IlYearB. TechCSE-1Sem LT/P/DC
3 -/-I- 3
SOFTWAREENGINEERING

OBJECTIVES:
o Tocomprehendthevarioussoftwareprocessmodels.
o Tounderstand thetypesofsoftwarerequirementsand SRSdocument.
o Toknowthedifferentsoftwaredesignandarchitecturalstyles.
« Tolearnthesoftwaretestingapproachesandmetricsusedinsoftwaredevelopment.
« Toknowaboutqualitycontrolandriskmanagement.

UNIT -I:
Introduction to Software Engineering: The evolving role of software, Changing Nature
ofSoftware,Softwaremyths.
AGenericviewofprocess: Softwareengineering-
Alayeredtechnology,aprocessframework,Process patterns,process assessment.
Process models: The waterfall model, Incremental process models, Evolutionary process models, The

Unifiedprocess, Agility and Agile Process model, Extreme Programming, Other process models of Agile
DevelopmentandTools

UNIT - II:
SoftwareRequirements:Functionalandnon-
functionalrequirements, Userrequirements,Systemrequirements, Interfacespecification,thesoftwarerequirements
document.

Requirementsengineeringprocess: Feasibilitystudies,Requirementselicitationandanalysis,

Requirementsvalidation,Requirementsmanagement.
System models: Context Models, Behavioral models, Data models, Object models, structured methods.
UMLDiagrams.

UNIT- 11
DesignEngineering:DesignprocessandDesignquality,
Designconcepts,thedesignmodel.Creating an architectural design: Software architecture,
Data design, Architectural stylesandpatterns,ArchitecturalDesign.
Object-OrientedDesign: Objectsandobjectclasses, AnObject-
Orienteddesignprocess,Designevolution.
PerformingUserinterfacedesign: Goldenrules,Userinterfaceanalysisanddesign,interface
analysis,interface designsteps,Designevaluation.

UNIT - IV:
TestingStrategies: Astrategicapproachtosoftwaretesting,teststrategiesforconventionalsoftware, Black-
BoxandWhite-Boxtesting, Validationtesting, Systemtesting,theartofDebugging.
Productmetrics: SoftwareQuality,Metrics forAnalysisModel ,Metrics
forDesignModel,Metricsforsourcecode, Metricsfortesting, Metricsformaintenance.

MetricsforProcessandProducts: SoftwareMeasurement, Metricsforsoftwarequality.

UNIT-V:
Risk management: Reactive vs. Proactive Risk strategies, software risks, Risk
identification,Riskprojection,Riskrefinement, RMMM, RMMMPIlan.
Quality Management:Quality concepts,Software quality assurance,Software
Reviews,Formal technical reviews, Statistical Software quality Assurance, The Capability
MaturityModellntegration(CMMI),Softwarereliability, ThelSO9000qualitystandards.

TEXTBOOKS:

1. SoftwareEngineeringApractitioner’sApproach,RogerSPressman,6the
dition.McGrawHilllnternationalEdition.

2. SoftwareEngineering,lanSommerville, 7thedition,Pearsoneducation.

REFERENCEBOOKS:

1. SoftwareEngineering,APreciseApproach,PankajJalote,Wileylndia,2010.

2. Software Engineering: A Primer, Waman S Jawadekar, Tata McGraw-
Hill,2008

3. SoftwareEngineering,PrinciplesandPractices,DeepakJain,OxfordUni
versityPress.

4. Software Engineeringl:Abstraction and modelling,
DinerBjorner,
SpringerInternationaledition,2006.

5. Software Engineering2: Specification of systems and languages,
DinerBjorner,SpringerlInternationaledition2006.

6. Software Engineering Principles and Practice, Hans Van Vliet,
3rdedition,JohnWiley&SonsL td.

7. Software Engineering3: Domains, Requirements, and
SoftwareDesign,D.Bjorner,SpringerinternationalEdition.

8. IntroductiontoSoftwareEngineering,R.J.Leach,CRCPress.

OUTCOMES:
Attheendofthecoursethestudentsareableto:

o Tocompareandselectaprocessmodelforabusinesssystem.

o Toidentifyandspecifytherequirementsforthedevelopmentofanapplic
ation.

e Todevelopand
maintainefficient,reliableandcosteffectivesoftwaresolutions.

o Tocriticallythink andevaluateassumptionsand argumentsoftheclient.

INDEX

UNITNO TOPIC PAGENO

IntroductiontoSoftwareEngineering 1-2

' AGenericviewofprocess 2-22
SoftwareRequirements 23-32

2 Requirementsengineeringprocess 32-41
Systemmodels 41-48
DesignEngineering 49-56
Creatinganarchitecturaldesign 56-63

’ Object-OrientedDesign 64-66
PerformingUserinterfacedesign 66-73
TestingStrategies 74-80

4 Product metrics 80-81
MetricsforProcessand Products 81-84
Riskmanagement 85-89

¥ QualityManagement 89-97

SOFTWAREENGINEERING

UNIT-I
INTRODUCTIONTOSOFTWAREENGINEERING

Software:Softwareis
Instructions(computerprograms)thatprovidedesiredfeatures,function,andperformance,whenexecut
ed
Datastructures thatenabletheprogramstoadequatelymanipulateinformation