
solvecomplex problems that are not amenable to computation or straightforward analysis.

Applicationwithin this area includes robotics, expert systems, pattern recognition, artificial neural
networks,theoremproving, andgameplaying.

Thefollowingarethe newchallengesonthehorizon:

Ubiquitous

computingNetsourcin

g

Opensource

The―neweconomy‖

Ubiquitous computing: The challenge for software engineers will be to develop systems and
applicationsoftware that will allow small devices, personal computers and enterprise system to
communicate acrossvastnetworks.

Net sourcing: The challenge for software engineers is to architect simple and sophisticated
applicationsthatprovidebenefittotargetedend-usermarketworldwide.

Open Source: The challenge for software engineers is to build source that is self descriptive but
moreimportantly to develop techniques that will enable both customers and developers to know what
changeshavebeenmadeandhowthosechanges manifestthemselves withinthesoftware.

The―neweconomy‖:Thechallengeforsoftwareengineersistobuildapplicationsthatwillfacilitatemass
communicationandmassproductdistribution.

SOFTWAREMYTHS

Beliefs about software and the process used to build it- can be traced to the earliest days of
computingmythshaveanumberofattributes thathavemadetheminsidious.

Managementmyths:
Manageswithsoftwareresponsibility,likemanagersinmostdisciplines,areoftenunderpressuretomaintainbudge
ts, keepschedules fromslipping,andimprovequality.

Myth: We already have a book that‘s full of standards and procedures for building software - Wont
thatprovidemypeoplewitheverythingtheyneedtoknow?

Reality: The book of standards may very well exist but, is it used? Are software practitioners aware of
itsexistence?Doesitreflectmodernsoftwareengineeringpractice?

Myth:Ifwegetbehindschedule,wecanaddmoreprogrammersandcatchup.

Reality: Software development is not a mechanistic process like manufacturing. As new people are
added,people who were working must spend time educating the new comers, thereby reducing the amount
of timespend on productive development effort. People can be added but only in a planned and well
coordinatedmanner.

Myth:IfIdecidetooutsourcethesoftwareprojecttoathirdparty,Icanjustrelaxandletthatfirmbuiltit.

Reality: If an organization does not understand how to manage and control software projects internally,
itwillinvariablystrugglewhenitoutsourcessoftwareprojects.

SOFTWAREENGINEERING

Page5

Customermyths:Thecustomerbelievesmythsaboutsoftwarebecausesoftwaremanagersandpractitionersdolittl
etocorrectmisinformation.Mythsleadtofalseexpectationsandultimately,dissatisfactionwiththedeveloper.

Myth: A general statement of objectives is sufficient to begin with writing programs - we can fill in
thedetailslater.

Reality:Althoughacomprehensiveandstable statementofrequirements is notalwayspossible,anambiguous
statementofobjectivesis recipefordisaster.

Myth: Project requirements continually change, but change can be easily accommodated because
softwareis flexible.

Reality:Itistruethatsoftwarerequirementschange,buttheimpactofchangevaries
withthetimeatwhichitisintroducedandchangecancauseupheavalthatrequiresadditionalresourcesandmajordesi
gnmodification.

Practitioner’s myths: Myths that are still believed by software practitioners: during the early days
ofsoftware,programmingwas viewedas anartfromoldwaysandattitudes diehard.

Myth:Oncewewritetheprogramandgetittowork,ourjobs aredone.

Reality: Someone once said that the sooner you begin writing code, the longer it‘ll take you to get

done.Industry data indicate that between 60 and 80 percent of all effort expended on software will be

expendedafteritisdeliveredtothecustomerforthefirsttime.

Myth:Theonlydeliverableworkproductforasuccessfulprojectistheworkingprogram.

Reality: A working program is only one part of a software configuration that includes many
elements.Documentationprovidesguidanceforsoftwaresupport.

Myth:softwareengineeringwillmakeuscreatevoluminousandunnecessarydocumentationandwillinvariablysl
owsdown.

Reality: software engineering is not about creating documents. It is about creating quality. Better
qualityleads toreducedrework.Andreducedreworkresultsinfasterdeliverytimes.

AGENERICVIEWOF PROCESS

SOFTWAREENGINEERING-ALAYEREDTECHNOLOGY:

SoftwareEngineeringLayers

Tools

Methods

Process

Aqualityfocus

SOFTWAREENGINEERING

Page6

Software engineering is a layered technology. Any engineering approach must rest on an

organizationalcommitmenttoquality.Thebedrockthatsupportssoftwareengineeringisaqualityfocus.

The foundation for software engineering is the process layer. Software engineering process is the glue
thatholdsthetechnologylayers.Processdefinesaframeworkthatmustbeestablishedforeffectivedeliveryofso

ftwareengineeringtechnology.

Thesoftwareformsthebasis formanagementcontrolofsoftwareprojectsandestablishesthe context

inwhich

- technicalmethodsareapplied,
- work productsareproduced,

- milestonesareestablished,

- qualityisensured,

- Andchangeisproperlymanaged.

Software engineering methods rely on a set of basic principles that govern area of the
technologyandincludemodelingactivities.

Methodsencompassa

broadarrayoftasksthatincludecommunication,
requirements
analysis,design
modeling,program
construction,Testinga
ndsupport.

Software engineering tools provide automated or semi automated support for the process and
themethods.When tools are integrated so that information created by one tool can be used by another,
asystemforthesupportofsoftwaredevelopment,called computer-aidedsoftwareengineering,isestablished.

APROCESS FRAMEWORK:

Softwareprocess mustbeestablishedforeffectivedeliveryofsoftwareengineeringtechnology.

A process frameworkestablishes the foundationfor a complete software process by identifying asmall
number of framework activities that are applicable to all software projects, regardless of their
sizeorcomplexity.
The process framework encompasses a set of umbrella activities that are applicable across the
entiresoftwareprocess.
Eachframeworkactivityispopulatedbyaset ofsoftwareengineeringactions

Each software engineering action isrepresented by a number of different task sets- each a
collectionofsoftwareengineeringworktasks,relatedworkproducts,qualityassurancepoints,andprojectmilest
ones.

Inbrief

"Aprocessdefineswhois doingwhat,when,andhowtoreachacertaingoal."

AProcessFramework

establishes the foundation for a complete software

processidentifiesasmallnumberofframeworkactivitiesapp

lies to all s/w projects, regardless of

size/complexity.also,setofumbrellaactivities

applicableacross entires/wprocess.

Eachframework activityhas

set of s/w engineering

actions.Eachs/wengineeringaction

(e.g.,design)has

Page7

SOFTWAREENGINEERING

- collection of related tasks (called task

sets):worktasks

work products

(deliverables)quality

assurancepointsprojectmiles

tones.

Softwareprocess

\

Processframework

Umbrellaactivities

Framework activity

#1Softwareengineeringactio

n

Tasksets

Worktasks
Workproducts

QualityassurancepointsP
roject milestones

Worktasks

Softwareengineeringaction T
asksets

Workproducts

QualityassurancepointsP
roject milestones

Frameworkactivity#n

Softwareengineeringaction

Tasksets

Work
tasksWorkpro
ducts

Quality assurance
pointsProject milestones

Softwareengineeringaction

Worktasks
Workproducts
Quality assurance
pointsProject milestones

SOFTWAREENGINEERING

Page8

GenericProcessFramework:ItisapplicabletothevastmajorityofsoftwareprojectsCommunicationact

ivity

Planning

activityModeling

activity

analysisaction

requirements gathering work

taskelaborationworktask

negotiationworktasksp

ecification work

taskvalidation work

task

designaction

datadesignworktaskarchitecturald

esignworktaskinterfacedesignwor

ktaskcomponent-

leveldesignworktask

Construction

activityDeploymenta

ctivity

Communication: This framework activity involves heavy communication and collaboration
withthecustomerandencompassesrequirementsgatheringandotherrelatedactivities.

Planning: This activity establishes a planforthe software engineering work that
follows.Itdescribes the technical tasks to be conducted, the risks that are likely, the resources that
will berequired,theworkproductstobeproduced,andaworkschedule.

Modeling:Thisactivityencompassesthecreationofmodelsthatallowthedeveloperandcustomertobetter
understandsoftwarerequirements andthedesignthatwillachievethoserequirements. The modeling
activity is composed of 2 software engineering actions- analysis anddesign.

Analysis encompassesa setofworktasks.

Designencompassesworktasksthatcreateadesign model.

Construction:Thisactivitycombinescoregenerationandthetestingthatisrequiredtouncovert
heerrorsinthecode.

Deployment: The software is delivered to the customer who evaluates the delivered product
andprovides feedbackbasedontheevolution.

These 5 generic framework activities can be used during the development of small programs,
thecreationoflargewebapplications,andfor theengineeringof large,complexcomputer-basedsystems.

ThefollowingarethesetofUmbrellaActivities.

Softwareproject trackingandcontrol–
allowsthesoftwareteamtoassessprogressagainsttheprojectplanandtakenecessaryactiontomaintai
nschedule.

Risk Management-assesses risks
thatmayeffecttheoutcomeoftheprojectorthequalityoftheproduct.

Software Quality Assurance - defines and conducts the activities required to
ensuresoftwarequality.

Formal Technical Reviews - assesses software engineering work products in an effort
touncoverandremoveerrors beforetheyarepropagatedtothenextactionor activity.

SOFTWAREENGINEERING

Page9

Measurement - define and collects process, project and product measures that assist the team
indeliveringsoftwarethatneedscustomer‘s
needs,canbeusedinconjunctionwithallotherframeworkandumbrellaactivities.

Softwareconfiguration management-manages
theeffectsofchangethroughoutthesoftwareprocess.

Reusability management - defines criteria for work product reuse and establishes
mechanismstoachievereusablecomponents.

WorkProductpreparationandproduction-
encompassestheactivitiesrequiredtocreateworkproductssuchasmodels,document,
logs,formsandlists.

Intelligentapplicationofanysoftwareprocessmodelmustrecognizethatadaptionisessential
forsuccessbutprocessmodelsdodifferfundamentallyin:

Theoverallflowofactivities andtasks andtheinterdependencies amongactivities andtasks.

Thedegreethroughwhichworktasksaredefined withineach

frameworkactivity.Thedegreethroughwhichworkproductsareidentifiedandrequired.

The mannerwhichqualityassurance activitiesareapplied.

Themannerinwhichprojecttrackingandcontrolactivitiesareapplied.

The overalldegreeofthedetailedandrigorwithwhichtheprocessisdescribed.

Thedegreethrough whichthecustomerandotherstakeholdersareinvolved withtheproject.Thelevel

ofautonomygiventothesoftwareproject team.

Thedegreetowhichteam organizationandrolesareprescribed.

THECAPABILITYMATURITYMODELINTEGRATION(CMMI):

The CMMIrepresentsa processmeta-modelintwodifferentways:As

acontinuousmodel

Asastagedmodel.
Each process area is formally assessed against specific goals and practices and is rated according to

thefollowingcapabilitylevels.

Level0: Incomplete. Theprocessareaiseithernotperformedor

doesnotachieveallgoalsandobjectivesdefinedbyCMMIforlevel1capability.

Level1:Performed.Allofthespecificgoalsoftheprocessareahavebeensatisfied.Worktasksrequiredtoproduce
definedworkproductsarebeingconducted.

Level 2: Managed. All level 1 criteria have been satisfied. In addition, all work associated with the
processarea conforms to an organizationally defined policy; all people doing the work have access to
adequateresources to get the job done; stakeholders are actively involved in the process area as required; all
worktasksandworkproducts are―monitored, controlled,andreviewed;

Level 3: Defined. All level 2 criteria have been achieved. In addition, the process is ―tailored from

theorganizations set of standard processes according to the organizations tailoring guidelines, and
contributesand work products, measures and other process-improvement information to the organizational
processassets‖.

Level 4: Quantitatively managed. All level 3 criteria have been achieved. In addition, the process area

iscontrolledandimprovedusingmeasurementandquantitativeassessment.‖Quantitativeobjectivesforqualityand
processperformanceareestablishedandusedascriteriainmanagingtheprocess‖

Page1
0

Level 5: Optimized. All level 4 criteria have been achieved. In addition, the process area is adapted
andoptimized using quantitative means to meet changing customer needs and to continually improve
theefficacyoftheprocess areaunderconsideration‖

SOFTWAREENGINEERING

Page11

TheCMMIdefineseachprocessareaintermsof―specificgoals‖andthe―specificpractices‖requiredto
achievethesegoals.Specificpracticesrefineagoalintoasetofprocess-relatedactivities.

Thespecificgoals(SG)andtheassociatedspecificpractices(SP) definedforprojectplanningare

SG1Establish estimates

SP 1.1Estimatethescopeoftheproject

SP1.2EstablishestimatesofworkproductandtaskattributesSP

1.3Defineprojectlifecycle

SP 1.4Determineestimatesofeffortandcost

SG2Develop aProjectPlan

SP 2.1 Establish the budget and

scheduleSP2.2Identifyprojectrisks

SP2.3Planfordatamanagement

SP 2.4 Plan for needed knowledge and

skillsSP2.5Planstakeholderinvolvement

SP2.6Establish theprojectplan

SG3Obtaincommitmenttotheplan

SP 3.1 Review plans that affect the

projectSP 3.2 Reconcile work and resource

levelsSP 3.3Obtainplancommitment

In addition to specific goals and practices, the CMMI also defines a set of five generic goals and
relatedpractices for each process area. Each of the five generic goals corresponds to one of the five

capabilitylevels. Hence to achieve a particular capability level, the generic goal for that level and the
generic practicesthat correspond to that goal must be achieved. To illustrate, the generic goals (GG) and

practices (GP) fortheprojectplanningprocessareaare

GG1Achievespecificgoals

GP1.1Performbasepractices

GG2Institutionalizeamanaged process

GP 2.1 Establish and organizational

policyGP 2.2Plantheprocess

GP2.3ProvideresourcesGP2.

4AssignresponsibilityGP

2.5Trainpeople

GP 2.6Manageconfigurations

GP 2.7 Identify and involve relevant

stakeholdersGP 2.8Monitorandcontroltheprocess

GP2.9Objectivelyevaluateadherence

GP2.10Reviewstatus withhigherlevelmanagement

GG3Institutionalizea definedprocess

GP3.1Establishadefinedprocess

GP3.2Collectimprovementinformation

GG4Institutionalizeaquantitativelymanagedprocess

GP4.1Establishquantitativeobjectivesfortheprocess

SOFTWAREENGINEERING

Page12

GP 4.2Stabilizesubprocess performance

GG5Institutionalizeand optimizingprocess

GP 5.1 Ensure continuous process

improvementGP 5.2Correctrootcauses

ofproblems

PROCESSPATTERNS

The software process can be defined as a collection patterns that define a set of activities,
actions,worktasks,workproductsand/orrelatedbehaviorsrequiredtodevelopcomputersoftware.

A process pattern provides us with a template- a consistent method for describing an
importantcharacteristic of the software process. A pattern might be used to describe a complete process and
a taskwithinaframeworkactivity.

Pattern Name: The pattern is given a meaningful name that describes its function within
thesoftwareprocess.

Intent: Theobjectiveofthepatternis described briefly.

Type:Thepatterntypeis specified.Therearethreetypes

Task patterns define a software engineering action or work task that is part of the process

andrelevanttosuccessfulsoftwareengineeringpractice.Example:RequirementGathering

StagePatternsdefineaframeworkactivityfortheprocess.Thispattern
incorporatesmultipletaskpatternsthatarerelevanttothestage.

Example:Communication

Phase
patternsdefinethesequenceofframeworkactivitiesthatoccurwiththeprocess,evenwhentheov
erallflow ofactivitiesis iterativeinnature.

Example:Spiralmodelor prototyping.

InitialContext:Theconditionsunder whichthepatternappliesaredescribedpriortotheinitiation
ofthepattern,weask

Whatorganizationalor
teamrelatedactivitieshavealreadyoccurred.Whatistheentrystateforthepr
ocess

Whatsoftwareengineeringinformationorprojectinformationalreadyexists

Problem:Theproblemtobesolved bythepattern isdescribed.

Solution:Theimplementationofthepatternis described.

This section describes how the initial state of the process is modified as a consequence the initiation
ofthepattern.

Italsodescribeshowsoftwareengineeringinformation
orprojectinformationthatisavailablebeforetheinitiation
ofthepatternistransformedasaconsequenceofthesuccessfulexecutionofthepattern

Resulting
Context:Theconditionsthatwillresultoncethepatternhasbeensuccessfullyimplementedaredescribed.Upon
completionofthepatternweask

What organizational or team-related activities must have

occurredWhatistheexitstatefortheprocess

Whatsoftwareengineeringinformationorprojectinformationhasbeendeveloped?

Known Uses: The specific instances in which the pattern is applicable are

indicatedProcess patterns

provideandeffectivemechanismfordescribinganysoftwareprocess.

Thepatternsenableasoftwareengineeringorganization todevelop
ahierarchicalprocessdescriptionthatbeginsatahigh-levelofabstraction.

SOFTWAREENGINEERING

Page13

Onceprocesspatternhavebeendeveloped,they canbereusedforthedefinitionofprocessvariants-thatis,a

customized process model can be defined by a software team using the pattern as building blocks for
theprocess models.

SOFTWAREENGINEERING

Page14

Software

Identifiescapabilitiesandrisk

Lead

Capability Software

Software

PROCESSASSESSMENT

The existence of a software process is no guarantee that software will be delivered on time, that

itwill meet the customer‘s needs, or that it will exhibit the technical characteristics that will lead to long-

termquality characteristics.In addition, the process itself should be assessed to be essential to ensure that

itmeets asetof basic process criteria that have beenshowntobeessentialfora successfulsoftwareengineering.

Identifies

Motivat

A Number of different approaches to software process assessment have been proposed over the past
fewdecades.

StandardsCMMI AssessmentMethodforProcess Improvement(SCAMPI)providesafivestepprocess
assessment model that incorporates initiating, diagnosing, establishing, acting & learning.
TheSCAMPImethodusestheSEICMMIasthebasisforassessment.

CMM Based Appraisal for Internal Process Improvement (CBA IPI) provides a diagnostic
techniquefor assessing the relative maturity of a software organization, using the SEI CMM as the basis for
theassessment.

SPICE (ISO/IEC15504) standard defines a set of requirements forsoftware process assessments. Theintent
of the standard is to assist organizations in developing an objective evaluation of the efficacy of
anydefinedsoftwareprocess.

ISO 9001:2000 for Software is a generic standard that applies to any organization that wants to
improvethe overall quality of the products, system, or services that it provides. Therefore, the standard is
directlyapplicabletosoftwareorganizations&companies.

PERSONAL AND TEAMPROCESSMODELS:

The best software process is one that is close to the people who will be doing the work.Each
softwareengineer would create a process that best fits his or her needs, and at the same time meets the
broader needsof the team and the organization. Alternatively, the team itself would create its ownprocess,
and at thesametimemeetthenarrowerneedsofindividualsandthebroaderneedsoftheorganization.

Personalsoftwareprocess(PSP)
The personal software process (PSP) emphasizes personal measurement of both the work product that
isproducedandtheresultantqualityoftheworkproduct.

SOFTWAREENGINEERING

Page15

The PSP process model defines five framework activities: planning, high-level design, high level
designreview,development, andpostmortem.

Planning: This activity isolates requirements and, base on these develops both size and resource
estimates.In addition, a defect estimate is made. All metrics are recorded onworksheets or templates.
Finally,developmenttasksareidentifiedandaprojectscheduleiscreated.

High level design: External specifications for each component to be constructed are developed and
acomponent design is created. Prototypes are built when uncertainty exists. All issues are recorded
andtracked.

High level design review: Formal verification methods are applied to uncover errors in the design.
Metricsaremaintainedforallimportanttasksandworkresults.

Development:Thecomponentleveldesign
isrefinedandreviewed.Codeisgenerated,reviewed,compiled,andtested. Metrics
aremaintainedforallimportanttaskandworkresults.

Postmortem:Usingthemeasures andmetrics collectedtheeffectiveness oftheprocessis

determined.Measuresandmetricsshouldprovideguidance formodifyingtheprocess

toimproveitseffectiveness.

PSPstresses theneedforeachsoftwareengineertoidentifyerrors
earlyand,asimportant,tounderstandthetypesoferrorsthatheislikelytomake.

PSPrepresentsadisciplined,metrics-based approach tosoftwareengineering.

Teamsoftwareprocess(TSP):ThegoalofTSPistobuilda―self-directedprojectteamthatorganizes
itselftoproducehigh-qualitysoftware. ThefollowingaretheobjectivesforTSP:

Build self-directed teams that plan and track their work, establish goals, and own

theirprocessesandplans.Thesecanbepuresoftwareteamsor integrated

productteams(IPT)of3toabout20engineers.
Showmanagershowtocoachandmotivatetheirteamsandhowtohelpthemsustain
peakperformance.

Acceleratesoftware

processimprovementbymakingCMMlevel5behaviornormalandexpected.Provideimprovementguida

ncetohigh-maturityorganizations.
Facilitate university teaching of industrial-grade team

skills.self-directedteamdefines
rolesandresponsibilitiesforeachteammembertrac
ks quantitativeprojectdata

identifies a team process that is appropriate for the

projectastrategyforimplementingtheprocess

defineslocalstandardsthatareapplicabletotheteamssoftwareengineeringwork;continuallyas
sessesriskandreactstoit

Tracks,manages,andreportsprojectstatus.
-

TSP defines the following framework activities: launch, high-level design, implementation, integration
andtest, andpostmortem.

TSP makes useofawidevarietyofscripts,forms,andstandardsthatservetoguideteammembers intheirwork.

Scriptsdefinespecificprocess activitiesandothermoredetailedworkfunctionsthatarepartoftheteamprocess.

Eachprojectis―launched‖usingasequenceoftasks.

Thefollowinglaunchscriptisrecommended

Review project objectives with management and agree on and document team

goalsEstablishteamroles

Define the teams development

processMakea

qualityplanandsetqualitytargetsPlan

fortheneededsupportfacilities

SOFTWAREENGINEERING

Page16

PROCESSMODELS

Prescriptive process modelsdefine a setof activities, actions, tasks, milestones, and work products thatare
required to engineer high-quality software. These process models are not perfect, but they do provide
ausefulroadmapforsoftwareengineeringwork.

Aprescriptiveprocessmodelpopulatesaprocess

frameworkwithexplicittasksetsforsoftwareengineeringactions.

THEWATERFALLMODEL:
The waterfall model, sometimes called the classic life cycle, suggests a systematic sequential approach
tosoftware development that begins with customer specification of requirements and progresses

throughplanning,modeling,construction, anddeployment.

Context:Usedwhenrequirementsarereasonablywellunderstood.

Advantage:
Itcanserveasausefulprocess

modelinsituationswhererequirementsarefixedandworkistoproceedtocompleteinalinearmanner.

Theproblemsthataresometimesencountered when thewaterfallmodelisapplied are:

Real projects rarely follow the sequential flow that the model proposes. Although the linear
modelcan accommodate iteration, it does so indirectly. As a result, changes can cause confusion as
theprojectteamproceeds.

It is oftendifficult forthe customer to state all requirements explicitly. The waterfall modelrequires
this and hasdifficulty accommodating the natural uncertainty thatexist at the
beginningofmanyprojects.

The customer must have patience. A working version of the programs will not be available
untillate in the project time-span. If a major blunder is undetected then it can be disastrous until
theprogramisreviewed.

INCREMENTAL PROCESSMODELS:

The incremental

modelTheRADmodel

THEINCREMENTALMODEL:

Context:Incrementaldevelopmentisparticularlyusefulwhenstaffingisunavailableforacompleteimple
mentationbythebusinessdeadlinethathasbeenestablishedfortheproject.Earlyincrements can be implemented
with fewer people. If the core product is well received, additional staff canbe addedto implement the next

increment. Inaddition, increments canbe planned to manage technicalrisks.

SOFTWAREENGINEERING

Page17

projectcalendartime

Theincrementalmodelcombineselementsofthewaterfallmodelappliedinan iterativefashion.

The incremental model delivers a series of releases called increments that provide
progressivelymorefunctionalityforthecustomeras eachincrementisdelivered.

When an incremental model is used, the first increment is often a core product. That is,
basicrequirements are addressed. The core product is used by the customer. As a result, a plan
isdevelopedforthenextincrement.

The plan addresses the modification of the core product to better meet the needs of the
customerandthedeliveryofadditionalfeaturesandfunctionality.

This process is repeated following the delivery of each increment, until the complete product
isproduced.

For example, word-processing software developed using the incremental paradigm might deliver basic
filemanagement editing, and document production functions in the first increment; more sophisticated
editing,and document production capabilities in the second increment; spelling and grammar checking in
the thirdincrement;andadvancedpagelayoutcapabilityinthefourthincrement.

Difference: The incremental processmodel,like prototyping and otherevolutionary approaches,is

iterative in nature. But unlike prototyping, the incremental model focuses on delivery of an
operationalproductwitheachincrement

THERADMODEL:

RapidApplicationDevelopment(RAD)isanincrementalsoftwareprocessmodelthatemphasizesashor
tdevelopmentcycle.TheRADmodelisa―high-speed‖adaptionofthewaterfallmodel,
inwhichrapiddevelopmentisachievedbyusingacomponentbaseconstructionapproach.

Context: If requirements are well understood and project scope is constrained, the RAD
processenablesadevelopmentteamtocreatea―fullyfunctionalsystem‖withinaveryshorttimeperiod.

increment#n

C o m mu ni ca i o n

Pl an n i ng

M o d eli n g

analy si s
Co n st ru ct i o

design
co de
te st

D epl o ym ent

deliv eryf eed

b ack

increment#2

deliveryof
nthincrement

C o m mu ni cat i o n

Pl an n i ng

M od eli n g

analy sis Co n st rctio n

desi gn
 co de

test

D epl o ym ent

deliv eryf eed b

ack

increment#1

deliveryof

2ndincrement

C o m mu ni ca i o n

Pl an n i ng

M od eli n g

anal y si
Co n st ru ct io n

sd esig n
cod e D epl o ym en t

te st d el i very

 f eed b ac k

deliv ery

of1st

increment

SOFTWAREENGINEERING

Page18

Team#2

Team#1

Mode

lingbusiness

modelingdat a

modelingprocess

modeling

Deploymenti

nt egrat

iondelivery

feedback

Const ruct

ioncomponent

reuseautomaticc

ode

generat

iont est ing

60-9 0days

Modeling

business m

odelingdatam odeling

processm odeling

Planning

Communication

Construction
com ponent

reuseautomaticco

de

generation

Mo d e ling

business modeling
datamodeling

processmodeling

Team#n

TheRADapproach mapsintothegenericframeworkactivities.

Communication works to understand the business problem and the information characteristics
thatthesoftwaremustaccommodate.

Planningisessentialbecausemultiplesoftwareteamsworksinparallelondifferentsystemfunctions.

Modeling encompasses three major phases- business modeling, data modeling and process modeling-
andestablishesdesignrepresentationthatserveexistingsoftwarecomponentsandtheapplicationofautomaticcod
egeneration.

Deployment establishes a basis for

subsequentiterations.TheRADapproachhasdra

wbacks:

Forlarge,butscalableprojects,RADrequiressufficienthuman
resourcestocreatetherightnumberofRADteams.

If developers and customers are not committed to the rapid-fire activities necessary to complete
thesysteminamuchabbreviatedtimeframe,RADprojectswillfail

Ifasystemcannotbeproperlymodularized,buildingthecomponentsnecessaryforRADwillbeprobl
ematic

Ifhighperformance isanissue,
andperformanceistobeachievedthroughtuningtheinterfacestosystemcomponents,
theRADapproachmaynotwork;and

RADmaynotbeappropriatewhentechnicalrisksarehigh.

EVOLUTIONARYPROCESSMODELS:

Evolutionaryprocessmodelsproducewitheach iteration producean
increasinglymorecompleteversionofthesoftwarewitheveryiteration.

Evolutionary models are iterative. They are characterized in a manner that enables software
engineerstodevelopincreasinglymorecompleteversionsofthesoftware.

SOFTWAREENGINEERING

Page19

PROTOTYPING:

Prototypingismorecommonlyusedasatechniquethatcanbeimplementedwithinthecontextofanyoneoft
heprocessmodel.

Theprototypingparadigmbeginswithcommunication.Thesoftwareengineerandcustomer meetanddefine
the overall objectives for the software, identify whatever requirements are known, and outlineareas
wherefurtherdefinitionismandatory.

Prototypingiteration isplanned quicklyandmodeling occurs.Thequickdesign
leadstotheconstructionofaprototype.Theprototypeisdeployedandthenevaluatedbythecustomer/user.

Iteration occurs as the prototype is tuned to satisfy the needs of the customer, while at the

sametimeenablingthedevelopertobetterunderstandwhatneedstobedone.

Context:
If a customer defines a set of general objectives for software, but does not identify

detailedinput,processing,oroutputrequirements,insuchsituationprototypingparadigmisbest approach.

Ifadevelopermaybeunsureoftheefficiencyofanalgorithm,
theadaptabilityofanoperatingsystemthenhecangoforthis prototypingmethod.

Advantages:

Theprototypingparadigmassiststhesoftwareengineerandthecustomer tobetterunderstandwhatis
tobebuiltwhenrequirementsarefuzzy.

Theprototypeservesasamechanismforidentifyingsoftwarerequirements.Ifaworkingprototypeis

built,thedeveloperattemptstomakeuseofexistingprogramfragmentsorappliestools.

Prototypingcanbeproblematicforthefollowingreasons:

Thecustomerseeswhatappears to beaworkingversionof thesoftware,unawarethattheprototype is held

together ―with chewing gum and baling wire‖, unaware that in the rush to get

itworkingwehaven‘tconsideredoverallsoftwarequalityorlong-termmaintainability.Wheninformed

that the product must be rebuilt so that high-levels of quality can be maintained,

thecustomercriesfoulanddemandsthat―afewfixes‖beappliedtomaketheprototypeaworking

product.Toooften,softwaredevelopmentrelents.
The developer often makes implementation compromises in order to get a prototype
workingquickly.Aninappropriateoperatingsystemorprogramminglanguagemaybeusedsimplybecaus
e it isavailable andknown;aninefficientalgorithmmaybeimplementedsimplyto

Quickplan

Communication

Mo de lin g

Qu ick desig n

Deployment

Delivery

&Feedback
Const ruct

ionof

prototype

SOFTWAREENGINEERING

Page20

demonstrate capability. After a time, the developer may become comfortable with these
choicesandforgetallthe reasonswhy they wereinappropriate.Theless-than-idealchoicehas
nowbecomeanintegralpartofthesystem.

THESPIRALMODEL

Thespiralmodel,originallyproposedbyBoehm,isanevolutionarysoftwareprocessmodelthatcouples the

iterative nature of prototyping with the controlled and systematic aspects of thewaterfallmodel.
Thespiralmodelcanbeadaptedtoapplythroughouttheentirelifecycleofanapplication,from

conceptdevelopmenttomaintenance.

Using the spiral model, software is developed in a series of evolutionary releases. During
earlyiterations,thereleasemight beapapermodel
orprototype.Duringlateriterations,increasinglymorecompleteversionsoftheengineeredsystemare

planningesti

mationsche

dulingriskan

alysis

communication

start

modeling
analysis

design

deployment
construction

delivery
code

produced.
feedback

test

Anchor point milestones- a combination of work products and conditions that are attained
alongthepathofthespiral-arenotedforeachevolutionarypass.

Thefirstcircuitaroundthe spiralmight resultinthe developmentofproductspecification;subsequent
passes around the spiral might be used to develop a prototype and then
progressivelymoresophisticatedversionsofthesoftware.

Each pass through the planning region results in adjustments to the project plan. Cost and
scheduleare adjusted based on feedback derived from the customer after delivery. In addition, the
projectmanageradjuststheplannednumberofiterationsrequiredtocompletethesoftware.

It maintains the systematic stepwise approach suggested by the classic life cycle but incorporates
itintoaniterativeframeworkthatmorerealisticallyreflectstherealworld.

Thefirstcircuitaroundthespiralmightrepresenta―conceptdevelopmentproject‖whichstartsat
thecoreofthespiralandcontinuesformultipleiterationsuntilconceptdevelopmentiscomplete.
Iftheconceptistobedevelopedintoanactualproduct,theprocessproceedsoutwardonthespiralanda
―newproductdevelopmentproject‖commences.

Later,acircuitaroundthespiralmightbeusedtorepresenta―productenhancementproject.‖Inessence,
thespiral,whencharacterizedinthisway,remainsoperativeuntilthesoftwareisretired.

Context:Thespiralmodelcanbeadoptedtoapplythroughouttheentirelifecycleofanapplication,fromconceptde
velopmenttomaintenance.

Advantages:

Itprovidesthepotential for rapiddevelopmentofincreasinglymorecompleteversions ofthesoftware.

SOFTWAREENGINEERING

Page21

The spiral model is a realistic approach to the development of large-scale systems and software. The
spiralmodel uses prototyping as a risk reduction mechanism but, more importantly enables the developer to
applytheprototypingapproachatanystageintheevolutionoftheproduct.

DrawBacks:
The spiral model is not a panacea. It may be difficult to convince customers that the evolutionary
approachis controllable. It demands considerable risk assessment expertise and relies on this expertise for
success. Ifamajorriskisnotuncoveredandmanaged, problemswillundoubtedlyoccur.

THECONCURRENTDEVELOPMENTMODEL:
The concurrent development model, sometimes called concurrent engineering, can be

representedschematicallyasaseriesofframeworkactivities,softwareengineeringactionsandtasks,andtheirassoci
atedstates.

Theactivitymodelingmaybeinanyoneofthestatesnotedatanygiventime.Similarly,other
activitiesortaskscanberepresentedinananalogousmanner.Allactivitiesexistconcurrentlybutresideindifferentsta
tes.

Anyoftheactivitiesofaprojectmaybeina

particularstateatanyonetimeunderdevelopment

awaiting

changesunder

revisionunderrev

iew

In a project the communication activity has completed its first iteration and exists in the

awaitingchanges state.Themodelingactivitywhichexistedinthenonestatewhileinitialcommunication was

none

Modelingactivity

Under

development

representsthestate

of a software

engineeringactivityortask

Awaiting

changes

Underreview

Under

revision

Baselined

Done

SOFTWAREENGINEERING

Page20

Page20

completed, now makes a transition into the under development state. If, however, the customer
indicatesthatchanges in requirements must be made,the modeling activity moves from theunder

developmentstateintotheawaitingchangesstate.

The concurrent process model defines a series of events that will trigger transitions from state

tostateforeachofthesoftwareengineeringactivities,actions,ortasks.

The event analysis model correction which will trigger the analysis action from the done state

intotheawaitingchangesstate.

Context: The concurrent model is often more appropriate for system engineering projects where
differentengineeringteamsareinvolved.

Advantages:

Theconcurrentprocessmodelisapplicabletoalltypesofsoftwaredevelopmentandprovidesanaccuratep
ictureofthecurrentstateofaproject.

It defines a network of activities rather than each activity, action, or task on the network
existssimultaneouslywithotheractivities,actionandtasks.

AFINALCOMMENTONEVOLUTIONARYPROCESSES:

Theconcerns ofevolutionarysoftwareprocessesare:

The first concern is that prototyping poses a problem to project planning because of the uncertain number
ofcyclesrequiredtoconstruct theproduct.

Second, evolutionary software process do not establish the maximum speed of the evolution. If
theevolution occurs too fast, without a period of relaxation, it is certain that the process will fall
intochaos.

Third,softwareprocesses shouldbefocusedonflexibilityandextensibilityratherthanonhighquality.

THEUNIFIED PROCESS:

The unified process (UP) is an attempt to draw on the best features and characteristics of
conventionalsoftware process models, but characterize them in a way that implements many of the best
principles ofagilesoftwaredevelopment.

The Unified process recognizes the importance of customer communication and streamlined methods
fordescribingthecustomer‘sviewofasystem.Itemphasizestheimportantroleofsoftwarearchitectureand

―helps the architect focus on the right goals, such as understandability, reliance to future changes,
andreuse―.Ifsuggestsaprocessflowthatisiterativeandincremental,providingtheevolutionaryfeelthatis
essentialinmodernsoftwaredevelopment.

ABRIEF HISTORY:
During the 1980s and into early 1990s, object-oriented (OO) methods and programming

languagesgained a widespread audience throughout the software engineering community. A wide variety of
object-orientedanalysis (OOA)anddesign(OOD) methods wereproposedduringthesametimeperiod.

Duringtheearly1990s James Rumbaugh,GradyBooch,andIvalJacobsombeganworkingona
―Unifiedmethod‖thatwouldcombinethebestfeaturesofeachofOOD&OOA.TheresultwasUML-a unifiedmodeling
language thatcontains a robustnotationfotthe modeling anddevelopmentof OOsystems.

By 1997, UML became an industry standard for object-oriented software development. At
thesametime,theRationalCorporationandothervendors developedautomatedtoolstosupportUMLmethods.

Overthe nextfewyears,Jacobson,Rumbugh,and BoochdevelopedtheUnifiedprocess,aframework for
object-oriented software engineering using UML. Today, the Unified process and UML arewidely used on
OO projects of all kinds. The iterative, incremental model proposed by the UP can

andshouldbeadaptedtomeetspecificprojectneeds.

Page21

PHASESOFTHEUNIFIED PROCESS:

TheinceptionphaseoftheUPencompassesbothcustomercommunicationandplanningactivities. By

collaborating with the customer and end-users, business requirements for the software areidentified, a
rough architecture for the system is proposed and a plan for the iterative, incremental nature
oftheensuingprojectisdeveloped.

The elaboration phase encompasses the customer communication and modeling activities of
thegeneric process model. Elaboration refines and expands the preliminary use-cases that were developed

aspart of the inceptionphase and expands the architectural representationto include five different viewsofthe

software- the use-case model, the analysis model, the design model, the implementation model, and

thedeploymentmodel.

The construction phase of the UP is identical to the construction activity defined for the

genericsoftware process. Using the architectural model as input, the construction phase develops or
acquires thesoftware components that will make each use-case operational for end-users. To accomplish
this, analysisanddesignmodelsthatwerestartedduringtheelaborationphasearecompletedto

reflectthefinalversionofthesoftwareincrement.

The transition phase of the UP encompasses the latter stages of the generic construction
activityand the first part of the generic deployment activity. Software given to end-users for beta testing,
and userfeedbackreportsbothdefectsandnecessarychanges.

The production phase of the UP coincides with the deployment activity of the generic

process.During this phase, the on-going use of the software is monitored, support for the operating
environmentis provided,anddefectreportsandrequestsforchanges aresubmittedandevaluated.

Elaboration

production

A software engineering workflow is distributed across all UP phases. In the context of UP, a workflow
isanalogousto atask set. That is, aworkflow identifiesthe tasks required to accomplishanimportantsoftware
engineering action and the work products that are produced as a consequence of
successfullycompletingthetasks.

UNIFIEDPROCESSWORKPRODUCTS:

Duringtheinceptionphase,theintentistoestablishanoverall―vision‖fortheproject,

identifyasetofbusinessrequirements,

makeabusinesscaseforthesoftware,and

defineprojectandbusiness risksthatmayrepresentathreattosuccess.

Inception

Release

soft wareincrement

const ruc tion

transition

Page22

The most important work product produced during the inception is the use-case modell-a collection
ofuse-cases that describe how outside actors interact with the system and gain value from it. The use-
casemodel is a collection of software features and functions by describing a set of preconditions, a flow
ofeventsandasetofpost-conditionsfortheinteractionthatisdepicted.

Theuse-casemodelis refinedandelaboratedaseachUPphaseisconductedandservesasanimportant input for

the creation of subsequent work products. During the inception phase only 10 to 20percent of the use-case
model is completed. After elaboration, between 80 to 90 percent of the model hasbeencreated.

The elaboration phase produces a set of work products that elaborate requirements and

produceand architectural description and a preliminary design. The UP analysis model is the work
product thatis developed as a consequence of this activity. The classes and analysis packages defined

as part of theanalysis model are refined further into a design model which identifies design classes,

subsystems, andthe interfaces between subsystems. Both the analysis and design models expand and

refine an evolvingrepresentation of software architecture. In addition the elaboration phase revisits

risks and the projectplantoensurethateachremainsvalid.

The construction phase produces animplementation model that translates designclasses
intosoftware components into the physicalcomputing environment. Finally,a test modeldescribes

teststhat are usedtoensurethatusecasesareproperlyreflectedinthesoftwarethathasbeenconstructed.

Thetransitionphasedeliversthesoftwareincrementandassessesworkproductsthatareproduced as

end-users work with the software. Feedback from beta testing and qualitative requests
forchangeisproducedatthistime.

Inceptionphase

Visiondocument

Init ial use-case

modelInit ial project

glossaryInitialbusinessc

aseInit ial risk

assessment

.Projectplan,

phases and it erat

ions.Businessmodel,

if necessary.

Oneormoreprototypes

Elaborationphase

Use-casemodel

Supplement ary requirement

sincluding non-functional

Analy sis

modelSoftware

architect

ureDescription.

Execut able archit

ecturalprototype.

Preliminary

designmodel Revised

risk listProject

planincluding

it erat ion plan

adapted workflows

milestones

t echnical work product

sPreliminaryusermanual

Constructionphase

Designmodel

Soft ware component

sIntegrat edsoft ware

incrementT

estplanand

procedureTestcases

Support document at

ionusermanuals

inst allat ion

manualsdescriptionof

current

increment

Transitionphase

Deliv ered soft

wareincrement Bet a t est

report sGeneraluserfeedback

Page23

UNIT-II

SOFTWAREREQUIREMENTS

Softwarerequirementsarenecessary

To introduce the concepts of user and system

requirementsTodescribefunctionalandnon-

functionalrequirements

Toexplainhowsoftwarerequirementsmaybeorganisedinarequirementsdocument

Whatisarequirement?

The requirements for the system are the description of the services provided by the system
andits operationalconstraints

It may range from a high-level abstract statement of a service or of a system constraint
toadetailedmathematicalfunctionalspecification.

Thisisinevitableasrequirementsmayserveadualfunction

o Maybethebasis for abidforacontract-thereforemustbeopentointerpretation;

o May be the basis for the contract itself - therefore must be defined in

detail;Boththesestatementsmaybecalledrequirements

Requirementsengineering:

Theprocess of
findingout,analysingdocumentingandcheckingtheseservicesandconstraintsiscalledrequirementeng
ineering.

The process of establishing the services that the customer requires from a system and
theconstraints underwhichitoperatesandisdeveloped.

The requirements themselves are the descriptions of the system services and constraints that
aregeneratedduringtherequirementsengineeringprocess.

Requirementsabstraction(Davis):

If a company wishes to let a contract for a large software development project, it must define
itsneeds in a sufficiently abstract way that a solution is not pre-defined. The requirements must

bewritten so that several contractors can bid for the contract, offering, perhaps, different ways
ofmeetingtheclientorganisation’sneeds.Onceacontract hasbeenawarded,thecontractormustwrite
a system definition for the client in more detail so that the client understands and canvalidate
what the software will do. Both of these documents may be called the
requirementsdocumentforthe system.”

Typesof requirement:

Userrequirements

Statementsinnaturallanguageplusdiagramsoftheservicesthesystemprovidesandits
operationalconstraints.Writtenforcustomers.

Systemrequirements

A structured document setting out detailed descriptions of the system‘s
functions,servicesandoperationalconstraints.Defineswhatshouldbeimplementedsomayb
epartofacontractbetweenclientandcontractor.

Definitions and

specifications:UserRequirem

entDefinition:

Thesoftwaremustprovidethemeansofrepresentingandaccessingexternalfilescreatedbyother
tools.

Page24

SystemRequirementspecification:

The usershouldbe providedwithfacilitiestodefinethetypeofexternalfiles.

Each external file type may have an associated tool which may be applied to the

file.Eachexternalfiletypemayberepresentedasaspecificicon ontheuser‘sdisplay.

Facilities should be provided for the icon representing an external file type to be defined
bytheuser.

Whenanuserselectsaniconrepresentinganexternalfile,the

effectofthatselectionistoapplythetoolassociated with thetypeoftheexternalfiletothefilerepresented

bytheselectedicon.

Requirementsreaders:

Functional and non-

functionalrequirements: Functional

requirements

Statementsofservices
thesystemshouldprovidehowthesystemshouldreacttoparticularinputsandhowth
esystemshouldbehavein particularsituations.

Non-functionalrequirements

Constraints on the services or functions offered by the system such as
timingconstraints,constraintsonthedevelopmentprocess,standards,etc.

Domainrequirements

Requirements that come from the application domain of the system and
thatreflectcharacteristicsofthatdomain.

1.1) FUNCTIONALREQUIREMENTS:

Describefunctionalityorsystemservices.

Depend onthetypeofsoftware,expectedusersandthetypeofsystemwherethesoftwareisused.

Functional user requirements may be high-level statements of what the system should
dobutfunctionalsystemrequirementsshoulddescribethesystemservicesindetail.

ThefunctionalrequirementsforTheLIBSYSsystem:

A librarysystemthatprovides asingleinterfacetoanumberofdatabases ofarticles
indifferentlibraries.

Userscansearchfor, downloadandprintthesearticlesforpersonalstudy.

Examplesoffunctional requirements

Theusershallbe able tosearcheitherall ofthe initialset ofdatabasesorselectasubsetfromit.
Thesystemshallprovideappropriateviewers fortheusertoreaddocuments
inthedocumentstore.

Page25

Everyordershallbeallocatedauniqueidentifier
(ORDER_ID)whichtheusershallbeabletocopytotheaccount‘spermanentstoragearea.

Requirementsimprecision

Problemsarise whenrequirementsarenotpreciselystated.

Ambiguousrequirementsmaybeinterpretedindifferent

waysbydevelopersandusers.Considertheterm‗appropriateviewers‘

o Userintention-specialpurposeviewerforeachdifferentdocumenttype;

o Developerinterpretation- Provide atextviewerthatshowsthe
contentsofthedocument.

Requirementscompletenessandconsistency:

In principle,requirementsshouldbebothcompleteandconsistent.Complete

They should include descriptions of all

facilitiesrequired.Consistent

There should be no conflicts or contradictions in the descriptions of the system facilities.

Inpractice,itisimpossibletoproduceacompleteand consistentrequirementsdocument.

NON-FUNCTIONALREQUIREMENTS

These define system properties and constraints e.g. reliability,
responsetimeandstoragerequirements.
ConstraintsareI/Odevicecapability,systemrepresentations,etc.

ProcessrequirementsmayalsobespecifiedmandatingaparticularCASEsystem,programming
languageordevelopmentmethod.

Non-functional requirements may be more critical than functional requirements. If these
arenotmet, thesystemisuseless.

1.2) Non-functionalrequirementtypes:

Non-functional requirements

:Productrequirement

s

Page26

Requirementswhich specifythatthedelivered productmustbehavein
aparticularwaye.g.executionspeed,reliability,etc.

Eg:TheuserinterfaceforLIBSYSshallbeimplementedassimpleHTMLwithoutframes
orJavaapplets.

Organisationalrequirements

Requirementswhich areaconsequenceoforganisationalpolicies andprocedures
e.g.processstandardsused,implementationrequirements,etc.

Eg: The system development process and deliverable documents shall conform
totheprocessanddeliverablesdefinedinXYZCo-SP-STAN-95.

Externalrequirements

Requirements which arise from factors which are external to the system and

itsdevelopmentprocess e.g.interoperabilityrequirements,legislativerequirements,etc.

Eg:Thesystemshallnotdiscloseanypersonalinformationaboutcustomersapartfromth
eirnameandreferencenumbertotheoperatorsofthe system.

Goals andrequirements:

Non-
functionalrequirementsmaybeverydifficulttostatepreciselyandimpreciserequirementsmay
bedifficulttoverify.

Goal

Ageneralintentionoftheusersuchaseaseofuse.

Thesystemshouldbeeasytousebyexperiencedcontrollersandshouldbeorganisedinsuchawayt
hatusererrorsareminimised.

Verifiablenon-functionalrequirement

A statementusingsomemeasurethatcanbeobjectivelytested.

Experienced controllers shall be able to use all the system functions after a total of two
hourstraining.Afterthis training,the average numberof errors made by experiencedusers
shallnotexceedtwoperday.

Goals arehelpfultodevelopersas theyconveytheintentionsofthesystemusers.

Requirements measures:

Property Measure

Speed Processedtransactions/second
User/Event response

timeScreenrefreshtime

Size MBytes

NumberofROM chips

Easeofuse Trainingtime

Numberofhelpframes

Reliability Mean time to
failureProbabilityofunavail

abilityRate of failure

occurrenceAvailability

Robustness Time to restart after

failurePercentageofeventscausingfa
ilure

Probabilityofdatacorruptiononfailure

Page27

Portability Percentage of target dependent

statementsNumberoftargetsystems

Requirementsinteraction:
Conflictsbetweendifferentnon-
functionalrequirementsarecommonincomplexsystems.Spacecraftsystem

To minimise weight, the number of separate chips in the system should
beminimised.
Tominimisepowerconsumption,lowerpowerchipsshouldbeused.

However,usinglowpowerchipsmaymeanthatmorechipshavetobeused.Whichisthemostcritica
lrequirement?

A common problem with non-functional requirements is that they can be difficult to verify.

Usersor customers often state these requirements as general goals such as ease of use, the ability of the
systemto recover from failure or rapid user response. These vague goals cause problems for system
developers astheyleavescopeforinterpretationandsubsequentdisputeoncethesystemis delivered.

1.3) DOMAINREQUIREMENTS

Derivedfromtheapplicationdomainanddescribesystemcharacteristicsandfeaturesthat

reflect thedomain.
Domain requirements be new functional requirements, constraints on existing
requirementsordefinespecificcomputations.
Ifdomainrequirementsarenotsatisfied,thesystemmaybeunworkable.

Librarysystemdomainrequirements:

There shall be a standard user interface to all databases which shallbe based on

theZ39.50standard.

Because of copyright restrictions, some documents must be deleted immediately on
arrival.Depending on the user‘s requirements, these documents will either be printed
locally on thesystemserverformanuallyforwardingtotheuserorroutedtoanetworkprinter.

Domain requirements

problemsUnderstandab

ility
Requirements are expressed in the language of the application
domain;Thisisoften notunderstood bysoftwareengineersdeveloping
thesystem.

Implicitness
Domainspecialistsunderstandtheareasowellthattheydonotthink
ofmakingthedomainrequirementsexplicit.

USERREQUIREMENTS

Shoulddescribefunctionalandnon-functionalrequirementsinsuchawaythattheyare

understandable bysystemuserswhodon‘thavedetailedtechnicalknowledge.
Userrequirementsaredefinedusingnaturallanguage,
tablesanddiagramsasthesecanbeunderstoodbyall users.

Problemswithnaturallanguage

Lackofclarity
Precision is difficult without making the document difficult

toread.Requirementsconfusion

Functional and non-functional requirements tend to be mixed-
up.Requirementsamalgamation

Severaldifferentrequirementsmaybe expressedtogether.

Requirementproblems

Databaserequirementsincludesbothconceptualanddetailedinformation

• Describes the concept of a financial accounting system that is to be included

inLIBSYS;

SOFTWAREENGINEERING–Material 28

SOFTWAREENGINEERING

Page28

However, it also includes the detail that managers can configure this system - this
isunnecessaryatthislevel.

Grid requirement mixes three different kinds of

requirementConceptual functional requirement (the

need for a grid);Non-functionalrequirement(gridunits);

Non-functional UI requirement (grid

switching).Structuredpresentation

Guidelinesforwritingrequirements

Invent astandardformat anduse itforallrequirements.

Uselanguageinaconsistent
way.Useshallformandatoryrequirements,shouldfordesirablerequirements.

Usetext

highlightingtoidentifykeypartsoftherequirement.Avoidtheuseofco

mputerjargon.

SYSTEMREQUIREMENTS
Moredetailedspecificationsofsystemfunctions, servicesandconstraintsthan userrequirements.

Theyareintended

tobeabasisfordesigningthesystem.Theymaybeincorporatedin

tothesystemcontract.

Systemrequirementsmaybedefined or illustratedusingsystemmodels

Requirementsanddesign

In principle, requirements should state what the system should do and the design
shoulddescribehowitdoesthis.

In practice,requirementsanddesignareinseparable

A systemarchitecturemaybedesignedtostructuretherequirements;

The system may inter-operate with other systems that generate design

requirements;Theuseofaspecificdesignmaybeadomainrequirement.

ProblemswithNL(naturallanguage)specification

Ambiguity
Thereadersandwritersoftherequirementmustinterpretthesamewordsinthesameway
.NLisnaturallyambiguoussothisisverydifficult.

Over-flexibility

Thesamethingmaybesaidinanumberofdifferentwaysinthespecification.Lacko
f modularisation

NLstructuresareinadequatetostructuresystemrequirements.

AlternativestoNLspecification:

Notation Description

Structurednatural This approachdepends ondefiningstandardforms ortemplates toexpressthe

language requirementsspecification.

Designdescription This approach uses a language like a programming language but with more

abstractlanguages featurestospecifytherequirementsbydefininganoperational model ofthesystem.

Thisapproach isnotnowwidelyused althoughitcan beusefulforinterfacespecifications.

SOFTWAREENGINEERING–Material 29

SOFTWAREENGINEERING

Page29

Graphical A graphicallanguage, supplementedbytextannotationsisusedtodefinethefunctional
notations requirementsforthesystem.Anearlyexample ofsuchagraphicallanguagewasSADT.

Now,use-casedescriptionsandsequencediagramsarecommonlyused.

Mathematical These are notations based on mathematical concepts such as finite-state machines

orspecifications sets.Theseunambiguousspecificationsreduce theargumentsbetweencustomerand

contractor about system functionality. However, most customers don‘t

understandformalspecificationsandarereluctanttoacceptitasasystemcontract.

3.1)Structuredlanguagespecifications

The freedom of the requirements writer is limited by a predefined template for

requirements.Allrequirementsarewritteninastandardway.

Theterminologyusedinthedescriptionmaybelimited.

Theadvantageisthatthemostoftheexpressiveness
ofnaturallanguageismaintainedbutadegreeofuniformityisimposedonthespecification.

Form-basedspecifications

Definitionofthefunctionorentity.
Descriptionofinputsandwheretheycomefrom.Des

criptionofoutputsandwheretheygoto.
Indicationofotherentitiesrequired.Prean

dpostconditions(ifappropriate).Theside
effects (ifany)ofthefunction.

Tabularspecification

Usedtosupplementnaturallanguage.
Particularlyusefulwhenyou havetodefineanumberofpossiblealternativecourses ofaction.

Graphicalmodels

Graphicalmodelsaremostusefulwhen you needtoshowhowstatechangesor whereyou
needtodescribeasequenceofactions.

Sequencediagrams

Theseshowthesequenceofevents thattakeplaceduring someuserinteraction with
asystem.Youreadthem from toptobottomtoseetheorderoftheactionsthattakeplace.
Cash

withdrawalfromanATMVa
lidatecard;

Handle
request;Completetran

saction.

 30SOFTWARE ENGINEERING

SOFTWAREENGINEERING

Page30

Sequence diagramofATMwithdrawal

Systemrequirementspecificationusing astandardform:

FunctionD
escriptionIn

putsSource
OutputsDe
stinationAc

tionRequir
es

Pre-

conditionPost

-

conditionSide

-effects

Whenastandardformisusedforspecifyingfunctionalrequirements,thefollowinginformationshouldbeincluded:

Description of the function or entity being

specifiedDescriptionofitsinputsand

wherethesecomefromDescription of its outputs and

where these go toIndication ofwhatotherentities

areusedDescriptionoftheactiontobetaken

Ifafunctionalapproach isused,apre-conditionsettingoutwhatmustbetruebeforethefunctionis
calledandapost-conditionspecifyingwhatistrueafterthefunctioniscalled

 31SOFTWARE ENGINEERING

SOFTWAREENGINEERING

Page31

Descriptionofthesideeffectsoftheoperation.

INTERFACESPECIFICATION

Most
systemsmustoperatewithothersystemsandtheoperatinginterfacesmustbespecifiedaspartofthere
quirements.

Threetypesofinterfacemayhavetobedefined
Proceduralinterfaces whereexistingprogramsorsub-systemsofferarangeofservicesthat
are accessed by calling interface procedures. These interfaces are sometimes
calledApplicatinProgrammingInterfaces(APIs)
Data structures that are exchanged that are passed from one sub-system
toanother.GraphicaldatamodelsarethebestnotationsforthistypeofdescriptionDatar

epresentationsthathavebeenestablished for anexistingsub-system

Formal notationsare aneffective technique forinterfacespecification.

5)THE SOFTWAREREQUIREMENTSDOCUMENT:

Therequirementsdocument istheofficialstatementofwhatisrequired ofthesystemdevelopers.

Shouldincludebothadefinition ofuser requirementsandaspecificationofthe

systemrequirements.
ItisNOTadesigndocument.Asfaraspossible,itshouldsetofWHATthesystemshould
doratherthanHOWitshoulddoit

Usersofarequirementsdocument:

 32SOFTWARE ENGINEERING

SOFTWAREENGINEERING

Page32

IEEErequirementsstandarddefinesagenericstructurefor
arequirementsdocumentthatmustbeinstantiatedforeachspecificsystem.

Introduction.
Purpose of the requirements

documentScopeoftheproject

Definitions,acronymsandabbreviationsR
eferences

Overview of the remainder of the

documentGeneraldescription.

Product

perspectiveProduct

functionsUser

characteristicsGene

ralconstraints

Assumptionsanddependencies
Specific requirements cover functional, non-functional and interface requirements.
Therequirementsmaydocumentexternalinterfaces,describesystemfunctionalityandperformance,s

pecify logical database requirements, design constraints, emergent system properties
andqualitycharacteristics.
Appendices.
Index.

REQUIREMENTSENGINEERINGPROCESSES
The goal of requirements engineering process is to create and maintain a system requirements
document.Theoverallprocessincludesfourhigh-levelrequirementengineeringsub-
processes.Theseareconcernedwith

Assessing whetherthesystemisusefultothebusiness(feasibilitystudy)
Discoveringrequirements(elicitationandanalysis)
Convertingtheserequirementsintosome standardform(specification)

Checking that the requirements actually define the system that the customer wants(validation)
Theprocessofmanagingthechangesintherequirementsiscalledrequirementmanagement.

Therequirementsengineeringprocess

Requirementsengineering:

 33SOFTWARE ENGINEERING

SOFTWAREENGINEERING

Page33

The alternative perspective on the requirements engineering process presents the process as a three-

stageactivity where the activities are organized as an iterative process around a spiral. The amount of time
andeffort devoted to each activity in iteration depends on the stage of the overall process and the type of
systembeing developed. Early in the process, most effort will be spent on understanding high-level business

andnon-functional requirements and the user requirements. Later in the process, in the outer rings of the
spiral,moreeffortwillbedevotedtosystemrequirementsengineeringandsystemmodeling.

This spiral model accommodates approaches to development in which the requirements are developed
todifferent levels of detail. The number of iterations around the spiral can vary, so the spiral can be
exitedaftersomeoralloftheuserrequirementshavebeenelicited.

Some people consider requirements engineering to be the process of applying a structured analysis
methodsuch as object-oriented analysis. This involves analyzing the system and developing a set of
graphicalsystem models, such as use-case models, that then serve as a system specification. The set of

modelsdescribes the behavior of the system and are annotated with additional information describing, for
example,itsrequiredperformanceorreliability.

Spiralmodelofrequirementsengineeringprocesses

1) FEASIBILITY STUDIES

Afeasibilitystudydecideswhetherornottheproposedsystemisworthwhile.The input tothefeasibility study

is a set of preliminary business requirements, an outline description of the system and howthe system is
intended to support business processes. The results of the feasibility study should be a reportthat

recommends whetheror notit worthcarryingonwiththe requirements

engineeringandsystemdevelopmentprocess.

Ashortfocusedstudythatchecks

– Ifthesystemcontributestoorganisationalobjectives;

– Ifthesystemcanbeengineered usingcurrenttechnologyandwithinbudget;

 34SOFTWARE ENGINEERING

SOFTWAREENGINEERING

Page34

– Ifthesystemcanbeintegrated withother systemsthatareused.

Feasibilitystudyimplementation:

Afeasibilitystudyinvolvesinformation assessment,information collection

andreportwriting.Questions forpeopleintheorganisation

– Whatifthesystemwasn‘timplemented?

– Whatarecurrentprocessproblems?
– Howwilltheproposedsystem help?
– What will betheintegration problems?

– Isnewtechnologyneeded?What skills?

– Whatfacilitiesmustbesupportedbytheproposedsystem?

Inafeasibilitystudy,youmayconsultinformationsourcessuchasthemanagersofthedepartments where
the system will be used, software engineers who are familiarwith the type of systemthat is proposed,
technology experts and end-users of the system. They should try to complete a

feasibilitystudyintwoorthreeweeks.

Onceyouhavetheinformation,youwritethefeasibilitystudy report.Youshouldmakearecommendation
about whether or not the system development should continue. In the report, you
mayproposechangestothescope,budgetandscheduleofthesystemandsuggestfurtherhigh-levelrequirements
forthesystem.

2) REQUIREMENTELICITATIONANDANALYSIS:

Therequirement

engineeringprocessisrequirementselicitationandanalysis.Sometimescalledrequ

irementselicitation orrequirementsdiscovery.
Involves technical staff working with customers to find out about the application
domain,theservicesthatthesystemshouldprovideandthesystem‘s operationalconstraints.

May involve end-users, managers, engineers involved in maintenance, domain
experts,tradeunions,etc.Thesearecalledstakeholders.

•
Problemsof requirementsanalysis

Stakeholders don‘t know what they really

want.Stakeholders express requirements in their own

terms.Differentstakeholdersmayhaveconflictingrequiremen

ts.

Organisationalandpoliticalfactorsmayinfluencethesystemrequirements.
Therequirementschangeduringtheanalysisprocess.Newstakeholdersmayemergeandthebusin
essenvironmentchange.

Therequirementsspiral

 35SOFTWARE ENGINEERING

SOFTWAREENGINEERING

Page35

Process activities

Requirementsdiscovery

– Interacting with stakeholders to discover their requirements. Domain requirements
arealsodiscoveredatthisstage.

Requirementsclassificationandorganisation
– Groupsrelatedrequirementsandorganisesthem

intocoherentclusters.Prioritisationandnegotiation

– Prioritisingrequirementsandresolvingrequirementsconflicts.Re
quirementsdocumentation

– Requirementsare documentedandinputintothenextroundofthespiral.
The process cycle starts with requirements discovery and ends with requirements documentation.
Theanalyst‘s understandingoftherequirementsimproveswitheachroundofthecycle.

Requirementsclassificationandorganizationisprimarilyconcernedwithidentifyingoverlappingrequirements
from different stakeholders and grouping related requirements. The most common way ofgrouping
requirements is to use a model of the system architecture to identify subsystems and to
associaterequirements witheachsub-system.

Inevitably,stakeholdershavedifferentviewsontheimportanceandpriorityofrequirements,andsometimes these
view conflict. During the process, you should organize regular stakeholder negotiations
sothatcompromisescanbereached.

In the requirement documenting stage, the requirements that have been elicited are documented in such
awaythattheycanbeusedtohelpwithfurtherrequirementsdiscovery.

2.1) REQUIREMENTSDISCOVERY:

Requirementdiscoveryis theprocessofgatheringinformationabouttheproposed andexistingsystems
anddistillingtheuserandsystemrequirementsfromthis information.

Sources of information include documentation, system stakeholders and the
specificationsofsimilarsystems.

Theyinteractwithstakeholdersthrough interviewand
observationandmayusescenariosandprototypestohelpwiththerequirementsdiscovery.

Stakeholders range from system end-users through managers and external stakeholders such
asregulatorswhocertifytheacceptabilityofthesystem.
For example, system stakeholder for a bank ATM

includeBankcustomers
Representatives of other

banksBankmanagers

Counterstaff
Database
administratorsSecurity
managersMarketingdep
artment

Hardware and software maintenance

engineersBankingregulators
Requirementssources(stakeholders,domain,systems)canall berepresentedassystem
viewpoints,whereeachviewpoints, whereeachviewpointpresentsasub-setoftherequirementsforthesystem.

Viewpoints:

Viewpointsareawayofstructuringtherequirementstorepresenttheperspectivesofdifferentstakeholders
.Stakeholdersmaybeclassifiedunderdifferentviewpoints.

Thismulti-
perspectiveanalysisisimportantasthereisnosinglecorrectwaytoanalysesystemrequirements.

•
Typesofviewpoint:

Interactorviewpoints

– People or other systems that interact directly with the system. These viewpoints
providedetailed system requirements covering the system features and interfaces. In an
ATM, thecustomer‘s andtheaccountdatabaseareinteractorVPs.

Indirectviewpoints

 36SOFTWARE ENGINEERING

SOFTWAREENGINEERING

Page36

– Stakeholders who do not use the system themselves but who influence the
requirements.These viewpoints are more likely to provide higher-level organisation
requirements andconstraints.InanATM,
managementandsecuritystaffareindirectviewpoints.

Domainviewpoints
– Domain characteristics and constraints that influence the requirements. These

viewpointsnormally provide domain constraints that apply to the system. In an ATM, an
examplewouldbestandardsforinter-bankcommunications.

Typically,theseviewpointsprovidedifferenttypesofrequirements.

Viewpointidentification:

Identifyviewpointsusing

– Providersandreceiversofsystemservices;

– Systemsthatinteractdirectlywith thesystembeingspecified;
– Regulationsand standards;

– Sources ofbusiness andnon-functionalrequirements.
– Engineerswhohavetodevelopandmaintainthesystem;

– Marketingandotherbusinessviewpoints.

LIBSYSviewpointhierarchy

Interviewing
In formalor
informalinterviewing,theREteamputsquestionstostakeholdersaboutthesystemthattheyuseandthesystemtobe
developed.

Therearetwotypesofinterview
Closedinterviewswhereapre-definedsetofquestions areanswered.

Open interviews where there is no pre-defined agenda and a range of issues are
exploredwithstakeholders.

-

Interviewsinpractice:

Normallyamixofclosedandopen-endedinterviewing.

Interviews are good for getting an overall understanding of what stakeholders do and
howtheymightinteractwiththesystem.

Interviewsarenotgood forunderstandingdomainrequirements

– Requirementsengineerscannotunderstandspecificdomainterminology;

 37SOFTWARE ENGINEERING

SOFTWAREENGINEERING

Page37

– Some domain knowledge is so familiar that people find it hard to articulate or think that
itisn‘twortharticulating.

Effectiveinterviewers:
Interviewers should be open-minded, willing to listen to stakeholders and should not have pre-
conceivedideasabouttherequirements.

Theyshouldprompttheintervieweewithaquestion
oraproposalandshouldnotsimplyexpectthemtorespondtoaquestionsuchas ‗whatdoyouwant‘.

•
Scenarios:

Scenariosarereal-lifeexamplesofhowasystemcanbeused.
Theyshould include

– Adescriptionofthestartingsituation;
– A descriptionofthenormalflowofevents;

– Adescription ofwhatcangowrong;

– Informationaboutotherconcurrentactivities;

– Adescription ofthestatewhenthescenariofinishes.

Usecases
Use-cases areascenariobasedtechniquein

theUMLwhichidentifytheactorsinaninteractionandwhichdescribetheinteractionitself.

Asetofusecasesshoulddescribeallpossibleinteractionswiththesystem.

Sequencediagramsmaybeusedtoadddetailtouse-
casesbyshowingthesequenceofeventprocessinginthesystem.

•
Articleprintinguse-case:

LIBSYS usecases:

 38SOFTWARE ENGINEERING

SOFTWAREENGINEERING

Page38

Articleprintingsequence:

Socialandorganisationalfactors

Softwaresystemsareusedinasocialandorganisationalcontext.Thiscan
influenceorevendominatethesystemrequirements.

Socialandorganisationalfactorsarenotasingleviewpointbutareinfluencesonallviewpoints.

Good analysts must be sensitive to these factors but currently no systematicway to

tackletheiranalysis.

2.2) ETHNOGRAPHY:

A

socialscientistsspendsaconsiderabletimeobservingandanalysinghowpeopleactuallywork.Peopledon

othavetoexplainorarticulatetheirwork.

Socialandorganisationalfactorsofimportancemaybeobserved.

Ethnographic studies have shown that work is usually richer and more complex than
suggestedbysimplesystemmodels.

Focusedethnography:

DevelopedinaprojectstudyingtheairtrafficcontrolprocessCom

bines ethnographywithprototyping
Prototype development results in unanswered questions which focus the ethnographic

analysis.Theproblemwithethnographyisthatitstudiesexistingpracticeswhichmayhavesomehistorical

basiswhichisnolongerrelevant.

Ethnographyandprototyping

 39SOFTWARE ENGINEERING

SOFTWAREENGINEERING

Page39

Scopeofethnography:

RequirementsthatarederivedfromthewaythatpeopleactuallyworkratherthanthewayIwhichproc
essdefinitionssuggestthattheyoughttowork.

Requirementsthatarederived fromcooperationandawarenessofotherpeople‘sactivities.

REQUIREMENTSVALIDATION
Concerned
withdemonstratingthattherequirementsdefinethesystemthatthecustomerreallywants.

Requirementserror costs arehighsovalidationisveryimportant

–Fixingarequirements error afterdeliverymaycostupto100timesthecostof
fixinganimplementationerror.

Requirementschecking:

Validity:Doesthesystemprovidethefunctionswhichbestsupportthecustomer‘sneeds?

Consistency:Arethereanyrequirementsconflicts?

Completeness:Areallfunctionsrequiredbythecustomerincluded?
Realism:Can therequirementsbeimplemented givenavailablebudgetandtechnology
Verifiability:Can therequirements bechecked?

Requirementsvalidationtechniques

Requirementsreviews
– Systematic

manualanalysisoftherequirements.Prototyping

– Usinganexecutablemodelofthesystemtocheckrequirements.CoveredinChapter17.Test-

casegeneration

– Developingtestsforrequirementstochecktestability.

Requirementsreviews:

Regularreviewsshouldbeheld whiletherequirementsdefinition

isbeingformulated.Bothclientandcontractorstaffshouldbeinvolvedinreviews.

Reviewsmaybeformal(withcompleteddocuments)orinformal.Goodcommunicationsbetween
developers, customersanduserscanresolve problemsatanearlystage.

Reviewchecks:

Verifiability: Is the requirement realistically

testable?Comprehensibility:Istherequirementproperlyunderst

ood?Traceability:Isthe originoftherequirement clearlystated?

Adaptability:Can therequirementbechangedwithoutalargeimpactonotherrequirements?

REQUIREMENTSMANAGEMENT
Requirementsmanagementistheprocessofmanagingchangingrequirementsduringthereq
uirementsengineeringprocessandsystemdevelopment.

Requirementsareinevitablyincompleteandinconsistent

– Newrequirementsemergeduringtheprocessasbusinessneedschangeandabetterunderst
andingofthesystemisdeveloped;

– Differentviewpointshavedifferentrequirementsandtheseareoftencontradictory.

Requirementschange

The priority of requirements from different viewpoints changes during the development

process.System customers may specify requirements from a business perspective that conflict

with end-userrequirements.

Thebusinessandtechnicalenvironmentofthesystemchanges duringitsdevelopment.

 40

SOFTWAREENGINEERING

Page40

Requirementsevolution:

4.1) Enduring andvolatilerequirements:
Enduringrequirements:Stablerequirementsderivedfromthecoreactivityofthecustomerorganisation.
E.g. a hospital will always have doctors, nurses, etc. May be derived from domainmodels

Volatile requirements: Requirements which change during development or when the system is
inuse.Inahospital,requirementsderivedfromhealth-carepolicy

Requirementsclassification:

Requirement Description

Type

Mutable Requirements that change because of changes to the environment in which
therequirements organisationisoperating. Forexample,inhospitalsystems, thefundingofpatient

care may change and thus require different treatment information to be

collected.Emergent Requirementsthatemergeasthecustomer'sunderstandingof

thesystemdevelopsrequirements duringthesystemdevelopment.

Thedesignprocessmayrevealnewemergent

requirements.
Consequential Requirements that result from the introduction of the computer system.

Introducingrequirements

 thecomputersystemmaychangetheorganisationsprocessesandopenupnewways

ofworkingwhichgeneratenewsystemrequirements
Compatibility Requirements that depend on the particular systems or business processes within
anrequirements organisation.Asthesechange,thecompatibilityrequirementsonthecommissioned

ordeliveredsystemmayalsohave toevolve.

4.2) Requirementsmanagementplanning:

Duringtherequirementsengineeringprocess,you havetoplan:
– Requirementsidentification

Howrequirementsareindividuallyidentified;

– Achangemanagementprocess

Theprocessfollowedwhenanalysingarequirementschange;

– Traceabilitypolicies

Theamountofinformation aboutrequirementsrelationshipsthatismaintained;
– CASEtoolsupport

Thetoolsupportrequiredtohelpmanagerequirements change;

Traceability:

Traceabilityisconcernedwiththerelationshipsbetweenrequirements,theirsourcesandthesystemdesignSourcet

raceability

– Linksfromrequirementstostakeholders
whoproposedtheserequirements;Requirementstraceability

– Linksbetweendependentrequirements;

Designtraceability-Linksfromtherequirementstothedesign;

 41

SOFTWAREENGINEERING

Page41

CASEtool support:

Requirementsstorage
– Requirementsshouldbemanagedin

asecure,manageddatastore.Changemanagement
– Theprocess ofchangemanagementisaworkflowprocess whosestages

canbedefinedandinformationflowbetweenthesestages partiallyautomated.

Traceabilitymanagement
– Automatedretrievalofthelinksbetween requirements.

4.3) Requirementschangemanagement:

Shouldapplytoall

proposedchangestotherequirements.Principalstages

– Problem analysis.Discussrequirementsproblem andproposechange;

– Changeanalysisand costing.Assesseffectsofchangeonotherrequirements;

– Changeimplementation.
Modifyrequirementsdocumentandotherdocumentstoreflectchange.

Changemanagement:

SYSTEM MODELLING

Systemmodellinghelpstheanalysttounderstandthefunctionalityofthesystemandmodelsareusedto

communicatewithcustomers.

Differentmodelspresentthesystemfromdifferentperspectives

o Behaviouralperspectiveshowingthebehaviourofthesystem;
o Structuralperspectiveshowingthesystemordataarchitecture.

Modeltypes

Data processing model showing how the data is processed at different

stages.Composition modelshowinghowentitiesarecomposed ofotherentities.

Architecturalmodelshowingprincipalsub-systems.
Classification model showing how entities have common
characteristics.Stimulus/responsemodelshowingthesystem‘sreactiontoev
ents.

CONTEXTMODELS:

Contextmodelsareusedtoillustratetheoperationalcontextofasystem-theyshowwhatlies

outsidethesystemboundaries.

Social and organisational concerns may affect the decision on where to

positionsystemboundaries.
Architecturalmodelsshowthesystemanditsrelationshipwithothersystems.

 42

SOFTWAREENGINEERING

Page42

Thecontextofan ATMsystem:

Processmodels:

Processmodelsshowthe overallprocessandtheprocessesthataresupportedbythesystem.
Dataflowmodels
maybeusedtoshowtheprocessesandtheflowofinformationfromoneprocesstoanother.

BEHAVIOURALMODELS:

Behaviouralmodelsareusedtodescribetheoverallbehaviour

ofasystem.Twotypesofbehaviouralmodelare:

o Data processing models that show how data is processed as it moves through
thesystem;

Statemachinemodels thatshowthesystems responsetoevents.

These models show different perspectives so both of them are required to describe
thesystem‘sbehaviour.

2.1) Data-processing models:

Data flowdiagrams(DFDs)maybeusedtomodelthesystem‘sdata

processing.Theseshowtheprocessingstepsas dataflows throughasystem.

DFDsareanintrinsicpartof
manyanalysismethods.Simpleandintuitivenotation
thatcustomerscanunderstand.Showend-to-
endprocessingofdata.

OrderprocessingDFD:

 43

SOFTWAREENGINEERING

Page43

Data flowdiagrams:

DFDsmodelthesystem fromafunctionalperspective.
Trackinganddocumentinghowthedataassociatedwithaprocessishelpfultodevelopanoverallundersta

ndingofthesystem.
Dataflowdiagramsmayalsobeused
inshowingthedataexchangebetweenasystemandothersystemsinitsenvironment.

2.2) State machinemodels:

These modelthe behaviourofthe systeminresponsetoexternalandinternalevents.

They show the system‘s responses to stimuli so are often used for modelling real-time
systems.Statemachinemodelsshowsystemstatesasnodesandeventsasarcsbetweenthesenodes.When
aneventoccurs, thesystemmoves fromonestatetoanother.

StatechartsareanintegralpartoftheUMLandareusedtorepresentstatemachinemodels.

Statecharts:

Allow the decomposition of a model into sub-models (see following

slide).Abriefdescriptionoftheactionsisincludedfollowingthe‗do‘ineachstate.
Canbe complementedbytablesdescribingthestatesandthestimuli.

Microwaveovenmodel:

Microwaveovenstatedescription:

State Description

Waiting Theoveniswaitingforinput.Thedisplayshowsthecurrenttime.

Halfpower Theovenpowerissetto300 watts.Thedisplayshows‗Half

power‘.Fullpower Theovenpowerissetto600 watts.Thedisplayshows‗Fullpower‘.

Settime

 Thecookingtimeissettotheuser‘sinputvalue.Thedisplayshowsthecookingtimeselecte

dandisupdatedasthetimeisset.

Disabled Ovenoperationisdisabledforsafety.Interiorovenlight ison.

Displayshows‗Notready‘.

Enabled Ovenoperationisenabled.Interiorovenlightisoff.Displayshows‗Readytocook‘.

 44

SOFTWAREENGINEERING

Page44

Operation Oven in operation. Interior oven light is on. Display shows the timer countdown.
Oncompletionofcooking,thebuzzer issounded for5seconds.Ovenlightison.Display

shows‗Cookingcomplete‘ whilebuzzer issounding.

Microwave ovenstimuli:

Stimulus Description

Halfpower Theuserhaspressedthehalfpowerbutton

Fullpower The user has pressed the full power

buttonTimer The user has pressed one of the timer

buttonsNumber Theuserhaspressedanumerickey

Dooropen The oven door switch is not

closedDoorclosed TheovendoorswitchisclosedStart

 Theuserhaspressedthestartbutton

Cancel Theuserhas pressedthecancelbutton

SEMANTICDATAMODELS:

Usedtodescribe thelogical structure ofdataprocessedbythesystem.
An entity-relation-attribute model sets out the entities in the system, the
relationshipsbetweenthese entitiesandtheentityattributes

Widely used in database design. Can readily be implemented using relational

databases.Nospecificnotation provided in theUMLbutobjectsandassociationscanbeused.

Data dictionaries

Datadictionariesarelistsofallofthenamesusedinthesystemmodels.Descriptionsoftheentities,re

lationshipsandattributesarealsoincluded.
Advantages

oSupportnamemanagementandavoidduplication;
Store of organisational knowledge linking analysis, design

andimplementation;ManyCASEworkbenchessupportdatadictionaries.

OBJECTMODELS:

Objectmodels describethesystemin termsofobjectclassesandtheirassociations.
Anobjectclassisanabstraction overasetofobjectswith common attributesandthe

services(operations)providedbyeachobject.
VariousobjectmodelsmaybeproducedIn

heritancemodels;
oAggregationmodels;Int

eractionmodels.

Natural waysofreflectingthereal-worldentitiesmanipulatedbythesystemMore
abstractentitiesaremoredifficulttomodelusingthisapproach

Object class identification is recognised as a difficult process requiring a deep understanding
oftheapplicationdomain
Objectclassesreflectingdomainentitiesarereusableacrosssystems

4.1) Inheritancemodels:

Organisethe domainobjectclassesintoahierarchy.

Classesat the topofthehierarchyreflectthecommonfeaturesofallclasses.
Object classes inherit their attributes and services from one or more super-classes. these
maythenbespecialisedasnecessary.

 45

SOFTWAREENGINEERING

Page45

Classhierarchydesigncan beadifficultprocess ifduplication in
differentbranchesistobeavoided.

ObjectmodelsandtheUML:

TheUMLis astandardrepresentationdevisedbythedevelopersofwidelyusedobject-
orientedanalysisanddesignmethods.

Ithasbecome aneffective standardforobject-orientedmodelling.
Notation

oObjectclassesarerectangleswiththenameatthetop, attributesinthemiddlesectionandoperations
inthebottomsection;
Relationshipsbetweenobject
classes(knownasassociations)areshownaslineslinkingobjects;
Inheritanceisreferredtoasgeneralisation andisshown‗upwards‘rather than
‗downwards‘inahierarchy.

Libraryclasshierarchy:

Userclasshierarchy:

 46

SOFTWAREENGINEERING

Page46

Multipleinheritance:

Ratherthaninheritingtheattributesandservicesfromasingleparentclass,asystemwhichsupportsmultipleinh

eritanceallowsobjectclassestoinheritfromseveralsuper-classes.

Thiscanleadtosemanticconflicts whereattributes/services
withthesamenameindifferentsuper-classeshavedifferentsemantics.

Multipleinheritancemakes classhierarchyreorganisationmorecomplex.

Multipleinheritance

Objectaggregation:
An aggregation modelshowshow classesthatarecollectionsarecomposedofotherclasses.

Aggregationmodelsaresimilartothepart-ofrelationshipinsemanticdatamodels.

4.2) Objectaggregation

Objectbehaviourmodelling

 47

SOFTWAREENGINEERING

Page47

Abehaviouralmodelshowstheinteractionsbetweenobjectstoproducesomeparticularsystemb

ehaviourthatisspecifiedasause-case.
Sequencediagrams(or collaborationdiagrams)in theUMLareused tomodelinteraction
betweenobjects.

STRUCTUREDMETHODS:

Structuredmethodsincorporate systemmodellingasaninherentpartofthemethod.

Methodsdefineasetofmodels,aprocessforderivingthesemodelsandrulesandguidelinesthatshouldapp
lytothemodels.
CASEtoolssupportsystemmodellingaspartofastructuredmethod.

Methodweaknesses:

Theydonotmodelnon-functionalsystemrequirements.
Theydonotusuallyincludeinformationaboutwhetheramethodisappropriateforagivenproblem.
Themayproducetoomuchdocumentation.
The systemmodelsaresometimestoodetailedanddifficultforuserstounderstand.

CASEworkbenches:

Acoherentsetoftoolsthatisdesignedtosupportrelatedsoftwareprocessactivitiessuchas

analysis,designortesting.

Analysis and design workbenches support system modelling during both

requirementsengineeringandsystemdesign.
Theseworkbenchesmaysupportaspecificdesignmethod or mayprovidesupportfor a
creatingseveraldifferenttypesofsystemmodel.

Ananalysisanddesignworkbench

 48

SOFTWAREENGINEERING

Page48

Analysisworkbenchcomponents:

Diagrameditors

Model analysis and checking

toolsRepositoryand

associatedquerylanguageDatadictionary

ReportdefinitionandgenerationtoolsF

orms definitiontools

Import/export
translatorsCodegeneratio
ntools

 49

SOFTWAREENGINEERING

Page49

UNIT-

IIIDESIGNENGINEERI

NG

Design engineering encompasses the set of principals, concepts, and practices that lead
tothedevelopmentofahigh-qualitysystemorproduct.

Design principles establish an overriding philosophy that guides the designer in the work that
isperformed.
Designconceptsmustbeunderstoodbeforethemechanicsofdesignpracticeareappliedand

Design practice itself leads to the creation of various representations of the software that serve as a guide
fortheconstructionactivitythat follows.

Whatisdesign:

Design is what virtually every engineer wants to do. It is the place where creativity rules –customer‘s
requirements, business needs, and technical considerations all come together in the formulationof a
product or a system. Design creates a representation or model of the software, but unlike the

analysismodel, the design model provides detail about software data structures, architecture, interfaces,
andcomponentsthatarenecessarytoimplementthesystem.

Whyisitimportant:

Design allows a software engineer to model the system or product that Is to be built. This model

canbeassessed forqualityandimproved beforecodeis generated,testsareconducted,andend–
usersbecomeinvolvedinlargenumbers.Designistheplacewheresoftwarequalityis established.

The goal of design engineering is to produce a model or representation that exhibits
firmness,commodity, and delight. To accomplish this, a designer must practice diversification and
thenconvergence. Another goal of software design is to derive an architectural rendering of a system.
Therenderingserves asaframeworkfromwhich moredetaileddesignactivities areconducted.

1) DESIGNPROCESSANDDESIGNQUALITY:

Softwaredesignisaniterativeprocess throughwhichrequirementsaretranslatedintoa

―blueprint‖forconstructingthesoftware.

Goals ofdesign:
McGlaughlinsuggeststhreecharacteristicsthatserveasaguidefortheevaluationofagooddesign.

Thedesignmustimplementalloftheexplicitrequirements containedintheanalysis
model,anditmustaccommodateall oftheimplicitrequirementsdesiredbythecustomer.

The design must be a readable, understandable guide for those who generate code and for those who
testandsubsequentlysupport thesoftware.

Thedesignshouldprovideacompletepictureofthesoftware,addressingthedata,functional,andbehavioral
domainsfrom animplementationperspective.

Quality guidelines:
Inorder toevaluatethequalityof adesignrepresentationwemustestablish
technicalcriteriaforgooddesign. Thesearethefollowingguidelines:

Adesignshouldexhibitan architecturethat
hasbeencreatedusingrecognizablearchitecturalstylesorpatterns
iscomposedofcomponentsthatexhibitgooddesign characteristics and

canbeimplementedin an
evolutionaryfashion,therebyfacilitatingimplementationandtesting.

Adesignshouldbemodular;thatis,thesoftwareshouldbelogicallypartitionedintoelementsorsubsyst
ems.

A design should contain distinct representation of data, architecture, interfaces and

components.Adesignshouldleadtodatastructuresthatareappropriatefortheclassestobeimplementeda

ndaredrawnfromrecognizabledatapatterns.

Adesignshouldleadtocomponentsthatexhibitindependentfunctionalcharacteristics.

SOFTWAREENGINEERING–Material 50

SOFTWAREENGINEERING

Page50

Adesignshouldleadtointerfacethatreducethecomplexityofconnections
betweencomponentsandwiththeexternalenvironment.

Adesignshouldbederived
usingarepeatablemethodthatisdrivenbyinformationobtainedduringsoftwarerequirementsan
alysis.

Adesignshouldberepresentedusinganotationthateffectivelycommunication itsmeaning.

These design guidelines are not achieved by chance. Design engineering encourages good design
throughtheapplicationoffundamentaldesignprinciples,systematicmethodology,andthoroughreview.

Qualityattributes:

TheFURPSqualityattributesrepresentatargetfor allsoftwaredesign:

Functionalityisassessedbyevaluatingthefeaturesetandcapabilitiesoftheprogram,thegeneralityofthef
unctionsthataredelivered,andthesecurityoftheoverallsystem.

Usabilityisassessedbyconsideringhumanfactors,overallaesthetics,consistencyanddocumentation.

Reliability is evaluated by measuring the frequency and severity of failure, the accuracy of
outputresults, and the mean – time –to- failure (MTTF), the ability to recover from failure, and
thepredictabilityoftheprogram.

Performance ismeasured by processing speed, response time, resource consumption, throughput,
andefficiency



Supportability combines the ability to extend the program (extensibility), adaptability, serviceability-
thesethreeattributesrepresent amorecommontermmaintainability

Not every software quality attribute is weighted equally as the software design

isdeveloped.

Oneapplicationmaystressfunctionalitywithaspecialemphasisonsecurity.Anothermaydeman

dperformancewithparticularemphasisonprocessingspeed.

Athirdmightfocusonreliability.

2) DESIGNCONCEPTS:

M.A Jackson once said:‖The beginning of wisdom for a software engineer is to recognize the
differencebetweengetting a program to work, and getting it right.‖ Fundamental software designconcepts
providethenecessaryframeworkfor―gettingitright.‖

Abstraction:Manylevels ofabstractionarethere.
Atthehighestlevelofabstraction,asolutionisstatedin broadtermsusingthelanguageoftheproblemenvironment.
Atlowerlevelsofabstraction,amoredetaileddescriptionofthesolutionisprovided.

A procedural abstraction refers to a sequence of instructions that have a specific and limited function.
Thenameofproceduralabstractionimpliesthesefunctions,butspecificdetailsaresuppressed.

Adataabstractionisanamed collectionofdatathatdescribesadataobject.

In the context of the procedural abstractionopen, we can define a data abstraction called door. Like anydata
object, the data abstraction for door would encompass a set of attributes that describe the door

(e.g.,doortype,swingoperation,openingmechanism,weight,dimensions).Itfollowsthattheproceduralabstraction
openwould makeuseofinformationcontainedin theattributesofthedataabstractiondoor.

Architecture:

Softwarearchitecturealludesto―theoverallstructureofthesoftwareandthewaysinwhichthatstructure provides
conceptual integrity for a system‖. In its simplest form, architecture is the structure or organizationof
program components (modules), the mannerinwhich these components interact, and the structure
ofdatathatareusedbythecomponents.

One goal of software design is to derive an architectural rendering of a system. The rendering serves as
aframeworkfromwhichmoredetaileddesignactivities areconducted.

SOFTWAREENGINEERING–Material 51

SOFTWAREENGINEERING

Page51

Thearchitecturaldesign can berepresentedusingoneor moreofanumberofdifferentmodels.
Structuredmodelsrepresentarchitectureasan organized collectionofprogramcomponents.

Framework models increase the level of design abstraction by attempting to identify
repeatablearchitecturaldesignframeworks thatareencounteredinsimilartypes ofapplications.

Dynamicmodelsaddressthebehavioralaspects
oftheprogramarchitecture,indicatinghowthestructureorsystemconfigurationmaychangeasafunctionexternale
vents.

Process models focus on the design of the business or technical process that the system

mustaccommodate.Functionalmodelscanbeused torepresentthefunctionalhierarchyofasystem.

Patterns:

BradAppletondefinesadesignpatterninthefollowingmanner:―apatternisanamednuggetofinside which conveys

that essence of a proven solution to a recurring problem within a certain context amidstcompeting
concerns.‖ Stated in another way, a design pattern describes a design structure that solves
aparticulardesignwithinaspecificcontextandamid―forces‖thatmayhaveanimpactonthemannerin

whichthepatternisappliedandused.

The intent of each design pattern is to provide a description that enables a designer to

determineWhetherthepatterniscapabletothecurrentwork,

Whetherthepatterncan bereused,
Whetherthepatterncanserveasaguidefordevelopingasimilar,butfunctionallyorstructurallydifferent
pattern.

IV. Modularity:
Software architecture and design patterns embody modularity; software is divided into

separatelynamed and addressable components,sometimescalledmodules that are integrated to satisfy
problemrequirements.

Ithasbeenstatedthat―modularityisthesingleattributeofsoftwarethatallowsaprogramtobeintellectually
manageable‖.Monolithic software cannot be easily grasped by a software engineer. Thenumber of control
paths, span of reference, numberof variables, and overall complexity would
makeunderstandingclosetoimpossible.

The―divideandconquer‖strategy-

it‘seasiertosolveacomplexproblemwhenyoubreakitintomanageablepieces.Thishasimportantimplicationswithre

gardtomodularityandsoftware.Ifwesubdivide software indefinitely, the effort required to develop it will

become negligibly small. The effort todevelop an individual software module does decrease as the total
number of modules increases. Given thesame set of requirements, more modules means smaller individual

size. However, as the number of modulesgrows,theeffortassociatedwithintegratingthemodulesalsogrow.
Undermodularityorovermodularityshouldbeavoided.Wemodularizeadesignsothatdevelopment can

be more easily planned; software increment can be defined and delivered; chamges can bemoreeasily
accommodated;testingand debuggingcanbeconductedmore efficiently,and long-
termmaintenancecanbeconductedwithoutserioussideeffects.

InformationHiding:
Theprincipleofinformationhidingsuggeststhatmodulesbe―characterizedbydesigndecisionthat

hidesfromallothers.‖

Modules should be specified and designed so that information contained within a module is
inaccessibletoothermodulesthathavenoneedforsuchinformation.

Hiding implies that effective modularity can be achieved by defining a set of independent
modulesthatcommunicatewithoneanotheronlythatinformationnecessarytoachievesoftwarefunction.Abstracti
on helps to define the procedural entities that make up the software. Hiding defines and
enforcesaccessconstraintstobothproceduraldetailwithinamoduleandlocaldatastructureusedbymodule.

The use of information hiding as a design criterion for modular systems provides the

greatestbenefits when modifications are required during testing and later, during software maintenance.
Becausemost data and procedure are hidden from other parts of the software, inadvertent errors introduced
duringmodificationarelesslikelytopropagatetootherlocationswithinsoftware.

SOFTWAREENGINEERING–Material 52

SOFTWAREENGINEERING

Page52

VI. Functional Independence:
The concept of functional independence is a direct outgrowth of modularity and the concepts

ofabstraction andinformationhiding.Functionalindependence isachievedbydevelopingmoduleswith

―singleminded‖functionandan―aversion‖toexcessiveinteractionwithothermodules.Statedanother way, we want
to design software so that each module addresses a specific sub function of requirements
andhasasimpleinterfacewhenviewedfromotherparts oftheprogramstructure.

Software with effective modularity, that is, independent modules, is easier to develop
becausefunction may be compartmentalized and interfaces are simplified. Independent sign or code
modificationsare limited, error propagation is reduced, and reusable modules are possible. To summarize,
functionalindependenceisakeytogooddesign, anddesignisthekeytosoftwarequality.

Independence is assessed using two qualitative criteria: cohesion and coupling. Cohesion is
anindicationoftherelativefunctionalstrengthofamodule.Couplingisanindicationofthe
relativeinterdependenceamongmodules. Cohesionisanaturalextensionoftheinformationhiding.

A cohesion module performs a single task, requiring little interaction with other components
inotherpartsofaprogram. Statedsimply,acohesivemoduleshoulddojustonething.

Coupling is an indication of interconnection among modules in a software structure.
Couplingdepends on the interface complexity between modules, the point at which entry or reference is
made to amodule, and what data pass across the interface. In software design, we strive for lowest possible
coupling.Simpleconnectivityamongmodulesresultsinsoftwarethatiseasiertounderstandandlesspronetoa

―rippleeffect‖,causedwhenerrorsoccuratonelocationandpropagatesthroughoutasystem.

VII. Refinement:
Stepwise refinement is a top- down design strategy originally proposed by Niklaus wirth. A program

isdevelopmentbysuccessivelyrefininglevelsofproceduraldetail.Ahierarchyisdevelopmentbydecomposing a
macroscopic statement of function in a step wise fashion until programming languagestatementsarereached.

Refinement is actually a process of elaboration. We begin with a statement of function that

isdefined at a high level of abstraction. That is, the statement describes function or information

conceptuallybut provides no information about the internal workings of the function or the internal structure

of the data.Refinement causes the designer to elaborate on the original statement, providing more and more

detail aseachsuccessiverefinementoccurs.

Abstraction and refinement are complementary concepts. Abstraction enables a designer to
specifyprocedure and data and yet suppress low-level details. Refinement helps the designer to reveal low-
leveldetails as design progresses. Both concepts aid the designer in creating a complete design model as
thedesignevolves.

VIII. Refactoring :

Refactoring is a reorganization technique that simplifies the design of a component without changing
itsfunctionorbehavior.Fowlerdefinesrefactoringinthefollowingmanner:―refactoringistheprocessof changing a
software system in such a way that it does not alter the external behavior of the code yetimproves
itsinternalstructure.‖

Whensoftware is refactored,the existing designis examinedforredundancy,unuseddesign
elements, inefficient or unnecessary algorithms, poorly constructed or inappropriate data structures,or any
other design failure that can be corrected to yield a better design. The designer may decide that
thecomponent should be refactored into 3 separate components, each exhibiting high cohesion. The result

willbesoftwarethatiseasiertointegrate,easiertotest, andeasiertomaintain.

IX. Designclasses:

Thesoftwareteammustdefineasetofdesign classesthat
Refinetheanalysisclasses byprovidingdesigndetailthatwillenabletheclasses tobeimplemented, and

 53SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page53

Create a new set of design classes that implement a software infrastructure to support the
designsolution.

Five different types of design classes, each representing a different layer of the design
architecturearesuggested.

User interface classes: define all abstractions that are necessary for human computer
interaction.In many cases, HCL occurs within the context of a metaphor and the design classes for
theinterfacemaybevisualrepresentationsoftheelementsofthemetaphor.

Business domain classes: are often refinements of the analysis classes defined earlier. The
classesidentify the attributes and services that are required to implement some element of the
businessdomain.

Processclassesimplementlower–levelbusinessabstractionsrequiredtofullymanagethebusinessdomainclasses.
Persistentclasses representdatastores thatwillpersistbeyondtheexecutionofthesoftware.

Systemclassesimplementsoftware managementandcontrolfunctions
thatenablethesystemtooperateandcommunicatewithinitscomputingenvironmentandwiththeoutsideworld.

As the design model evolves, the software team must develop a complete set
ofattributesandoperationsforeachdesignclass.Thelevelofabstraction
isreducedaseachanalysisclassistransformedintoadesignrepresentation.Eachdesignclassbereviewedtoensurethat
itis―well-formed.‖ Theydefinefourcharacteristicsofawell-formeddesignclass.

Completeandsufficient:Adesignclassshould be the complete encapsulationof all attributesandmethods that
can reasonably be expected to exist for the class. Sufficiency ensures that the design
classcontainsonlythosemethodsthataresufficienttoachievetheintentoftheclass,nomoreandnoless.

Primitiveness: Methods associated with a design class should be focused on accomplishing one service
forthe class. Once the service has been implemented with a method, the class should not provide another
waytoaccomplishthesamething.

High cohesion: A cohesive design class has a small, focused set of responsibilities and single-
mindedlyapplies attributesandmethodstoimplementthoseresponsibilities.

Low coupling: Within the design model, it is necessary for design classes to collaborate with one

another.However, collaboration should be kept to an acceptable minimum. If a design model is highly
coupled thesystem is difficult to implement, to test, and to maintain over time. In general, design classes
within asubsystem should have only limited knowledge of classes in other subsystems. This restriction,

called thelawofDemeter,suggests thatamethodshouldonlysentmessages tomethods inneighboringclasses.

THEDESIGNMODEL:

Thedesignmodelcanbeviewedintodifferentdimensions.
The process dimension indicates the evolution of the design model as design tasks are executed
asapart ofthesoftwareprocess.

The abstraction dimension represents the level of detail as each element of the analysis
modelis transformedintoadesignequivalentandthenrefinediteratively.

The elements of the design model use many of the same UML diagrams that were used in the
analysismodel.Thedifferenceisthatthesediagramsare

refinedandelaboratedasapathofdesign;moreimplementation- specific detail is provided, and architectural
structure and style, components that residewithin the architecture, and the interface betweenthe components
and with the outside world are allemphasized.

It is important to mention however, that model elements noted along the horizontal axis are
notalwaysdevelopedinasequentialfashion.Inmostcasespreliminaryarchitecturaldesignsetsthestageandis
followed by interface design and component-level design, which often occur in parallel. The
deploymentmodelususuallydelayeduntilthedesignhas beenfullydeveloped.

 54SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page54

high

analysismodel

class

diagramsanalysis

packagesCRCmo

dels

collaborationdiagrams

dataflowdiagramscontr

ol-

flowdiagramsprocessin

gnarratives

use- cases - t

extuse-

casediagrams

activitydiagramsswim

lane

diagramscollaborat ion

diagramsstatediagrams

sequencediagrams

class diagrams

analysispackagesCRC

modelscollaboration

diagramsdataflowdiagra

mscont rol- f low

diagramsprocessing

narrat ives stat e

diagrams

sequencediagrams

Requirement

s:constraintsin

t

eroperabilityta

rgetsand

configuration

design class realizat

ionssubsystems

collaboration diagrams

designmodel

refinementsto:

design class realizat
ionssubsystems

low collaborationdiagrams

t echnical int erf

acedesign

Navigat ion

designGUIdesign

component

diagramsdesign

classes act

ivitydiagramssequenc

ediagrams

refinementsto:

component

diagramsdesignclass

es

act ivit y

diagramssequence

diagrams

design class realizat

ionssubsystems

collaboration diagrams

component

diagramsdesignclass

es

act ivit y

diagramssequence

diagrams

deployment diagrams

architecture interface component -leveldeployment -
levelelements elements elements elements

processdimension

Data designelements:
Datadesign sometimesreferred toasdataarchitecting createsamodelofdataand/orinformation
thatisrepresented at a high level of abstraction. This data model is then refined into progressively
moreimplementation-specificrepresentationsthatcanbeprocessed bythecomputer-basedsystem.

Thestructureofdatahasalways beenanimportantpartofsoftwaredesign.

At the program component level, the design of data structures and the associated algorithms required

tomanipulatethemisessential tothecriterionofhigh-qualityapplications.

Attheapplicationlevel,thetranslationofadatamodelintoadatabaseispivotaltoachievingthebusinessobjectivesofasyst
em.

Atthebusinesslevel,thecollectionofinformation stored indisparatedatabases andreorganizedintoa
―datawarehouse‖enablesdataminingorknowledgediscoverythatcanhaveanimpactonthe success
ofthebusinessitself.

Architecturaldesignelements:

Thearchitecturaldesignforsoftwareistheequivalenttothefloorplanofahouse.Thearchite
cturalmodelisderivedfromthreesources.

Informationabouttheapplicationdomainforthesoftwaretobebuilt.

Specificanalysismodelelementssuchasdataflowdiagramsor
analysisclasses,theirrelationships andcollaborationsfortheproblemathand,and

Theavailabilityofarchitecturalpatterns

Interfacedesignelements:

The interface design for software is the equivalent to a set of detailed drawings for
thedoors,windows,andexternalutilities ofahouse.

 55SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page55

The interface design elements for software tell how information flows into and out of the
systemandhowitiscommunicatedamongthecomponentsdefinedaspartofthearchitecture.Thereare3im
portantelementsofinterfacedesign:

Theuserinterface(UI);

Externalinterfacestoothersystems,devices,networks,orotherproducesorconsumersofinfor
mation;and

Internalinterfacesbetweenvariousdesigncomponents.

Theseinterfacedesignelementsallowthesoftwaretocommunicatedexternallyandenableinternalcommu
nicationandcollaborationamongthecomponentsthatpopulatethesoftwarearchitecture.

UIdesign isamajor softwareengineeringaction.

Thedesignof aUIincorporatesaestheticelements (e.g.,layout,color,graphics,interactionmechanisms),

ergonomic elements (e.g., information layout and placement, metaphors, UI navigation), andtechnical
elements (e.g., UI patterns, reusable components). In general, the UI is a unique subsystem
withintheoverallapplicationarchitecture.

Thedesignofexternalinterfacesrequiresdefinitiveinformationabouttheentitytowhichinformation is
sent or received. The design of external interfaces should incorporate error checking
andappropriatedsecurityfeatures.

UML defines an interface in the following manner:‖an interface is a specifier for the externally-
visibleoperationsofaclass,component,orother classifier withoutspecificationofinternalstructure.‖

Figure9.6UMLinterfacerepresent ationforContro lPan e l

MobilePhone

WirelessPDA

ControlPanel

LCDdisplayLEDindicat

ors

keyPadCharacteristics

speaker

KeyPad

wirelessInterface

readKeySt

roke()decodeKey

()displaySt at

us()light

LEDs()sendContro

lMsg()

<<interface>>

KeyPad

readKeyst

roke()decodeKe

y()

 56SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page56

iv. Component- level design elements: The component-level design for software is equivalent to
asetofdetaileddrawings.

The component-leveldesignforsoftware fully describesthe internal detail of

eachsoftwarecomponent. To accomplish this, the component-level design defines data structures
for all localdata objects and algorithmic detail for all processing that occurs within a component
and aninterfacethatallowsaccesstoallcomponentoperations.

v. Deployment-level design elements: Deployment-level design elements indicated how

softwarefunctionality and subsystems willbe allocated within the physicalcomputing
environmentthatwillsupportthesoftware

Figure9.8UMLdeploymentdiagramforSafeHome

ARCHITECTURALDESIGN

1) SOFTWARE

ARCHITECTURE:WhatIsArchitecture

?
Architectural design represents the structure of data and program components that are

requiredtobuildacomputer-basedsystem.Itconsiders

ControlPanel CPIserver

Personalcomputer

externalAccess

Security Surveillance

homeManagement communication

Security homeownerAccess

SensorManagement

Sensor

 57SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page57

thearchitecturalstylethatthesystemwill take,
thestructureand propertiesof thecomponentsthatconstitutethesystem,andthe
interrelationshipsthatoccuramongallarchitecturalcomponentsofasystem.

Thearchitectureisarepresentation thatenablesasoftwareengineer to

analyzetheeffectivenessofthedesign in meetingitsstatedrequirements,
consider architectural alternatives at a stage when making design changes is still

relativelyeasy,(3)reducingtherisksassociatedwiththeconstructionofthesoftware.

Thedesign ofsoftwarearchitectureconsiderstwolevels ofthedesign

pyramiddatadesign
architecturaldesign.

Datadesignenablesustorepresentthedatacomponentofthearchitecture.

Architecturaldesignfocusesontherepresentationofthestructureofsoftwarecomponents,theirproperties,
andinteractions.

WhyIsArchitectureImportant?

Bassandhiscolleagues[BAS98]identifythree keyreasonsthatsoftware architectureisimportant:

Representationsofsoftwarearchitectureareanenablerforcommunicationbetweenall

parties(stakeholders)interestedinthedevelopmentofacomputer-basedsystem.
The architecture highlights early design decisions that will have a profound impact on all
softwareengineeringworkthatfollowsand,asimportant,ontheultimatesuccessofthesystemasan
operationalentity.

Architecture―constitutesarelativelysmall,intellectuallygraspablemodelofhowthesystem is
structuredandhowitscomponentsworktogether‖

DATA DESIGN:

The data design activity translates data objects as part of the analysis model into data structures

atthesoftwarecomponentleveland,whennecessary,adatabasearchitectureattheapplicationlevel.
Attheprogramcomponentlevel,thedesignofdatastructuresandtheassociatedalgorithmsrequiredtomanipu
latethemisessentialtothecreationofhigh-qualityapplications.

Attheapplicationlevel,thetranslationofa
datamodel(derivedaspartofrequirementsengineering)intoadatabaseispivotaltoachievingt
hebusinessobjectivesofasystem.

At the business level, the collection of information stored in disparate databases and
reorganizedintoa―datawarehouse‖enablesdataminingorknowledgediscoverythatcanhaveanimpacton
thesuccessofthebusinessitself.

2.1) Data design attheArchitecturalLevel:

Thechallengeforabusinesshasbeentoextractusefulinformation
fromthisdataenvironment,particularlywhentheinformationdesiredis crossfunctional.

To solve this challenge, the business IT community has developed data mining techniques,

alsocalled knowledge discovery in databases (KDD), that navigate through existing databases in an attempt

toextract appropriate business-level information. An alternative solution, called a data warehouse, adds
anadditional layer to the data architecture. a data warehouse is a large, independent database that

encompassessome, but not all, of the data that are stored in databases that serve the set of applications

required by abusiness.

2.2) Data designattheComponentLevel:

Data design at the component levelfocusesonthe representationof data structures that
aredirectlyaccessedbyoneormoresoftwarecomponents.Thefollowingsetofprinciplesfordataspecification:

The systematic analysis principles applied to function and behavior should also be applied to
data.Alldatastructuresandtheoperationstobeperformedoneachshouldbeidentified.

Adata dictionaryshouldbeestablishedandusedtodefinebothdataandprogramdesign.Low-

leveldatadesign decisionsshould bedeferreduntillatein thedesignprocess.

 58SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page58

The representation of data structure should be known only to those modules that must
makedirectuseofthedatacontainedwithinthestructure.

A
libraryofusefuldatastructuresandtheoperationsthatmaybeappliedtothemshouldbedevelope
d.

Asoftwaredesignandprogramminglanguageshould supportthespecification
andrealizationofabstractdatatypes.

ARCHITECTURAL STYLESANDPATTERNS:

The builder has used an architectural style as a descriptive mechanism to differentiate the

housefromotherstyles(e.g.,A-frame,raisedranch,CapeCod).

The software that isbuiltforcomputer-basedsystemsalsoexhibitsoneofmany architectural

styles.

Eachstyledescribesa systemcategorythatencompasses

A set of components (e.g., a database, computational modules) that perform a
functionrequiredbyasystem;

Asetofconnectorsthatenable―communication,coordinationsandcooperation‖among

components;

Constraintsthatdefinehowcomponents canbeintegratedtoformthesystem;and

(4)
Semanticmodelsthatenableadesignertounderstandtheoverallpropertiesofasystembyanalyzingtheknownprop
ertiesofitsconstituentparts.

Anarchitecturalpattern,likeanarchitectural style,
imposesatransformationthedesignofarchitecture.However,apatterndiffers fromastylein anumberof
fundamentalways:

Thescopeofapatternisless
broad,focusingononeaspectofthearchitectureratherthanthearchitectureinitsentirety.

A pattern imposes a rule on the architecture, describing how the software will handle some
aspectofitsfunctionalityattheinfrastructurelevel.

Architecturalpatternstendtoaddressspecificbehavioralissueswithinthecontextofthearc
hitectural.

3.1) A Brief Taxonomy of Styles
andPatternsData-
centeredarchitectures:

A data store (e.g., a file or database) resides at the center of this architecture and is

accessedfrequently by other components that update, add, delete, or otherwise modify data within the store.
Avariationonthisapproachtransformstherepositoryintoa―blackboard‖thatsendsnotificationtoclient
softwarewhendataofinteresttotheclientchanges

Data-centered architectures promote integrability. That is, existing components can be
changedand new client components canbe added to the architecture without concernabout otherclients
(becausethe client components operate independently). In addition, data can be passed among clients using
theblackboardmechanism

 59SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page59

Data-flow architectures. This architecture is applied when input data are to be transformed through
aseries of computational or manipulative components into output data. A pipe and filter pattern has a set
ofcomponents, called filters, connected by pipes that transmit data from one component to the next.
Eachfilter works independently of those components upstream and downstream, is designed to expect data

inputofacertainform, andproduces dataoutputofaspecifiedform.

If the data flow degenerates into a single line of transforms, it is termed batch sequential.

Thispattern acceptsabatchofdataandthen appliesaseriesofsequentialcomponents(filters)totransformit.

Callandreturnarchitectures. Thisarchitecturalstyleenablesa softwaredesigner(system architect)toachieve
a program structure that is relatively easy to modify and scale. A number of substyles
[BAS98]existwithinthiscategory:

Main program/subprogram architectures. This classic program structure decomposes
functionintoacontrolhierarchywherea―main‖programinvokesanumberofprogramcomponents,
whichinturnmayinvokestillothercomponents.Figure13.3illustratesanarchitectureofthis

type.
Remoteprocedurecallarchitectures.Thecomponentsofamainprogram/subprogramarchitectureared
istributedacrossmultiplecomputers onanetwork

 60SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page60

Object-oriented architectures. The components of a system encapsulate data and the operations that
mustbe applied to manipulate the data. Communication and coordination between components is
accomplishedviamessagepassing.

Layered architectures. The basic structure of a layered architecture is illustrated in Figure 14.3. A

numberof different layers are defined, each accomplishing operations that progressively become closer to
themachine instruction set. At the outer layer, components service user interface operations. At the inner
layer,componentsperformoperatingsysteminterfacing.Intermediatelayersprovideutilityservicesandapplicatio

nsoftwarefunctions.

3.2) ArchitecturalPatterns:
Anarchitecturalpattern,likeanarchitectural style,
imposesatransformationthedesignofarchitecture.However,apattern differsfromastylein anumberof
fundamentalways:

Thescopeofapatternisless
broad,focusingononeaspectofthearchitectureratherthanthearchitectureinitsentirety.

Apatternimposes aruleon thearchitecture,describinghow
thesoftwarewillhandlesomeaspectofitsfunctionalityattheinfrastructurelevel.

Architectural patterns tend to address specific behavioral issues within the context
ofthearchitectural.

Thearchitectural
patternsforsoftwaredefineaspecificapproachforhandlingsomebehavioralcharacteristics
ofthesystem

Concurrency—applications must handle multiple tasks in a manner that

simulatesparallelismooperatingsystemprocess managementpattern

otaskscheduler pattern

Persistence—Datapersists ifitsurvives pasttheexecution
oftheprocessthatcreatedit.Twopatternsarecommon:

a database management system pattern that applies the storage and retrieval capability

ofaDBMStotheapplication architecture

an application level persistence pattern that builds persistence features
intotheapplicationarchitecture

 61SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page61

uses

uses

sensors sensors

targets
ystem:

SecurityFunction

Internet-

basedsyst

em

Safehome

Product

homeowner

control

panel

Distribution— the manner in which systems or components within systems communicate with one
anotherinadistributedenvironment

Abrokeractsasa‗middle-man‘betweentheclientcomponentandaservercomponent.

OrganizationandRefinement:
The design process often leaves a software engineer with a number of architectural alternatives, it
isimportant to establish a set of design criteria that can be used to assess an architectural design that
isderived.Thefollowingquestionsprovideinsightintothearchitecturalstylethathas beenderived:

Control.
Howiscontrolmanagedwithinthearchitecture?

Doesadistinctcontrolhierarchyexist,andifso,whatistheroleofcomponentswithinthiscontrolhierarchy?
Howdocomponentstransfercontrolwithinthesystem?
Howiscontrolsharedamongcomponents?

Data.
Howaredatacommunicatedbetweencomponents?
Istheflowofdatacontinuous,oraredataobjectspassedtothesystemsporadically?

Whatisthemodeofdatatransfer(i.e.,aredatapassedfromonecomponenttoanotheroraredataavailablegloballytobe
sharedamongsystem components)?
Dodatacomponents(e.g.,ablackboardorrepository)exist,andifso,whatistheirrole?Howdofuncti
onalcomponentsinteractwithdata components?
Are
datacomponentspassiveoractive(i.e.,doesthedatacomponentactivelyinteractwithothercomponentsinthesyste
m)?How dodataandcontrolinteractwithinthesystem?

4) ARCHITECTURAL DESIGN:
I RepresentingtheSysteminContext:

At the architectural design level, a software architect uses an architectural context diagram (ACD)
tomodel the manner in which software interacts with entities external to its boundaries. The generic

structureofthearchitecturalcontextdiagramisillustratedinthefigure

Superordinatesystems

uses

peers

Subordinatesystems

Superordinatesystems–
thosesystemsthatusethetargetsystemaspartofsomehigherlevelprocessingscheme.

function

surveillance

 62SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page62

Subordinate systems - those systems that are used by the target system and provide data or
processingthatarenecessarytocompletetargetsystemfunctionality.

Peer-levelsystems -thosesystemsthatinteracton apeer-to-peerbasis

Actors-
thoseentitiesthatinteractwiththetargetsystembyproducingorconsuminginformationthatisnecessaryforre
quisiteprocessing

II DefiningArchetypes:
An archetype is a class or pattern that represents a core abstraction that is critical to the design

ofarchitecture for the target system. In general, a relative small set of archetypes is required to design
evenrelativelycomplexsystems.

In many cases, archetypes can be derived by examining the analysis classes defined as part of
theanalysis model.Insafehomesecurityfunction, thefollowingarethearchetypes:

Node: Represent a cohesive collection of input and output elements of the home
securityfunction. For example a node might be comprised of (1) various sensors, and (2) a
variety ofalarmindicators.

Detector: An abstraction that encompasses all sensing equipment that feeds information
intothetargetsystem

Indicator:Anabstractionthatrepresentsallmechanismsforindicationthatanalarmconditionisoccu
rring.

Controller: An abstraction that depicts the mechanism that allows the arming or disarming
ofa node. If controllers reside on a network, they have the ability to communicate with
oneanother.

Controller

communicateswith

Node

Detector Indicator

Figure10.7UMLrelationships

forSafeHomesecurityfunctionarchetypes(adaptedfrom[BOS00])

III RefiningtheArchitectureintoComponents:

As the architecture is refined into components, the structure of the system begins to emerge.
Thearchitectural designer begins with the classes that were described as part of the analysis model.
Theseanalysisclassesrepresent entitieswithintheapplicationdomainthatmustbeaddressedwithinthesoftware

 63SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page63

architecture. Hence, the application domain is one source is the infrastructure domain.
Thearchitecture must accommodate many infrastructure components that enable application
domain.Foreg:memorymanagementcomponents,communicationcomponentsdatabasecomponents,a
ndtaskmanagementcomponentsareoftenintegratedintothesoftwarearchitecture.

In the safeHome security function example, we might define the set of top-level components that
addressthefollowingfunctionality:

External communication management- coordinates communication of
thesecurityfunctionwithexternalentities

Controlpanelprocessing- managesall control panelfunctionality.

Detectormanagement-coordinatesaccesstoalldetectorsattachedtothesystem.

Alarmprocessing-verifies andactsonallalarmconditions.

Designclasseswould bedefined
foreach.Itisimportanttonote,however,thatthedesigndetailsofallattributes

andoperationswouldnotbespecifieduntilcomponent-leveldesign.

ComponentStructure

IV Describing Instantiations of the System: An actual instantiation of the architecture means
thearchitecture is applied to a specific problem with the intent of demonstrating that the
structureandcomponentsareappropriate.

SafeHome

Executive

Funct

ionselecti

on

ExternalCommu

nication

Management

Security Surveillance Homema
nagement

Int

ernetInte

rface

Control

panelpr
ocessing

det ect

ormanageme

nt

alarm

processing

GUI

 64SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page64

Object AndObject Classes

Object:Anobjectisanentitythathasastateandadefinedsetofoperationsthatoperateonthatstate.

Anobectclassdefinationisbothatypespecificationandatemplateforcreatingobects.

Itincludesdeclarationofalltheattributesandoperationsthatareassociatedwithobjectofthatclass.

ObjectOrientedDesignProcess

There are five stages of object oriented design

process1)Understand and define the context and the modes of

use of thesystem.2)Designthesystemarchitecture

3) Identifytheprincipleobjectsinthesys

tem.4)Develop adesignmodels

5) Specify the object

interfacesSystemscontextandmod

es ofuse

It specify the context of the system.it also specify the relationships between the software that
isbeingdesignedanditsexternalenvironment.

Ifthesystemcontextisastaticmodelitdescribetheothersysteminthatenvironment.

If the system context is a dynamic model then it describe how the system actually interact with
theenvironment.

SafeHome

Executive

External

Communication

Management

Security

Controlpa

nelprocess

ing

detectorma

nagement

alarmpr

ocessing

Keypad

processing scheduler phonecom

munication

CP display

functions
alar
m

sssensornnssoor
sen

enso
r

soro

sensor
sensorr

sensor

Interface

Internet

GUI

 65SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page65

SystemArchitecture

Oncetheinteraction
betweenthesoftwaresystemthatbeingdesignedandthesystemenvironmenthavebeendefined

Wecan usetheaboveinformationasbasisfordesigningtheSystemArchitecture.

ObjectIdentification

Thisprocessisactuallyconcerned
withidentifyingtheobjectclasses.Wecanidentifytheobjectclassesbythefo
llowing

1)Use a grammatical

analysis2)Use a tangible

entities 3)Usea

behaviourialapproach

4) Use a scenario
basedapproachDesign
model

Design models arethebridgebetween
therequirementsandimplementation.Therearetwotypeofdesignmodels

1) Static model describe the relationship between the

objects.2)Dynamicmodel describetheinteraction

betweentheobjects

Object Interface SpecificationIt is concerned with specifying the details of the interfaces
toanobjects.

Designevolution

The main advantage OOD approach is to simplify the problem of making changes to
thedesign.Changingtheinternaldetailsofanobectis unlikelytoeffectanyothersystemobject.

 66SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page66

USERINTERFACEDESIGN

Interfacedesignfocusesonthreeareasofconcern:

thedesignofinterfacesbetweensoftwarecomponents,

thedesign ofinterfacesbetweenthesoftwareand other
nonhumanproducersandconsumersofinformation(i.e.,otherexternalentities),and

thedesignoftheinterfacebetweenahuman(i.e.,theuser)andthecomputer.

What isUserInterfaceDesign?

User interface design creates an effective communication medium between a

humanandacomputer.Followingaset ofinterfacedesignprinciples,

designidentifiesinterfaceobjectsandactionsandthencreatesascreen

layoutthatformsthebasisforauser interfaceprototype.

WhyisUserInterfaceDesignimportant?
If software is difficult to use, if it forces you into mistakes, or if it frustrates your efforts

toaccomplish your goals, you won‘t like it, regardless of the computational power it exhibits or

thefunctionalityitoffers.Becauseitmoldsa user‘sperceptionofthesoftware,theinterfacehastoberight.

1.1 THEGOLDENRULES

TheoMandelcoinsthree―goldenrules‖:
Placetheuserincontrol.Reduce
the user‘s memory
load.Maketheinterfaceconsisten

t.

These golden rules actually form the basis for a set of user interface design principles that
guidethisimportantsoftwaredesignactivity.

PlacetheUserin Control

Mandel [MAN97] definesanumberofdesignprinciplesthatallowtheuser tomaintaincontrol:

Define interaction modes in a way that does not force a user into unnecessary or
undesiredactions.Wordprocessor– spellchecking–movetoeditandback;enterandexitwithlittleornoeffort

Provide for flexible interaction. Several modes of interaction – keyboard, mouse, digitizer pen
orvoice recognition, but not every action is amenable to every interaction need. Difficult to draw
acircleusingkeyboardcommands.

Allow user interaction to be interruptible and undoable. User stop and do something and then
resumewhereleft off.Beabletoundoanyaction.

Streamline interaction as skill levels advance and allow the interaction to be customized. Perform
sameactionsrepeatedly;havemacromechanismsousercancustomizeinterface.

Hide technical internals from the casual user. Never required to use OS commands; file
managementfunctionsorotherarcanecomputingtechnology.

Design for direct interaction with objects that appear on the screen.User has feel of control
wheninteractdirectlywithobjects;stretchanobject.

ReducetheUser’sMemory Load:

Themoreauserhastoremember,themoreerror-proneinteractionwith thesystemwillbe.

Goodinterfacedesigndoesnottaxtheuser‘smemory

Systemshouldrememberpertinentdetailsandassisttheuserwithinteraction scenariothatassistsuserrecall.

Mandeldefinesdesign principlesthatenableaninterfacetoreducetheuser‘smemoryload:

 67SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page67

Reduce demand on short-term memory. Complex tasks can put a significant burden
onshort term memory. System designed to reduce the requirement to remember past actions
andresults;visualcuestorecognizepastactions,ratherthanrecallthem.

Establish meaningful defaults. Initial defaults for average user; but specify individual preferences
withareset option.
Defineshortcuts thatare intuitive.Usemnemonics likeAlt-P.

The visuallayoutofthe interfaceshouldbe basedonarealworldmetaphor.Billpayment
–check book andcheck registermetaphor toguideauser through thebillpaying
process;userhaslesstomemorize

Discloseinformationinaprogressivefashion.Organizehierarchically.Highlevelofabstraction
and then elaborate. Word underlining function – number of functions, but not
alllisted.Userpicksunderliningthenalloptionspresented

MaketheInterfaceConsistent

Interfacepresentandacquireinformationin aconsistentfashion.

All visualinformationisorganizedtoadesignstandardforallscreendisplays

Inputmechanismsareconstrainedtolimitedsetused consistentlythroughouttheapplication

Mechanisms for navigation from task to task are consistently defined and

implementedMandel[MAN97]definesa setofdesignprinciplesthathelpmaketheinterfaceconsistent:

Allow the user to put the current task into a meaningful context. Because of many screens
andheavy interaction, it is important to provide indicators – window tiles, graphical icons,
consistentcolorcoding so that the user knows the context of the work at hand; where came from
andalternatives ofwheretogo.

Maintainconsistencyacrossafamilyofapplications.Forapplicationsorproductsimplementationshou
ldusethesamedesignrulessothatconsistencyismaintainedforallinteraction

If past interactive models have created user expectations, do not make changes unless there is
acompellingreason to do so.Unless a compellingreasonpresentsitself don‘tchange
interactivesequencesthathavebecomedefactostandards.(alt-Stoscaling)

USERINTERFACEDESIGN

1.2.1 Interface DesignModels

Fourdifferentmodels comeintoplaywhenauserinterfaceistobedesigned.

Thesoftwareengineercreatesadesignmodel,

a humanengineer(orthe softwareengineer)establishesausermodel,

the end-user develops a mental image that is often called the user's model or the
systemperception,and

the implementersofthesystemcreateaimplementationmodel.

The role of interface designer is to reconcile these differences and derive a consistent representation
oftheinterface.

User Model: The user model establishes the profile of end-users of the system. To build an effective

userinterface, "all design should begin with an understanding of the intended users, including profiles of their

age,sex,physicalabilities,education,culturalorethnicbackground,motivation,goalsandpersonality"
[SHN90].In addition,userscan becategorizedas

Novices.
Knowledgeable, intermittent
users.Knowledgeable,frequentuser
s.

 68SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page68

DesignModel:Adesign
modeloftheentiresystemincorporatesdata,architectural,interfaceandproceduralrepresentationso
fthesoftware.

Mental Model: The user‘s mental model (system perception) is the image of the system that end-
userscarryintheirheads.

Implementation Model: The implementation model combines the outward manifestation of the computer-
based system (the look and feel of the interface), coupled with all supporting information (books,
manuals,videotapes,helpfiles)thatdescribesystemsyntaxandsemantics.

Thesemodels

enabletheinterfacedesignertosatisfyakeyelementofthemostimportantprincipleofuser
interfacedesign:"Know theuser,know thetasks."

1.2.2 The UserInterfaceDesignProcess:(stepsininterfacedesign)
The user interface design process encompasses four distinct framework activities

:User,task, andenvironmentanalysisandmodeling

Interface

designInterfaceconstr

uctionInterfacevalidat

ion

UserInterfaceDesignProcess

(1) UserTask andEnvironmental Analysis:

The interface analysis activity focuses on the profile of the users who will interact with
thesystem. Skill level, business understanding, and general receptiveness to the new system are recorded;
anddifferent user categories are defined. For each user category, requirements are elicited. In essence,
thesoftwareengineer attemptstounderstandthesystemperception(Section 15.2.1)foreach classofusers.

Once general requirements have been defined, a more detailed task analysis is conducted. Those
tasksthattheuser performstoaccomplish thegoalsofthesystemareidentified,described,andelaborated

The analysis of the user environment focuses on the physical work environment.

Amongthequestionstobeaskedare

Wherewilltheinterfacebe locatedphysically?

Will theuserbesitting,standing,orperformingothertasksunrelatedtotheinterface?Doesthe

interfacehardwareaccommodatespace, light, ornoiseconstraints?

Arethere special humanfactorsconsiderationsdrivenbyenvironmentalfactors?

Theinformation gathered aspartoftheanalysisactivityisused tocreatean
analysismodelfortheinterface.Usingthismodelas abasis, thedesignactivitycommences.

 69SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page69

(2) InterfaceDesign:

Thegoalofinterfacedesignistodefineasetofinterfaceobjectsandactions(andtheirscreenrepresentations) that
enable a user to perform all defined tasks in a manner that meets every usability goaldefinedforthesystem.

(3) InterfaceConstruction(implementation)

The implementation activity normally begins with the creation of a prototype that enables
usagescenarios to be evaluated. As the iterative design process continues, a user interface tool kit (Section
15.5)maybeusedtocompletetheconstructionoftheinterface.

(4) InterfaceValidation:

Validationfocuseson

(1) theabilityoftheinterfacetoimplementeveryusertaskcorrectly,toaccommodatealltaskvariatio
ns,andtoachieveallgeneraluserrequirements;

thedegreetowhichtheinterfaceiseasytouseandeasytolearn;andtheusers‘

acceptanceoftheinterfaceasausefultoolintheirwork.

INTERFACEANALYUSIS

A Key tenet of all software engineering process models is this: you better understand the problem before you

attemptto design a solution. In the case of user interface design, understanding the problem means understanding (1)

Thepeople who will interact with the system through the interface; (2) the tasks that tend-users must perform to do

theirwork, (3) the content that is presented as part of the inter face, an (4) the environment in which these tasks will

beconducted. In the sections that follow, we examine each of these elements of interface analysis with the intent

ofestablishingasolidfoundationforthedesigntasksthatfollow.

12.3.1 Useranalysis
Earlier we noted that each user has a mental image or system perception of the software that may be different
fromthementalimagedevelopedbyotherusers.

User Interviews. The most direct approach, interviews involve representatives from the software team who

meetwith end-users to better understand their needs, motivations work culture, and a myriad of other issues. This
can beaccomplishedinone-on-onemeetingsorthroughfocus groups.

Sales input. Sales people meet with customers an users on regular basis and can gatherinformation that will
helpthesoftwareteamtocategorizeusersandbetterunderstandtheirrequirements.

Marketinginput.Marketanalysiscanbeinvaluableindefinitionofmarketsegmentswhileprovidinganunderstandingofho
weachsegmentmightusethesoftwareinsubtlydifferentways.

Support input. Support staff talk with users on a daily basis, making them the most likely soured of information
onwhat works an what doesn‘t, what users like and what they dislike, what features generate questions, and
whatfeaturesareeasytouse.

Thefollowingsetofquestions(adapted form(HAC98)
)willhelptheinterfacedesignerbetterunderstandtheusersofasystem:

Are user trained professionals, technicians, clerical or manufacturing

workers?Whatlevelofformaleducationdoestheaverageuserhave?

Aretheuserscapableoflearningfromwrittenmaterialsorhavetheyecpressedadesireofclassroomtrainin
g?

Are users expert typists or keyboard

phobic?Whatistheagerangeoftheusercommuni

ty?

Willtheusersberepresentedpredominatelybyonegender?How

areuserscompensatedforthe worktheyperform?

Dousersworknormalofficehours,ordotheyworkuntilthejobis done.

Isthesoftwaretobean integralpartofthework usersdo,or willitbeused onlyoccasionally?

 70SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page70

Whatistheprimaryspokenlanguageamongusers?

Whataretheconsequences ifausermakes

amistakeusingthesystem?Areusers

expertsinthesubjectmattertheisaddressedbythesystem?

Douserswanttoknowaboutthetechnologythat sitsbehindtheinterface?

The answers to these an similar questions will allow the designer to understand who the end-users are, what is
likelyto motivate and please them, how they can be grouped into different user classes or profiled, what their
mentalmodels ofthesystemare, andhowtheuserinterfacemustbecharacterizedtomeettheirneeds.

12.3.2 TaskAnalysisandModeling

Thegoaloftalkanalysisistoanswerthefollowing questions:

Whatworkwilltheuser performin specificcircumstances?

Whatspecificproblemdomain objectswilltheusermanipulateasworkisperformed?What

isthe sequence ofworktasks-theworkflow?

Whatisthehierarchyoftasks?

To answer these questions, the software engineer must draw upon analysis techniques discussed in Chapters 7 and
8,butinthisinstance, thesetechniquesareappliedtotheuserinterface.

Inearlierchapterwenotedthattheuse-
casedescribethemannerinwhichanactor(inthecontextofuserinterfacedesign,
anactorisalwaysaperson)interactswithasystem.

Theuse-caseprovidesabasicdescriptionofoneimportantworktaskforthecomputer-aideddesignsystem.

From,it,thesoftwareengineer can extracttasks,objects,andtheoverallflowoftheinteraction.

Task elaboration. Task analysis of interface design uses an elaborative approach to assist in understanding

thehumanactivitiestheuserinterfacemustaccommodate.Tounderstandthetasksthatmustbeperformedtoaccomplish the

goal of the activity, a humanengineer mustunderstand the tasks that humans currently perform(when using a manual

approach) and then map these into a similar (but not necessarily identical) set of tasks that

areimplementedinthecontextoftheuserinterface.Alternatively,thehumanengineercanstudyanexistingspecification for

computer-based solution and derive a set of user tasks that will accommodate the user model, thedesign model, and

the system perception. For example, assume that a small software company wants to build acomputer-aided design

systemexplicitly for interior designers. By observing an interior designer at work, theengineer notices that interior
designcomprises a number of majoractivities: further layout (note the use-casediscussed earlier), fabric and material

selection, wall and window coverings selection, presentation (to the customer),costing, and shopping. Each of these

major tasks can be elaborated into subtasks. For example, using informationcontained in the use-case, furniture

layout can be refined into the following tasks: (1) draw a floor plan based onroom dimensions; (2) place windows

and doors at appropriate locations;(3a) use furniture templates to draw

scaledaccentsonfloorplan(4)movefurnitureoutlines;(6)drawdimensionstoshowlocation;(7)drawperspectiverenderingvi

ewforcustomer.Asimilarapproachcouldbeused foreachoftheothermajortasks.

Object elaboration. The software engineer extracts the physical objects that are used by the interior designer.

Theseobjects can be categorized into classes. Attributes of each class are defined, and an evaluation of the actions

appliedto each object provide the designer with a list of operations. For example, the furniture template might

translate intoa class called Furniture with attributes that might include size, shape, location and others. The interior

designerwould select the object from the Furniture class, move it to a position on the floor plan (another object in

thiscontext), draw the furniture outline, and so forth. He tasks select, move, and draw are operations. The user

interfaceanalysis model would not provide a literal implementation for each of these operation for each of these

operations.However, asthedesigniselaborated, thedetailsofeachoperationaredefined.

Workflowanalysis.Whenanumberofdifferentusers,eachplayingdifferentroles,makesusesofauserinterface,it is
sometimes necessary to go beyond task analysis and object elaboration and apply workflow analysis. Thistechnique

allows a software engineer to understand how a work process is completed when several people areinvolved.

Theflowofevents(showninthefigure)enabletheinterfacedesignertorecognizethreedayinterfacecharacteristics.

Eachuserimplements different tasks viathe interface;therefore,the lookand feelof the interfacedesigned
forthepatientwillbedifferentformtheonedefined forpharmacistsorphysicians.

 71SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page71

Theinterfacedesignforpharmacistsandphysiciansmustaccommodateaccesstoanddisplayofinformation form
secondary information sources(e.g., access to inventory of the pharmacist and access
toinformationaboutalternativemedications forthephysician)

Many of the activities noted in the swimlane diagram can be further elaborated using talk analysis and
/orobject elaboration(e.g., fills prescription could imply a mail-order deliver, a visit to a pharmacy, or a
visit toaspecialdrugdistributioncenter.

Hierarchicalrepresentation.Astheinterfaceisanalyzed,aprocessofelaborationoccurs.Onceworkflowhasbeenestablish

ed, a task hierarchy can e defined for each user type. The hierarchy is derived by a stepwise elaboration ofeach task
identified for the user. For example, consider the user task requests that a prescription be refilled.
Thefollowingtaskhierarchyisdeveloped:

Request that a prescription be

refilledProvideidentifyinginfor

mationSpecifyname

Specifyuserid
Specify PIN and
passwordSpecify
prescription
numberSpecifydaterefillisreq
uired

Tocompletetherequestthataprescriptionberefilledtasks,threesubtasksaredefined.Oneofthesesubtasks,provideinden
tifyinginformation,isfurtherelaboratedinthreeadditionalsub-subtasks.

12.3.3 Analysisof DisplayContent
Systemresponsetimeismeasured fromthepointatwhich theuserperforms
somecontrolaction(e.g.,hitsthereturnkeyorclicksamouse)untilthesoftwarerespondswiththedesiredoutputoraction.

Systemresponsetimehastwoimportantcharacteristics:lengthandvariability.Ifsystemresponseisistoolong,

user frustration and stress is the inevitable result. Variability refers to the deviation form average responsetime, and,

in many ways, it is the most important response time characteristic. Low variability enables the user toestablish an

interaction rhythm, even if response time is relatively long. For example, a 1-second response to acommand will

often be preferable to a response that varies from 0.1 to 2.5 seconds. When variability is

significant,theuserisalwaysoffbalance,alwayswonderingwhethersomething―defferent‖hasoccurredbehindthescenes.

Help facilities. Modern software provides on-line help facilities that enable a user to get a question answered
orresolve a problem without leaving the interface. A number of design issues must be addressed when a help facility
isconsidered:

Willhelpbeavailableforallsystemfunctionsandatalltimesduringsysteminteraction?Optionsincludehelpforonl
yasubsetofall functionsandactionsorhelpforallfunctions.

How will the user request help? Options include a help menu, a special function day, or a HELP

command.How will help be represented? Options include a separate window, a reference to a printed

document, or aone-ortwo-linesuggestionproducedinafixedscreenlocation.

Howwilltheuser returntonormalinteraction?Optionsincludeareturnbutton displayed

onthescreen,afunctionkey,orcontrolsequence.
Howwillhelpinformationbestructured?Optionsincludea―flat‖structureinwhichallinformationis
accessedthroughakeyword,alayeredhierarchyorinformationthatprovidesincreasingdetailastheuserproceeds
intothestructure,ortheuserofhypertext.

In general, every error message or warning produced by an interactive system should have
thefollowingcharacteristics:

The message should describe the problem in language the user can

understand.Themessageshouldprovideconstructiveadvicefor

recoveringformtheerror.

Themessageshouldindicateanynegativeconsequencesoftheerror(e.g.,potentiallycorrupteddatafiles)sotha

t theusercanchecktoensurethattheyhavenotoccurred.

The message should be nonjudgmental. That is, the wording should never place blame on the
user.But an-effective error message philosophy can do much to improve the quality of an interactive system and
willsignificantlyreduceuserfrustrationwhenproblemsdooccur.

A number of design issues arise when typed commands or menu labels are provided as mode of

interaction:Willeverymenuoptionhaveacorrespondingcommand?

 72SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page72

Whatformwillcommandstake?Optionsincludeacontrolsequence(e.g.,alt-

p),functionkeys,oratypedword.

How difficult will it be to learn and remember the commands? What can be done if a

commandisforgotten?
Cancommandsbecustomizedor abbreviatedbytheuser?
Aremenulabelsself-explanatorywithinthecontextoftheinterface?

Are submenusconsistent withthefunctionimpliedbyamastermenuitem?

Applicationaccessibility.Accessibilityforusersandsoftwareengineers)whomaybephysicallychallengedisanimperati
ve for moral, legal, and business reasons. A variety of accessibility guidelines many designed for
Webapplications but often applicable to all types of software-provide detailed suggestions for designing

interfaces
thatachievevary8inglevelsofaccessibility.Othersprovidespecificguidelinesor―assistivetechnology‖thataddresses
theneedsofthosewithvisual,hearing, mobility,speech, andlearningimpairments.

Internationalization. The challenge should be designed to accommodate a generic core of functionality that
canbe delivered to all who use the software. Localization features enable the interface to be customized for a
specificmarket.

A variety of internationalization guidelines are available to software engineers. These guidelines address
broaddesign issues and discrete implementation issues. The Unicode standard has been developed to address the
dauntingchallengeofmanagingdozensofnaturallanguages withhundredofcharactersandsymbols.

12.5DESIGNEVALUATION

After the design model has been completed, a first-level prototype is created. The prototype is evaluated by

theuser, who provides the designer with direct comments about the efficacy of the interface. In addition, if

formalevaluation techniques are used e.g., questionnaires, rating sheets), the designer may extract information form

thesedata (e.g., 80percent of all users did not like the mechanism for saving data files). Design modifications are
madebased on user input, and the next level prototype is created. The evaluation cycle continues until no

furthermodificationstotheinterfacedesignarenecessary.Ifadesignmodeloftheinterfacehasbeencreated,anumberofeval

uationcriteriacanbeappliedduringearlydesignreviews:
The length and complexity of the written specification of the system and its interface provide
anindicationoftheamountoflearningrequiredbyuserofthesystem.

Thenumberofuser tasksspecified andtheaveragenumberofactionspertask providean
indicationoninteractiontimeandtheoverallefficiencyofthesystem.

Thenumberofactions,tasks,and systemstatesindicatedbythedesign
modelimplythememoryloadonusersofthesystem.

Interfacestyles,helpfacilities,anderrorhandlingprotocolprovideageneralindicationofthecomplexity
oftheinterfaceandthedegreetowhichitwillbeacceptedbytheuser.

Once the first prototype is built, the designer can collect a variety of qualitative and quantitative data that
willassist in evaluating the interface. To collect 2qualitaive data, questionnaires can be distributed to users of
theprototype.Questionscanbe(1)simpleyes/noresponse,(2)numericresponse,(3)
scaled(subjective)response,(4)Likertscales(e.g.,strongly.

Users are observed during interaction, and data-such as number of tasks correctly completed over
astandardtimeperiod,frequencyofactions,sequenceofactions,timespent―looking‖atthedisplay,numberand types of
errors, error recovery time, time spent using help, and number of help references per standard timeperiod-
arecollectedandusedasaguideforinterfacemodification.

 73SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page73

 74SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page74

UNIT-IV

AstrategicApproachforSoftwaretesting
SoftwareTesting
Oneoftheimportantphasesofsoftwaredevelopment
TestingistheprocessofexecutionofaprogramwiththeintentionoffindingerrorsInvolves40%
oftotalprojectcost
TestingStrategy

Aroad mapthatincorporatestestplanning,testcasedesign,testexecution andresultantdatacollectionand
execution
Validationreferstoadifferentsetofactivitiesthatensuresthatthesoftwareistraceabletothecustomerrequirements.
V&Vencompassesawidearrayof SoftwareQualityAssurance
PerformFormalTechnicalreviews(FTR)touncovererrorsduringsoftwaredevelopment

Begintestingatcomponentlevelandmoveoutwardtointegrationofentire componentbasedsystem.
Adopttestingtechniquesrelevantto stagesoftesting
TestingcanbedonebysoftwaredeveloperandindependenttestinggroupTesti
ng and debugging are different activities. Debugging follows
testingLowleveltestsverifies smallcodesegments.
Highleveltestsvalidatemajor systemfunctionsagainstcustomerrequirements

Testing Strategies for
ConventionalSoftware1)UnitTestin
g

2) Integration
Testing3)ValidationTest
ingand4)SystemTesting

Criteria forcompletionofsoftwaretesting

No body is absolutely certain that software will not

failBasedonstatisticalmodelingandsoftwarereliabilitymodels

 75SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page75

95 percentconfidence(probability)that1000CPUhoursoffailurefreeoperationisatleast0.995

SoftwareTesting
• Twomajorcategoriesofsoftware testing

Black box
testingWhiteboxt
esting

Black boxtesting

Treatsthesystemasblackbox whosebehaviorcan bedetermined
bystudyingitsinputandrelatedoutputNotconcernedwiththeinternalstructureoftheprogram

BlackBoxTesting

It focuses on the functional requirements of the software ie it enables the sw engineer to
deriveasetofinputconditionsthatfullyexerciseallthefunctionalrequirementsforthatprogram.

Concernedwith functionalityandimplementation

1) Graphbasedtestingmethod

2) Equivalencepartitioning

Graphbased testing

Drawagraphofobjectsandrelations

Devisetestcasestuncoverthegraphsuchthateachobjectanditsrelationshipexercised.

 76SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page76

Equivalencepartitioning

Dividesallpossibleinputsintoclasses such

thatthereareafiniteequivalenceclasses.Equivalenceclass

Setof objectsthatcan belinked

byrelationshipReduces thecostoftesting

Example

Inputconsistsof1to10

Thenclassesaren<1,1<=n<=10,n>10

Chooseonevalid classwithvaluewithin theallowed
rangeandtwoinvalidclasseswherevaluesaregreaterthanmaximumvalueandsmallerthanmini
mumvalue.

BoundaryValueanalysis

Selectinputfromequivalenceclassessuch
thattheinputliesattheedgeoftheequivalenceclasses

Set of data lies on the edge or boundary of a class of input data or generates the data that lies
attheboundaryofaclassofoutputdata

Example

If0.0<=x<=1.0

Then testcases (0.0,1.0)forvalidinputand (-0.1and1.1) forinvalid

inputOrthogonalarrayTesting

Toproblems inwhichinputdomainisrelativelysmallbuttoolargeforexhaustivetesting

Example

Threeinputs A,B,Ceachhavingthreevalues willrequire27testcases

L9 orthogonaltestingwillreducethenumberoftestcaseto9 asshownbelow

A B C

1 1 1
1 2 2
1 3 3
2 1 3

2 2 3
2 3 1
3 1 3

 77SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page77

3 2 1
3 3 2

WhiteBoxtesting

Alsocalledglassboxtesting
Involvesknowingtheinternalworkingofaprogram
Guaranteesthatallindependentpathswillbeexercisedatleastonce.Exercises
alllogicaldecisionsontheirtrueandfalsesides

Executesallloops

ExercisesalldatastructuresfortheirvalidityWh

iteboxtestingtechniques

Basis path

testingControlstructuret

esting

Basis pathtesting

ProposedbyTomMcCabe
Defines a basic set of execution paths based on logical complexity of a procedural
designGuarantees toexecuteeverystatementintheprogramatleastonce

StepsofBasis PathTesting

Drawtheflowgraphfromflowchartoftheprogram
Calculatethe cyclomaticcomplexityoftheresultant
flowgraphPreparetestcases thatwillforceexecutionofeachpath

Threemethods

tocomputeCyclomaticcomplexitynumberV(G)=E-N+2(E

is number of edges, N is number of

nodesV(G)=Numberofregions

V(G)= Number of predicates

+1ControlStructuretesting

BasispathtestingissimpleandeffectiveItis

notsufficientinitself

Controlstructurebroadensthebasictestcoverageand improvesthequalityofwhiteboxtesting

Condition
TestingData flow
TestingLoopTesti
ng

•

ConditionTesting
--Exercisethelogicalconditionscontained inaprogrammodule
--Focusesontestingeachcondition in theprogramtoensurethatitdoescontain errors

--Simple

conditionE1<relationope

rator>E2

--Compoundcondition

simplecondition<Booleanoperator>simplecondition

Dataflow Testing
Selects test paths according to the locations of definitions and use of variables in a

programAimstoensurethatthedefinitionsofvariablesandsubsequentuseistested

Firstconstructadefinition-usegraphfromthecontrolflowofaprogram

LoopTesting

Focuses on the validity of loop
constructsFourcategories canbedefined

Simple

loopsNestedloopsC

oncatenated

loopsUnstructuredlo
ops

 78SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page78

Testingofsimpleloops

-- Nisthemaximumnumberofallowablepasses through theloop

 79SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page79

Skiptheloopentirely
Onlyonepass

throughtheloopTwopassesthro

ugh theloop

m passes through the loop
wherem>NN-1,N,N+1passes
theloop

NestedLoops

Startattheinnermostloop.Setallotherloopstomaximumvalues

Conduct simple loop test for the innermost loop while holding the outer loops at
theirminimumiterationparameter.

Workoutwardconductingtestsforthenextloopbutkeepingallother

loopsatminimum.Concatenatedloops

Followtheapproachdefined forsimpleloops,ifeach oftheloop isindependentofother.

If the loops are not independent, then follow the approach for the

nestedloopsUnstructuredLoops

Redesign the program to avoid

unstructuredloops ValidationTesting

Itsucceedswhenthesoftwarefunctionsin amannerthatcanbereasonablyexpected
bythecustomer.

1) ValidationTestCriteria

2)ConfigurationReview3)

Alpha

AndBetaTestingSystemT

esting

Its primary purpose is to test the

completesoftware. 1)RecoveryTesting

2) Security

Testing3Stress Testing

and4)Performance

TestingThe Art

ofDebugging

Debugging occursasaconsequencesofsuccessfultesting.

Debugging

Stratergies1)Brute Force

Method.2)Back Tracking

3)CauseElimination

and4)Automated

debuggingBruteforce

Most commonandleastefficient

Applied when all else

failsMemorydumpsaretake

n

Tries

tofindthecausefromtheloadofinformationBacktracking

Commondebuggingapproach

Usefulforsmallprograms

 80SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page80

Beginningatthesystemwherethesymptomhasbeenuncovered,thesourcecodetracedbackwardun
tilthesiteofthecauseisfound.

 81SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page81

CauseElimination

Based ontheconceptofBinarypartitioning

Alistofallpossiblecauses is developed andtestsareconductedtoeliminateeach

SoftwareQuality

Conformance to explicitly stated functional and performance requirements,
explicitlydocumenteddevelopment standards,
andimplicitcharacteristicsthatareexpectedofallprofessionallydevelopedsoftware.

Factors that affect software quality can be categorized in two broad

groups:Factorsthatcan bedirectlymeasured(e.g.defects

uncoveredduringtesting)

2. Factorsthat canbe

measuredonlyindirectly(e.g.usabilityormaintainability)McCall‘squalityfactor

s

Productoperation

Correctness

Reliability

EfficiencyI

ntegrityUs

ability

ProductRevision

Maintainability

FlexibilityTest

ability

ProductTransition

PortabilityReus

abilityInteroper

ability

ISO9126Quality

Factors 1.Functionality

2.Reliability

3. Usability4.Eff

iciency5.Maintai

nability6.Portabi

lity

 82SOFTWAREENGINEERING–Material

SOFTWAREENGINEERING

Page82

Productmetrics

Productmetricsforcomputersoftwarehelpsustoassessquality.Meas
ure

Provides a quantitative indication of the extent, amount, dimension, capacity or size of some
attributeofaproductorprocess

Metric(IEEE93definition)

Aquantitative measureofthe degreetowhichasystem,componentorprocesspossessagivenattributeIndicator
Ametricoracombinationofmetricsthatprovideinsightintothesoftwareprocess,asoftwareprojectoraprodu

ct itself

ProductMetricsforanalysis,Design,TestandmaintenancePr
oductmetricsfortheAnalysis model


Function pointMetric
FirstproposedbyAlbrecht
MeasuresthefunctionalitydeliveredbythesystemFPc
omputed fromthefollowingparameters

Numberofexternalinputs(EIS)Number

externaloutputs(EOS)Number of

external

Inquiries(EQS)NumberofInternalLogi

calFiles(ILF)

Numberofexternalinterfacefiles(EIFS)

Eachparameter isclassified assimple,averageorcomplexandweightsareassignedasfollows
• InformationDomain Count Simple avg Complex

EIS 3 4 6

EOS 4 5 7

EQS 3 4 6

ILFS 7 10 15

EIFS 5 7 10

FP=Count total

*[0.65+0.01*E(Fi)]MetricsforDesi

gnModel

 83SOFTWAREENGINEERING–Material

SOFTWAREENGINEERING

Page83

DSQI(Design Structure Quality

Index)US

airforcehasdesignedtheDSQI

Computes1tos7fromdataandarchitecturaldesignS1:T

otalnumberofmodules

S2:NumberofmoduleswhosecorrectfunctiondependsonthedatainputS3:Numb
er of modules whose function depends on prior
processingS4:Numberofdatabaseitems

S5:Number of unique database

itemsS6:Numberofdatabasesegments

S7:Number of modules with single entry and

exitCalculateD1toD6froms1tos7asfollows:

D1=1 if standard design is followed otherwise

D1=0D2(moduleindependence)=(1-(s2/s1))

D3(module not depending on prior processing)=(1-

(s3/s1))D4(Databasesize)=(1-(s5/s4))

D5(Database compartmentalization)=(1-
(s6/s4)D6(Moduleentry/exitcharacteristics)=(1-
(s7/s1))

DSQI=sigmaofWiDi

i=1to6,WiisweightassignedtoDi
Ifsigmaofwiis1thenallweightsareequalto0.167
DSQIofpresentdesignbecompared withpastDSQI.IfDSQI
issignificantlylowerthantheaverage,furtherdesignworkandrevieware indicated

METRICFORSOURCECODE

HSS(HalsteadSoftwarescience)

Primitivemeasurethatmaybederived after thecodeisgeneratedor estimated
oncedesigniscomplete

• n1=thenumberofdistinctoperatorsthatappearinaprogram

• n2=thenumberofdistinctoperandsthatappearinaprogramN1=the

totalnumberofoperatoroccurrences.

N2 = the total number of operand

occurrence.Overall program length N can be

computed:N=n1log2n1+ n2log2n2

V = N log2 (n1 +
n2)METRICFORTESTIN
G

• n1 = the number of distinct operators that appear in a

programn2 = the number of distinct operands that appear in a

programN1=the total numberofoperatoroccurrences.
N2 = the total number of operand
occurrence.ProgramLevelandEffort

PL = 1/[(n1 / 2) x (N2 /
n2l)]e=V/PL

•

METRICS FORMAINTENANCE

Mt=thenumberofmodules inthecurrentrelease
Fc=thenumberofmodules

inthecurrentreleasethathavebeenchangedFa=thenumberofmodules

inthecurrentreleasethathavebeenadded.

Fd =thenumberofmodules

fromtheprecedingreleasethatweredeletedinthecurrentreleaseTheSoftwareMaturityIndex,SMI,

isdefinedas:

SMI=[Mt–(Fc+Fa+Fd)/Mt]

METRICSFORPROCESSANDPROJECTS

SOFTWAREMEASUREMENT

Softwaremeasurementcanbecategorizedin twoways.
Direct measuresof the software engineering process include costand effort applied.Directmeasures

 84SOFTWAREENGINEERING–Material

SOFTWAREENGINEERING

Page84

of the product include lines of code (LOC) produced, executionspeed, memory
size,anddefectsreportedoversomesetperiodoftime.

 85SOFTWAREENGINEERING–Material

SOFTWAREENGINEERING

Page85

Indirectmeasuresoftheproductincludefunctionality,quality,complexity,efficiency,reliability,maint
ainability,andmanyother"–abilities"

Size-OrientedMetrics

Size-oriented software metrics are derived by normalizing quality and/or productivity
measuresbyconsideringthe sizeofthesoftwarethathasbeenproduced.

To develop metrics that can be assimilated with similar metrics from other projects, we choose lines
ofcode as our normalization value. From the rudimentary data contained in the table, a set of simple
size-orientedmetricscanbedevelopedforeachproject:

Errors per KLOC (thousand lines of
code).Defects perKLOC.

$perLOC.
Pageofdocumentation perKLOC.

In addition, other interesting metrics can be

computed:Errorsperperson-month.

LOCperperson-month.

$perpageofdocumentation.

Function-OrientedMetrics
Function-oriented software metrics use a measure of the functionality delivered by the application as

anormalization value. Since ‗functionality‘ cannot be measured directly, it must be derived indirectly using

otherdirect measures. Function-oriented metrics were first proposed by Albrecht, who suggested a measure

called thefunction point. Function points are derived using an empirical relationship based on countable

(direct)measuresofsoftware'sinformation domainandassessmentsofsoftwarecomplexity.
Proponents claim that FP is programming language independent, making it ideal for
applicationusing conventional and nonprocedural languages, and that it is based ondata that are
more likelyto be known early in the evolution of a project, making FP more attractive as an
estimationapproach.
Opponentsclaim thatthe method requires some―sleightof hand‖inthatcomputation
isbasedsubjective rather than objective data, that counts of the information domaincan be
difficulttocollectafterthefact, andthatFPhasnodirectphysicalmeaning-it‘sjustanumber.

TypicalFunction-OrientedMetrics:
errorsperFP(thousand
linesofcode)defectsperFP
$perFP
pagesofdocumentationperFPF
Pperperson-month

1.3) Reconciling DifferentMetricsApproaches

The relationship between lines of code and function points depend upon
theprogramming language that is used to implement the software and the quality of the
design.Function pointsandLOC
basedmetricshavebeenfoundtoberelativelyaccuratepredictorsofsoftwaredevelopmenteffortandcost.

1.4) ObjectOrientedMetrics:

Conventional software project metrics (LOC or FP) can be used to estimate
objectorientedsoftwareprojects.LorenzandKiddsuggestthefollowingsetofmetricsforOOprojects:

Number of scenario scripts: A scenario script is a detailed sequence of steps that describes
theinteractionbetweentheuserandtheapplication.
Numberofkeyclasses:Keyclassesarethe―highlyindependentcomponentsthataredefinedearlyin object-
orientedanalysis.
Number
ofsupportclasses:Supportclassesarerequiredtoimplementthesystembutarenotimmediatelyrelatedtoth
eproblemdomain.
Average number of support classes per key class: Of the average number of support classes
perkey class were known for a given problem domain estimation would be much simplified.
Lorenzand Kidd suggest that applications with a GUI have between two and three times the
number ofsupportclassesaskeyclasses.

 86SOFTWAREENGINEERING–Material

SOFTWAREENGINEERING

Page86

Number of subsystems: A subsystem is an aggregation of classes that support a function that
isvisible to the end-userof a system. Once subsystems are identified, it is easier to lay out
areasonablescheduleinehicwork onsubsystemsis partitioned amongprojectstaff.

1.5) Use-CaseOrientedMetrics

Use-casesdescribeuser-visiblefunctionsandfeaturesthatarebasicrequirementsforasystem.Theuse-
casesisdirectlyproportionaltothesizeoftheapplicationinLOCandtothenumberofuse-casesis directly
proportional to the size of the application in LOC and to the numberof test cases that will
havetobedesignedtofullyexercisetheapplication.

Because use-cases can be created at vastly different levels of abstraction, there is no standard
sizefor a use-case. Without a standard measure of what a use-case is, its application as a normalization
measureis suspect.

1.6) WebEngineeringProjectMetrics
The objective of all web engineering projects is to build a Web application that delivers a
combinationofcontentandfunctionalitytotheend-user.

Number of static Web pages: These pages represent low relative complexity and generally
requirelesseffort to construct thandynamic pages. This measuresprovidesan indicationof the
overallsizeoftheapplicationandtheeffortrequiredtodevelopit.
NumberofdynamicWebpages::Webpageswithdynamiccontentareessentialinalle-
commerceapplications,searchengines,financialapplication,andmanyotherWebAppcategories. These
pages represent higher relative complexity and require more effort to constructthan static pages.
This measure provides an indication of the overall size of the application and
theeffortrequiredtodevelopit.
Number of internal page link: Internal page links are pointers that provide an indication of the degree
ofarchitecturalcouplingwithintheWebApp.
Number of persistent data objects: As the number of persistent data objects grows, the complexity of the
WebAppalsogrows, andefforttoimplementit increasesproportionally.
Number of external systems interfaced: As the requirement for interfacing grows, system complexity
anddevelopmenteffort alsoincrease.
Number of static contentobjects: Static contentobjects encompass static text-
based,graphical,video,animation,andaudioinformationthat areincorporatedwithintheWebApp.
Number of dynamic content objects: Dynamic content objects are generated based on end-
useractions and encompass internally generated text-based, graphical, video, animation, and
audioinformationthatareincorporatedwithintheWebApp.
Number of executable functions: An executable function provides some computational service
tothe end-user. As the number of executable functions increases, modeling and construction
effortalsoincrease.

2)METRICSFORSOFTWAREQUALITY
Theoverridinggoalofsoftwareengineering is toproducea high-quality system,application,orproduct

within a timeframe that satisfies a market need. To achieve this goal, software engineers must
applyeffectivemethods coupledwith moderntools within thecontextofamaturesoftwareprocess.

2.1MeasuringQuality
The measures of software qualityare correctness, maintainability, integrity, and usability.
Thesemeasures willprovideusefulindicatorsfortheprojectteam.

Correctness. Correctness is the degree to which the software performs its required function.
Themost common measure for correctness is defects per KLOC, where a defect is defined as a
verifiedlackofconformancetorequirements.
Maintainability. Maintainability is the ease with which a program can be corrected if an error
isencountered, adapted if its environment changes, or enhanced if the customer desires a change
inrequirements. A simple time-oriented metric is mean-time-tochange (MTTC), the time it takes
toanalyze the change request, design an appropriate modification, implement the change, test it,
anddistributethechangetoallusers.
Integrity.Attackscanbemadeonallthreecomponentsofsoftware:programs,data,anddocuments.

 87SOFTWAREENGINEERING–Material

SOFTWAREENGINEERING

Page87

To measure integrity, two additional attributes must be defined: threat and security. Threat is

theprobability (which can be estimated or derived from empirical evidence) that an attack of a

specifictypewilloccurwithina

giventime.Securityistheprobability(whichcanbeestimatedorderivedfromempiricalevidence)thattheattack

ofaspecifictypewillberepelled. Theintegrityof

asystemcanthen bedefined as
integrity=∑[1– –security))]

Usability:Usabilityisanattempttoquantifyuser-friendlinessandcan bemeasuredintermsoffourcharacteristics:

DefectRemoval Efficiency

Aqualitymetricthatprovidesbenefitatboth

theprojectandprocesslevelisdefectremovalefficiency (DRE). In essence, DRE is a measure of the
filtering ability of quality assurance
andcontrolactivitiesastheyareappliedthroughoutallprocessframeworkactivities.

Whenconsideredforaprojectasawhole,DREisdefinedinthefollowingmanner:DRE
= E/(E+D)

where E is the number of errors found before delivery of the software to the end-

userandDisthenumberofdefectsfoundafterdelivery.

Thoseerrorsthatarenotfoundduringthereviewoftheanalysismodelarepassedontothedesign task
(where they may or may not be found). When used in this context, we redefine DRE

asDREi=Ei/(Ei+Ei+1)

Eiisthenumberoferrors foundduringsoftwareengineeringactivityiand
Ei+1 is the number of errors found during software engineering activity i+1 that are traceable to
errorsthatwerenotdiscoveredinsoftwareengineeringactivityi.

A quality objective for a software team (or an individual software engineer) is to achieve DRE

thatapproaches1.Thatis, errorsshouldbefilteredoutbeforetheyarepassedontothenextactivity.

 88SOFTWAREENGINEERING–Material

SOFTWAREENGINEERING

Page88

UNIT-V

RISK

MANAGEMENTREACTIVE VS.PROACTIVE

RISKSTRATEGIES

At best, a reactive strategy monitors the project for likely risks. Resources are set aside to

dealwith them,shouldtheybecomeactualproblems.Morecommonly,thesoftwareteamdoesnothing
aboutrisksuntilsomething goes wrong.Then,theteamfliesintoaction
inanattempttocorrecttheproblemrapidly.Thisis oftencalledafirefightingmode.

project teamreactstoriskswhentheyoccur
mitigation—
planforadditionalresourcesinanticipationoffirefightingfixonfailure—
resourcearefoundandapplied whentheriskstrikes

crisis management—failuredoesnotrespondtoappliedresourcesandprojectisinjeopardy

A proactive strategy begins long before technical work is initiated. Potential risks are
identified,theirprobabilityandimpactareassessed,andtheyarerankedbyimportance.Then,
thesoftwareteamestablishesaplanformanagingrisk.

formalriskanalysisisperformed
organizationcorrectstherootcausesofrisk

o examiningrisksourcesthatliebeyondtheboundsofthesoftware

o developingthe skilltomanagechange

RiskManagementParadigm

SOFTWARERISK

Riskalwaysinvolvestwocharacteristics
Uncertainty—theriskmayormaynothappen; that is,thereareno100%probable risks

Loss—iftheriskbecomesareality,unwantedconsequencesorlosseswilloccur.

Whenrisksareanalyzed,itisimportanttoquantifythelevelofuncertaintyinthedegreeoflossassociatedwit
heachrisk.Toaccomplishthis,differentcategories ofrisksareconsidered.

Projectrisksthreatentheprojectplan.Thatis,ifprojectrisks
becomereal,itislikelythatprojectschedulewillslipandthatcostswillincrease.

Technical risks threaten the quality and timeliness of the software to be produced. If a technical
riskbecomes a reality, implementation may become difficult or impossible. Technical risks
identifypotentialdesign,implementation,interface,verification,andmaintenanceproblems.

Business risks threaten the viability of the software to be built. Business risks often jeopardize
theprojectortheproduct.Candidatesforthetopfivebusiness risksare

Buildingaexcellentproductorsystemthatnoonereallywants(marketrisk),

Buildingaproductthatnolongerfitsintotheoverallbusinessstrategyforthecompany(strategicrisk),

 89SOFTWAREENGINEERING–Material

SOFTWAREENGINEERING

Page89

Buildingaproductthatthesales forcedoesn'tunderstandhowtosell,

Losing thesupportofsenior

managementduetoachangeinfocusorachangeinpeople(managementrisk),and

Losingbudgetaryorpersonnelcommitment(budgetrisks).

Known risksarethosethatcanbeuncoveredaftercarefulevaluationoftheprojectplan,thebusinessandtechnical
environment inwhichtheprojectisbeingdeveloped,andotherreliableinformationsources.

Predictable risksareextrapolatedfrompast project experience.

Unpredictable risks are the joker in the deck. They can and do occur, but they
areextremelydifficulttoidentifyinadvance.

2) RISKIDENTIFICATION
Risk identification is a systematic attempt to specify threats to the project plan. There are two

distincttypesofrisks.

Generic risks

andproduct-

specificrisks.

Genericrisksareapotentialthreattoeverysoftwareproject.

Product-specificrisks can beidentified onlybythosewith aclear understanding
ofthetechnology,thepeople,andtheenvironmentthatisspecifictotheprojectthatistobebuilt.
Knownandpredictablerisksinthefollowing genericsubcategories:

Productsize—risksassociatedwiththeoverallsizeofthesoftwaretobebuiltormodified.
Businessimpact—risksassociatedwith
constraintsimposedbymanagementorthemarketplace.Customercharacteristics—
risksassociatedwiththesophisticationofthe
customerandthedeveloper'sabilitytocommunicatewiththecustomerinatimelymanner.
Processdefinition—risksassociatedwiththedegreetowhich
thesoftwareprocesshasbeendefinedandisfollowedbythedevelopmentorganization.
Development environment—risks associated with the availability and quality of the tools to be used
tobuildtheproduct.
Technology to be built—risks associated with the complexity of the system to be built and
the"newness"ofthetechnologythat ispackagedbythesystem.
Staff size and experience—risks associated with the overall technical and project experience of
thesoftwareengineerswhowill dothework.

AssessingOverallProjectRisk

Thequestionsareorderedbytheirrelateimportancetothesuccess ofaproject.
Havetop softwareandcustomermanagersformallycommitted tosupporttheproject?
Areend-usersenthusiasticallycommittedtotheprojectandthesystem/producttobebuilt?Are
requirements fully understood by the software engineering team and their

customers?Havecustomers beeninvolvedfullyinthedefinitionofrequirements?

Do end-users have realistic
expectations?Is projectscopestable?

Doesthesoftwareengineeringteamhavetherightmixofskills?Areproj

ectrequirementsstable?

Doestheprojectteamhaveexperiencewiththetechnologytobe
Implemented?

Is thenumberofpeopleontheprojectteamadequatetodothejob?

Do all customer/user constituencies agree on the importance of the project and on the
requirementsforthesystem/producttobebuilt?

3.2Risk Components andDrivers

Theriskcomponentsaredefinedinthefollowingmanner:

Performancerisk—
thedegreeofuncertaintythattheproductwillmeetitsrequirementsandbefitforitsintendeduse.

Costrisk—thedegreeofuncertaintythattheprojectbudgetwillbemaintained.

Supportrisk—thedegreeofuncertaintythattheresultantsoftwarewillbeeasytocorrect,

adapt,andenhance.

Schedule risk—the degree of uncertainty that the project schedule will be maintained and that
theproductwillbedeliveredontime.

 90SOFTWAREENGINEERING–Material

SOFTWAREENGINEERING

Page90

The impact of each risk driver on the risk component is divided into one of four impact categories—
negligible,marginal, critical,orcatastrophic.

RISKPROJECTION

Risk projection, also called risk estimation, attempts to rate each risk in two ways—the likelihood
orprobability that the risk is real and the consequences of the problems associated with the risk, should
itoccur.

The project planner, along with other managers and technical staff, performs four risk projection

activities:establishascalethatreflectstheperceivedlikelihoodofa risk,

delineatetheconsequencesoftherisk,

estimatetheimpactoftheriskontheprojectandtheproduct,and

notetheoverallaccuracyoftheriskprojectionsothattherewillbenomisunderstandings.

4.1 Developing a Risk

TableBuildingaRis

A project team begins by listing all risks (no matter how remote) in the first column of the

table.EachriskiscategorizedinNext;theimpactofeachriskisassessed.

Thecategoriesforeach ofthefourriskcomponents—performance,support,cost,and schedule—
areaveragedtodetermineanoverallimpactvalue.
High-probability, high-impact risks percolate to the top of the table, and low-probability

risksdroptothebottom. Thisaccomplishesfirst-orderriskprioritization.

The projectmanagerstudiestheresultant sortedtableanddefinesacutoffline.
The cutoff line (drawn horizontally at some point in the table) implies that only risks that lie above the
linewill be given further attention. Risks that fall below the line are re-evaluated to accomplish second-
orderprioritization.

4.2 AssessingRiskImpact
Threefactors affecttheconsequences thatarelikelyifariskdoesoccur:itsnature,its scope,anditstiming.

Thenatureoftheriskindicatestheproblemsthatarelikelyifitoccurs.
Thescopeofariskcombinestheseverity(justhowseriousisit?)
withitsoveralldistribution.Finally,thetimingofa risk considerswhenand forhowlongtheimpact
will be felt.

The overall risk exposure, RE, is determined using the
followingrelationshipRE=PxC

WherePistheprobabilityofoccurrenceforarisk, andCisthecosttotheprojectshouldtheriskoccur.

Risk identification. Only 70 percent of the software components scheduled for reuse will, in
fact,beintegratedintotheapplication.Theremaining functionalitywillhavetobecustomdeveloped.

 91SOFTWAREENGINEERING–Material

SOFTWAREENGINEERING

Page91

Riskprobability.80%(likely).

Riskimpact. 60reusablesoftwarecomponents wereplanned.

Risk exposure.RE=0.80x25,200~$20,200.

Thetotalrisk exposureforallrisks(abovethecutoffintherisktable)

canprovideameansforadjustingthefinalcostestimateforaprojectetc.

RISKREFINEMENT

Onewayforriskrefinementistorepresenttheriskincondition-transition-consequence(CTC)
format.Thisgeneralcondition canberefinedinthefollowing manner:
Subcondition1. Certain reusablecomponentsweredevelopedbyathird
partywithnoknowledgeofinternaldesignstandards.

Sub condition 2. The design standard for component interfaces has not been solidified and
maynotconformtocertainexistingreusablecomponents.

Subcondition 3.Certainreusablecomponentshavebeen
implementedinalanguagethatisnotsupportedonthetargetenvironment.

5) RISKMITIGATION,MONITORING,ANDMANAGEMENT

Aneffectivestrategymustconsider
threeissues:Riskavoidance

Risk monitoring

Riskmanagementandcontingencyplanning

Ifasoftwareteamadoptsaproactiveapproachtorisk,avoidanceisalways thebeststrategy.
To mitigate this risk, project management must develop a strategy for reducing turnover.
Amongthepossiblestepstobetakenare

Meetwithcurrent

stafftodeterminecausesforturnover(e.g.,poorworkingconditions,lowpay,competitivejobmarket).

Mitigatethosecausesthatareunderourcontrol beforetheprojectstarts.
Once the project commences, assume turnover will occur and develop techniques
toensurecontinuitywhenpeopleleave.

Organize projectteamssothat informationabouteachdevelopmentactivityiswidelydispersed.

Definedocumentationstandardsandestablishmechanismstobesurethatdocumentsaredevelo

pedinatimelymanner.
Conductpeer reviews
ofallwork(sothatmorethanonepersonis"uptospeed‖).•Assignabackupstaffmemberforeverycr
iticaltechnologist.

Astheprojectproceeds,riskmonitoringactivitiescommence.Thefollowingfactorscanbemonitored:Generalattit

udeofteammembersbasedonprojectpressures.

The degree to which the team has

jelled.Interpersonal relationships among team

members.Potentialproblemswithcompensationandb

enefits

Theavailabilityofjobswithinthecompanyandoutsideit.

Softwaresafetyandhazardanalysisaresoftwarequalityassuranceactivitiesthatfocusontheidentification and
assessment of potential hazards that may affect software negatively and cause an entiresystem to fail. If
hazards can be identified early in the software engineering process, software designfeatures

canbespecifiedthatwilleithereliminateorcontrolpotentialhazards.

6) THERMMMPLAN
Ariskmanagementstrategycanbeincludedin thesoftwareprojectplan ortheriskmanagementsteps

canbeorganizedintoaseparate RiskMitigation,MonitoringandManagementPlan.

TheRMMM plan documentsallworkperformedas partofriskanalysis andis
usedbytheprojectmanageraspartoftheoverallprojectplan.

 92SOFTWAREENGINEERING–Material

SOFTWAREENGINEERING

Page92

Risk

monitoringisaprojecttrackingactivitywiththreeprimaryobjectives:toasse

sswhetherpredictedrisksdo, infact,occur;

to ensure that risk aversion steps defined for the risk are being properly applied;

andtocollectinformationthatcanbeusedforfutureriskanalysis.

QUALITY MANAGEMENT

1) QUALITYCONCEPTS:
Quality

managementencompassesaquali
tymanagementapproach,

effectivesoftwareengineeringtechnology(methodsandtools),
formaltechnicalreviewsthatareappliedthroughoutthesoftwareprocess,amult

itieredtestingstrategy,

control ofsoftwaredocumentationandthechangesmadetoit,

a proceduretoensurecompliancewithsoftwaredevelopment

standards(whenapplicable),andmeasurementandreportingmechanisms.
Variationcontrolistheheart ofqualitycontrol.

Quality
TheAmericanHeritageDictionarydefinesqualityas―acharacteristicorattributeofsomething.‖

Qualityofdesign referstothecharacteristicsthatdesignersspecify foranitem.

Quality of conformance is the degree to which the design specifications are followed
duringmanufacturing.

Insoftwaredevelopment,qualityofdesignencompassesrequirements,specifications,andthedesignofthe

system.Qualityofconformanceisanissue focusedprimarilyonimplementation.Iftheimplementation follows
the design and the resulting system meets its requirements and performance
goals,conformancequalityishigh.

RobertGlassarguesthatamore―intuitive‖relationshipisinorder:

User satisfaction=compliantproduct+goodquality+deliverywithinbudgetandschedule

1.2 QualityControl
Quality control involves the series of inspections, reviews, and tests used throughout the
softwareprocess toensureeachworkproductmeetstherequirementsplaceduponit.

A key concept of quality control is that all work products have defined, measurable specifications to
whichwe may compare the output of each process. The feedback loop is essential to minimize the
defectsproduced.

1.3 QualityAssurance
Qualityassuranceconsistsoftheauditingandreportingfunctionsthatassesstheeffectivenessandcompleteness of
quality control activities. The goal of quality assurance is to provide management with thedata necessary to

be informed about product quality, thereby gaining insight and confidence that
productqualityismeetingitsgoals.

1.4 Cost ofQuality
Thecostofquality includesallcosts incurredin thepursuitofqualityorinperformingquality-
relatedactivities.

Qualitycosts maybedivided intocostsassociated with prevention,appraisal,andfailure.
Preventioncostsinclude

qualityplanning

formaltechnicalreviewst

estequipment

training

 93SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page93

Appraisalcostsincludeactivitiestogaininsightintoproductconditionthe―firsttimethrough‖eachproce
ss.Examplesofappraisalcostsinclude

in-process and interprocess

inspectionequipment calibration and

maintenancetesting
Failure costs are those that would disappear if no defects appeared before shipping a product
tocustomers.Failurecostsmaybesubdividedintointernalfailurecostsandexternalfailurecosts.
Internal failure costs are incurred when we detect a defect in our product prior to shipment. Internal
failurecostsinclude

rework

repair
failuremodeanalysis

External failure costs are associated with defects found after the product has been shipped to
thecustomer.Examplesofexternalfailurecostsare

complaintresolution

productreturnandreplacementh
elplinesupport

warrantywork

2) SOFTWAREQUALITYASSURANCE
Software quality is defined as conformance to explicitly stated functional and

performancerequirements, explicitly documented development standards, and implicit
characteristics that areexpectedofallprofessionallydevelopedsoftware.

Thedefinitionservestoemphasizethreeimportantpoints:

Software requirements are the foundation from which quality is measured. Lack of conformance
torequirementsislackofquality.

Specified standards define a set of development criteria that guide the manner in which
softwareis engineered.Ifthecriteriaarenotfollowed,lackofqualitywillalmostsurelyresult.

A set of implicit requirements often goes unmentioned (e.g., the desire for ease of use and
goodmaintainability).Ifsoftwareconformstoitsexplicitrequirementsbutfailstomeetimplicitrequireme
nts,softwarequalityissuspect.

BackgroundIssues
The first formal quality assurance and control function was introduced at Bell Labs in 1916

andspread rapidly throughout the manufacturing world. During the 1940s, more formal approaches to

qualitycontrol were suggested. These relied on measurement and continuous process improvement as key

elements ofqualitymanagement.Today, everycompanyhasmechanismstoensurequalityin itsproducts.

Duringtheearlydaysofcomputing(1950sand1960s), qualitywasthe soleresponsibilityofthe
programmer. Standards for quality assurance for software were introduced in military
contractsoftwaredevelopmentduringthe1970s.

Extendingthedefinition presentedearlier,softwarequalityassuranceisa"plannedand

systematicpattern of actions" that are required to ensure high quality in software. The scope of quality

assuranceresponsibility might best be characterized by paraphrasing a once-popular automobile

commercial:"Quality Is Job #1." The implication for software is that many different constituencies have

softwarequality assurance responsibility—software engineers, project managers, customers, salespeople,

and theindividuals whoservewithinanSQAgroup.
The SQA group serves as the customer's in-house representative. That is, the people

whoperformSQAmustlookatthesoftwarefromthecustomer'spointofview

2.2SQAActivities
Softwarequalityassuranceiscomposedofavarietyoftasksassociatedwithtwodifferentconstituencies—

thesoftwareengineerswhodotechnicalworkand

anSQAgroupthathasresponsibilityforqualityassuranceplanning,oversight,record
keeping,analysis,andreporting.

TheSoftwareEngineeringInstituterecommendsasetofSQA activitiesthataddress
qualityassuranceplanning, oversight, record keeping, analysis, and reporting. These activities are
performed (orfacilitated)byanindependentSQAgroupthatconductsthefollowingactivities.

 94SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page94

Prepares an SQA plan for a project. The plan is developed during project planning and is reviewed
byallinterestedparties. Qualityassuranceactivitiesperformedbythesoftwareengineeringteam
andtheSQAgrouparegovernedbytheplan. Theplanidentifies

evaluationstobeperformed
audits andreviewstobeperformedstandards
that are applicable to the projectprocedures
for error reporting and
trackingdocumentstobeproducedbytheSQAgro
up
amountoffeedbackprovidedtothesoftwareprojectteam

Participates in the development of the project’s software process description. The software
teamselects a process for the work to be performed. The SQA group reviews the process description
forcompliance with organizational policy, internal software standards, externally imposed
standards(e.g.,ISO-9001), andotherpartsofthesoftwareprojectplan.

Reviews software engineering activities to verify compliance with the defined software process.

TheSQA group identifies, documents, and tracks deviations from the process and verifies that

correctionshavebeenmade.

Auditsdesignatedsoftwareworkproductstoverifycompliancewiththosedefinedaspartofthesoftware
process. The SQA group reviews selected work products; identifies, documents, and tracksdeviations;
verifies that corrections have been made; and periodically reports the results of its work
totheprojectmanager.

Ensures that deviations in software work and work products are documented and
handledaccordingtoa documentedprocedure.Deviationsmaybeencountered
intheprojectplan,processdescription,applicablestandards,ortechnicalworkproducts.

Records any noncompliance and reports to senior management. Noncompliance items are
trackeduntiltheyareresolved.

3) SOFTWAREREVIEWS

Software reviews are a "filter" for the software engineering process. That is, reviews are applied
atvarious points during software development and serve to uncover errors and defects that can then
beremoved. Software reviews "purify" the software engineering activities that we have called
analysis,design,andcoding.

Many different types of reviews can be conducted as part of software engineering. Each
hasits place. An informal meeting around the coffee machine is a formof review, if technical problems
arediscussed. A formal presentation of software design to an audience of customers, management,
andtechnicalstaffisalsoaformofreview

A formal technical review is the most effective filter from a quality assurance standpoint.
Conductedby software engineers (and others) for software engineers, the FTR is an effective means for
improvingsoftwarequality.

3.1Cost ImpactofSoftwareDefects:

Theprimaryobjectiveofformaltechnicalreviewsistofinderrorsduringtheprocesssothattheydonotb
ecomedefectsafterreleaseofthesoftware.

A number of industry studies indicate that design activities introduce between 50 and 65
percentofallerrorsduringthesoftwareprocess.However,formalreviewtechniqueshavebeenshowntobeupto75
percent effective] in uncovering design errors. By detecting and removing a large percentage of

theseerrors, the review process substantially reduces the cost of subsequent steps in the development
andsupportphases.

Toillustratethecostimpactofearlyerrordetection,weconsideraseries ofrelativecosts thatarebased
onactualcostdatacollected forlargesoftwareprojectsAssumethatanerroruncovered

duringdesignwillcost1.0monetaryunittocorrect.justb
eforetestingcommenceswillcost6.5units;

 95SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page95

duringtesting, 15units;
andafterrelease,between60and100units.

3.2)DefectAmplificationandRemoval:

(ThistopicIwilltellyoulater)

FORMALTECHNICALREVIEWS
A

formaltechnicalreviewisasoftwarequalityassuranceactivityperformedbysoftwareengineers(andother
s).TheobjectivesoftheFTRare

to uncover errors in function, logic, or implementation for any representation of

thesoftware;toverifythatthesoftwareunderreviewmeetsitsrequirements;

toensure that

thesoftwarehasbeenrepresentedaccordingtopredefinedstandards;toachievesoftwaret

hatisdevelopedinauniformmanner;and

tomakeprojectsmoremanageable.

TheReviewMeeting

Everyreviewmeetingshouldabidebythefollowingconstraints:

Betweenthreeandfive people(typically)shouldbeinvolvedinthereview.
Advancepreparationshouldoccurbutshouldrequirenomorethantwohoursofworkforeachperson.

The durationofthereviewmeetingshouldbelessthantwohours.

ThefocusoftheFTRisonaworkproduct.
The individual who has developed the work product—the producer—informs the project leader
thattheworkproductiscompleteandthatareviewisrequired.

The project leader contacts a review leader, who evaluates the product for readiness,
generatescopiesofproductmaterials,anddistributesthemtotwoorthreereviewersforadvancepreparatio
n.
Each reviewer is expected to spend between one and two hours reviewing the product, making
notes,andotherwisebecomingfamiliarwiththework.
Thereviewmeetingisattendedbythereviewleader,allreviewers,and theproducer.Oneofthe

reviewerstakes ontheroleoftherecorder;thatis,theindividualwhorecords (in
writing)allimportantissuesraisedduringthereview.

At the end of the review, all attendees of the FTR must decide whether

toaccepttheproductwithoutfurthermodification,

reject the product due to severe errors (once corrected, another review must be performed),

oraccepttheproductprovisionally.

The decision made, all FTR attendees complete a sign-off, indicating their participation in the review
andtheirconcurrencewiththereviewteam'sfindings.

4.2 Review ReportingandRecordKeeping

Attheendofthereviewmeetingandareviewissueslistisproduced.Inaddition,aformaltechnicalreviewsummaryre

portiscompleted.Areviewsummaryreportanswersthreequestions:
Whatwasreviewed?
Whoreviewedit?

Whatwerethefindingsandconclusions?

Thereviewsummaryreport isa single page form.

Itis importanttoestablishafollow-up proceduretoensurethatitemson theissues
listhavebeenproperlycorrected.

4.3 ReviewGuidelines

Thefollowingrepresentsaminimumsetofguidelinesforformaltechnicalreviews:

Review the product, not the producer. An FTR involves people and egos. Conducted
properly,theFTRshouldleaveallparticipantswithawarmfeelingofaccomplishment.
Set an agenda and maintain it. An FTR must be kept on track and on schedule. The review
leaderis chartered with the responsibility for maintaining the meeting schedule and should not be
afraidtonudgepeoplewhendriftsetsin.

 96SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page96

Limit debate and rebuttal. When an issue is raised by a reviewer, there may not be
universalagreementonitsimpact.

Enunciate problem areas, but don't attempt to solve every problem noted. A review is not

aproblem-solving session. The solution of a problem can often be accomplished by the
produceralone orwith the help of only one other individual. Problem solving should be postponed
untilafterthereviewmeeting.

Take written notes. It is sometimes a good idea for the recorder to make notes on a wall board,
sothatwordingandpriorities canbeassessedbyotherreviewers asinformationisrecorded.

Limit the number of participants and insist upon advance preparation. Keep the number
ofpeopleinvolvedtothenecessaryminimum.

Develop a checklist for each product that is likely to be reviewed. A checklist helps the
reviewleadertostructure
theFTRmeetingandhelpseachreviewertofocusonimportantissues.Checklistsshouldbedevelopedfor
analysis,design,code,andeventestdocuments.

Allocate resources and schedule time for FTRs. For reviews to be effective, they should
bescheduledasataskduringthesoftwareengineeringprocess

Conduct meaningful training for all reviewers. To be effective all review participants
shouldreceivesomeformaltraining.

Review your early reviews. Debriefing can be beneficial in uncovering problems with the
reviewprocess itself.

4.4 Sample-DrivenReviews (SDRs):

SDRs attempt to quantify those work products that are primary targets for full FTRs.To accomplish
thisthefollowingstepsaresuggested…

Inspect a fraction ai of each software work product, i. Record the number of faults, fi found

withinai.

• Develop a gross estimate of the number of faults within work product i by multiplying fi by
1/ai.Sort the work products in descending order according to the gross estimate of the number of
faultsineach.

Focusavailablereviewresourcesonthoseworkproductsthathavethehighestestimatednumberoffaults.
Thefractionoftheworkproductthatissampledmust

Berepresentativeoftheworkproductasawholeand

Large enoughtobemeaningful tothereviewer(s)whodoesthesampling.

5) STATISTICAL SOFTWAREQUALITYASSURANCE
For software, statistical quality assurance implies the following

steps:Informationabout
softwaredefectsiscollectedandcategorized.

An attempt is made to trace each defect to its underlying cause (e.g., non-conformance
tospecifications, design error, violation of standards, poor communication with the
customer).UsingtheParetoprinciple(80percentofthedefectscanbetracedto20percentofallpossibleca
uses),isolatethe20percent(the"vitalfew").

Once the vital few causes have been identified, move to correct the problems that have caused
theForsoftware,statisticalqualityassuranceimpliesthefollowingsteps:

.

The application of the statistical SQA and the pareto principle can be summarized in a
singlesentence: spend your time focusing on things that really matter, but first be sure that you
understandwhatreallymatters.

5.1 SixSigmaforsoftwareEngineering:

Six Sigmaisthemostwidelyusedstrategyforstatisticalqualityassuranceinindustrytoday.

Theterm―sixsigma‖isderivedfromsixstandarddeviations—3.4instances(defects)permillion occurrences—
implying an extremely high quality standard. The Six Sigma methodology defines threecoresteps:

Define customer requirements and deliverables and project goals via well-defined methods
ofcustomercommunication

 97SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page97

Measurethe existingprocessanditsoutputtodetermine currentqualityperformance

(collectdefectmetrics)
Analyzedefectmetricsanddeterminethevital fewcauses.

Ifanexistingsoftwareprocessisin
place,butimprovementisrequired,SixSigmasuggeststwoadditionalsteps.

Improvetheprocessbyeliminatingtherootcausesofdefects.
Controltheprocesstoensurethatfuturework doesnotreintroducethecausesofdefectsThese

core and additional steps are sometimes referred to as the DMAIC (define,

measure,analyze,improve,andcontrol)method.

Ifanyorganization isdevelopingasoftwareprocess(rather than

improvingandexistingprocess),thecorestepsareaugmentedasfollows:
Designtheprocessto

o avoid therootcausesofdefectsand

o tomeetcustomerrequirements
Verify that the process model will, in fact, avoid defects and meet customer requirements.

Thisvariationissometimescalled theDMADV(define,measure,analyze,design and verify) method.

6) THEISO 9000QUALITYSTANDARDS

A quality assurance system may be defined as the organizational structure,
responsibilities,procedures,processes,andresources forimplementingqualitymanagement

ISO 9000describes
qualityassuranceelementsingenerictermsthatcanbeappliedtoanybusinessregardlessoftheproductsors
ervicesoffered.

ISO 9001:2000 is the quality assurance standard that applies to software engineering. The
standardcontains 20 requirements that must be present for an effective quality assurance system.
Because theISO
9001:2000standardisapplicabletoallengineeringdisciplines,aspecialsetofISOguidelineshavebeendevelop
edtohelpinterpretthestandardforuseinthesoftwareprocess.

The requirements delineated by ISO 9001 address topics such

asmanagementresponsibility,
qualitysystem,contractreview,d
esigncontrol,

documentanddatacontrol,
productidentificationandtraceability,p

rocess control,

inspectionand testing,corrective

and preventive action,control of

quality

records,internalqualityaudits,
training,servi
cingand

statisticaltechniques.

In order for a software organization to become registered to ISO 9001, it must establish policies
andprocedures to address each of the requirements just noted (and others) and then be able to
demonstratethatthesepoliciesandproceduresarebeingfollowed.

SOFTWARERELIABILITY

Software reliability is defined in statistical terms as "the probability of failure-free operation
ofacomputerprograminaspecifiedenvironmentforaspecifiedtime".

7.1Measures ofReliabilityandAvailability:

Mosthardware-relatedreliabilitymodels arepredicatedon failureduetowearratherthan failureduetodesign

defects.Inhardware,failuresduetophysicalwear(e.g.,theeffectsoftemperature,corrosion,
shock)aremorelikelythan adesign-relatedfailure.Unfortunately,theoppositeistrueforsoftware.In fact,all
software failures can be traced to design or implementation problems; wear does not enter into thepicture.

Asimplemeasureofreliabilityismeantime-between-failure(MTBF),where

MTBF=MTTF+MTTR

Theacronyms MTTF andMTTRaremean-time-to-failureandmean-time-to-repair,respectively.

 98SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page98

In addition to a reliability measure, we must develop a measure of availability. Software availability is

theprobabilitythata programisoperatingaccordingtorequirementsata given pointin timeand isdefined as

Availability=[MTTF/(MTTF+MTTR)]100%
TheMTBFreliabilitymeasureisequallysensitive toMTTFandMTTR.Theavailabilitymeasureis

somewhatmoresensitivetoMTTR, anindirectmeasureofthemaintainabilityofsoftware.

7.2)SoftwareSafety
Software safety is a software quality assurance activity that focuses on the identification

andassessment of potential hazards that may affect software negatively and cause an entire system to
fail.If hazards can be identified early in the software engineering process, software design features
can bespecifiedthatwilleithereliminateorcontrolpotentialhazards.

For example, some of the hazards associated with a computer-based cruise control for an
automobilemightbe

causesuncontrolledaccelerationthat cannotbestopped

doesnotrespondtodepressionofbrakepedal(byturningoff)does

notengagewhenswitchisactivated

slowlyloses orgainsspeed
Once these system-level hazards are identified, analysis techniques are used to assign severity

andprobabilityofoccurrence.Tobe effective,softwaremustbeanalyzedinthecontextofthe entiresystem.

If a set of external environmental conditions are met (and only if they are met), the improper position

ofthe mechanical device will cause a disastrous failure. Analysis techniques such as fault tree
analysis[VES81],real-timelogic[JAN86],orpetrinetmodels[LEV87] can beused
topredictthechainofeventsthatcancausehazardsandtheprobabilitythateachoftheevents
willoccurtocreatethechain.

Once hazards are identified and analyzed, safety-related requirements can be specified for

thesoftware. That is, the specification can contain a list of undesirable events and the desired
systemresponses totheseevents. Theroleofsoftwareinmanagingundesirableeventsisthenindicated.

Although software reliability and software safety are closely related to one another, it

isimportanttounderstandthesubtledifferencebetweenthem.Softwarereliabilityuses statisticalanalysis
todetermine the likelihood that a software failure will occur. However, the occurrence of a failure does
notnecessarily result in a hazard or mishap. Software safety examines the ways in which failures result
inconditions thatcanleadtoamishap.

DefectAmplificationandRemoval:

DefectAmplificationModel

A defect amplification model can be used to illustrate the generation and detection of
errorsduringthepreliminarydesign,detaildesign,andcoding stepsofthesoftwareengineeringprocess.

Aboxrepresentsa softwaredevelopmentstep. Duringthestep,errorsmaybeinadvertentlygenerated.Review

may fail to uncover newly generated errors and errors from previous steps, resulting in

somenumberoferrorsthatarepassedthrough.Insomecases,errorspassedthroughfromprevious

stepsareamplified(amplificationfactor,x)bycurrentwork.Theboxsubdivisionsrepresenteachofthese

 99SOFTWARE ENGINEERING –Material

SOFTWAREENGINEERING

Page99

characteristicsandthepercentofefficiencyfordetecting
errors,afunctionofthethoroughnessofthereview.

Referringtothe figure8.3eachteststepis assumedtouncoverandcorrect50percentofallincomingerrors

without introducing any new errors (an optimistic assumption). Ten preliminary design defects

areamplifiedto94 errorsbeforetestingcommences.Twelvelatenterrorsarereleasedtothe field.

Figure8.4 considers the same conditions except that design and code reviews are conducted as
partof each development step. In this case, ten initial preliminary design errors are amplified to 24 errors
beforetestingcommences.Onlythreelatenterrorsexist.

Recallingtherelativecostsassociatedwiththediscoveryandcorrectionoferrors,overallcost(withand

without review for our hypothetical example) can be established. The number of errors uncovered

duringeach of the steps noted in Figures 8.3 and 8.4 is multiplied by the cost to remove an error (1.5 cost

units fordesign,6.5costunitsbeforetest,15 costunitsduring test,and67costunitsafterrelease).
Usingthesedata,thetotal cost fordevelopment
andmaintenancewhenreviewsareconductedis783cost units.
Whenno reviewsareconducted,totalcostis2177units—nearlythreetimesmore

costly.
To conduct reviews, a software engineer must expend time and effort and the

developmentorganizationmustspendmoney.Formaltechnicalreviews(fordesignandothertechnicalacti
vities)provideademonstrablecostbenefit.Theyshouldbe conducted.

FIGURE8.3

Defectamplification,noreviews

	3 -/-/- 3
	OBJECTIVES:
	UNIT -I:
	UNIT - II:
	UNIT- III:
	UNIT - IV:
	UNIT-V:
	TEXTBOOKS:
	REFERENCEBOOKS:
	OUTCOMES:
	UNIT-I
	Characteristicsof Software:
	SoftwareEngineering:
	EVOLVINGROLEOFSOFTWARE:
	1970sand1980s:
	1990sbegan:
	Mid-1990s:
	Later1990s:
	2000sprogressed:
	THECHANGINGNATUREOFSOFTWARE:
	Applicationsoftware:
	Embeddedsoftware:
	Ubiquitous computingNetsourcing
	The―neweconomy‖
	SOFTWAREMYTHS
	AGENERICVIEWOF PROCESS
	Software engineering methods rely on a set of basic principles that govern area of the technologyandincludemodelingactivities.
	APROCESS FRAMEWORK:
	AProcessFramework
	SOFTWAREENGINEERING
	work products (deliverables)quality assurancepointsprojectmilestones.
	\
	THECAPABILITYMATURITYMODELINTEGRATION(CMMI):
	SG1Establish estimates
	SG2Develop aProjectPlan
	SG3Obtaincommitmenttotheplan
	GG1Achievespecificgoals
	GG2Institutionalizeamanaged process
	GG3Institutionalizea definedprocess
	GG4Institutionalizeaquantitativelymanagedprocess
	GG5Institutionalizeand optimizingprocess
	PROCESSPATTERNS
	PROCESSASSESSMENT
	PERSONAL AND TEAMPROCESSMODELS:
	Personalsoftwareprocess(PSP)
	PROCESSMODELS
	THEWATERFALLMODEL:
	Advantage:
	INCREMENTAL PROCESSMODELS:
	THEINCREMENTALMODEL:

	projectcalendartime
	THERADMODEL:
	EVOLUTIONARYPROCESSMODELS:
	PROTOTYPING:
	Context:
	Advantages:
	THESPIRALMODEL
	Advantages: (1)
	DrawBacks:
	THECONCURRENTDEVELOPMENTMODEL:
	Advantages: (2)
	AFINALCOMMENTONEVOLUTIONARYPROCESSES:
	THEUNIFIED PROCESS:
	ABRIEF HISTORY:
	PHASESOFTHEUNIFIED PROCESS:
	Elaboration
	UNIFIEDPROCESSWORKPRODUCTS:

	UNIT-II
	SOFTWAREREQUIREMENTS
	Whatisarequirement?
	Requirementsengineering:
	Typesof requirement:
	Systemrequirements
	Definitions and specifications:UserRequirementDefinition:
	SystemRequirementspecification:
	Requirementsreaders:
	Non-functionalrequirements
	Domainrequirements
	1.1) FUNCTIONALREQUIREMENTS:
	Examplesoffunctional requirements
	Requirementsimprecision
	Requirementscompletenessandconsistency:
	NON-FUNCTIONALREQUIREMENTS
	1.2) Non-functionalrequirementtypes:
	Organisationalrequirements
	Externalrequirements
	Goals andrequirements:
	Requirements measures: Property Measure
	Requirementsinteraction:
	1.3) DOMAINREQUIREMENTS
	Librarysystemdomainrequirements:
	Domain requirements problemsUnderstandability
	Implicitness
	USERREQUIREMENTS
	Problemswithnaturallanguage
	Requirementproblems
	Guidelinesforwritingrequirements
	SYSTEMREQUIREMENTS
	Requirementsanddesign
	ProblemswithNL(naturallanguage)specification
	AlternativestoNLspecification: Notation Description
	3.1)Structuredlanguagespecifications
	Form-basedspecifications
	Tabularspecification
	Graphicalmodels
	Sequencediagrams
	Sequence diagramofATMwithdrawal
	INTERFACESPECIFICATION
	Usersofarequirementsdocument:
	REQUIREMENTSENGINEERINGPROCESSES
	Therequirementsengineeringprocess
	Feasibilitystudyimplementation:
	2) REQUIREMENTELICITATIONANDANALYSIS:
	Problemsof requirementsanalysis
	Therequirementsspiral
	2.1) REQUIREMENTSDISCOVERY:
	Viewpoints:
	Typesofviewpoint:
	Indirectviewpoints
	Domainviewpoints
	Viewpointidentification:
	LIBSYSviewpointhierarchy
	Interviewsinpractice:
	Effectiveinterviewers:
	Scenarios:
	Usecases
	Articleprintinguse-case:
	Articleprintingsequence:
	2.2) ETHNOGRAPHY:
	Focusedethnography:
	Ethnographyandprototyping
	REQUIREMENTSVALIDATION
	Requirementschecking:
	Requirementsvalidationtechniques
	Requirementsreviews:
	Reviewchecks:
	REQUIREMENTSMANAGEMENT
	Requirementschange
	Requirementsevolution:
	Requirementsclassification:
	Type
	4.2) Requirementsmanagementplanning:
	Traceability:
	CASEtool support:
	4.3) Requirementschangemanagement:
	Changemanagement:
	Modeltypes
	CONTEXTMODELS:
	Thecontextofan ATMsystem:
	BEHAVIOURALMODELS:
	2.1) Data-processing models:
	OrderprocessingDFD:
	2.2) State machinemodels:
	Statecharts:
	Microwaveovenmodel:
	Microwave ovenstimuli: Stimulus Description
	SEMANTICDATAMODELS:
	Data dictionaries
	OBJECTMODELS:
	4.1) Inheritancemodels:
	ObjectmodelsandtheUML:
	Libraryclasshierarchy:
	Multipleinheritance:
	Multipleinheritance
	4.2) Objectaggregation
	STRUCTUREDMETHODS:
	Methodweaknesses:
	CASEworkbenches:
	Ananalysisanddesignworkbench
	UNIT-IIIDESIGNENGINEERING
	Whatisdesign:
	Whyisitimportant:
	1) DESIGNPROCESSANDDESIGNQUALITY:
	Goals ofdesign:
	Quality guidelines:
	Qualityattributes:
	2) DESIGNCONCEPTS:
	Architecture:
	Patterns:
	IV. Modularity:
	InformationHiding:
	VI. Functional Independence:
	VII. Refinement:
	VIII. Refactoring :
	IX. Designclasses:
	THEDESIGNMODEL:

	processdimension
	Data designelements:
	Architecturaldesignelements:
	Interfacedesignelements:
	ARCHITECTURALDESIGN
	WhyIsArchitectureImportant?
	DATA DESIGN:
	2.1) Data design attheArchitecturalLevel:
	2.2) Data designattheComponentLevel:
	ARCHITECTURAL STYLESANDPATTERNS:
	3.1) A Brief Taxonomy of Styles andPatternsData-centeredarchitectures:
	3.2) ArchitecturalPatterns:
	OrganizationandRefinement:
	Control.
	Data.
	4) ARCHITECTURAL DESIGN:
	II DefiningArchetypes:
	ComponentStructure
	USERINTERFACEDESIGN
	What isUserInterfaceDesign?
	WhyisUserInterfaceDesignimportant?
	1.1 THEGOLDENRULES
	PlacetheUserin Control
	ReducetheUser’sMemory Load:
	The visuallayoutofthe interfaceshouldbe basedonarealworldmetaphor.Billpayment
	MaketheInterfaceConsistent
	USERINTERFACEDESIGN (1)
	1.2.2 The UserInterfaceDesignProcess:(stepsininterfacedesign)
	UserInterfaceDesignProcess
	(2) InterfaceDesign:
	(3) InterfaceConstruction(implementation)
	(4) InterfaceValidation:
	INTERFACEANALYUSIS
	12.3.1 Useranalysis
	12.3.2 TaskAnalysisandModeling
	12.3.3 Analysisof DisplayContent
	12.5DESIGNEVALUATION
	UNIT-IV
	Black boxtesting
	BlackBoxTesting
	Dataflow Testing
	LoopTesting
	ProductMetricsforanalysis,Design,TestandmaintenanceProductmetricsfortheAnalysis model
	METRICSFORPROCESSANDPROJECTS
	Size-OrientedMetrics
	Function-OrientedMetrics
	TypicalFunction-OrientedMetrics:
	1.3) Reconciling DifferentMetricsApproaches
	1.4) ObjectOrientedMetrics:
	1.5) Use-CaseOrientedMetrics
	1.6) WebEngineeringProjectMetrics
	2)METRICSFORSOFTWAREQUALITY
	2.1MeasuringQuality
	DefectRemoval Efficiency
	UNIT-V
	RiskManagementParadigm
	2) RISKIDENTIFICATION
	AssessingOverallProjectRisk
	3.2Risk Components andDrivers
	RISKPROJECTION
	4.1 Developing a Risk TableBuildingaRis
	4.2 AssessingRiskImpact
	RISKREFINEMENT
	5) RISKMITIGATION,MONITORING,ANDMANAGEMENT
	6) THERMMMPLAN
	QUALITY MANAGEMENT
	Quality
	User satisfaction=compliantproduct+goodquality+deliverywithinbudgetandschedule
	1.3 QualityAssurance
	1.4 Cost ofQuality
	2) SOFTWAREQUALITYASSURANCE
	BackgroundIssues
	2.2SQAActivities
	3) SOFTWAREREVIEWS
	3.1Cost ImpactofSoftwareDefects:
	3.2)DefectAmplificationandRemoval:
	FORMALTECHNICALREVIEWS
	TheReviewMeeting
	4.2 Review ReportingandRecordKeeping
	4.3 ReviewGuidelines
	4.4 Sample-DrivenReviews (SDRs):
	5) STATISTICAL SOFTWAREQUALITYASSURANCE
	5.1 SixSigmaforsoftwareEngineering:
	6) THEISO 9000QUALITYSTANDARDS
	SOFTWARERELIABILITY
	7.1Measures ofReliabilityandAvailability:
	MTBF=MTTF+MTTR
	Availability=[MTTF/(MTTF+MTTR)]100%
	7.2)SoftwareSafety
	DefectAmplificationandRemoval:
	Defectamplification,noreviews

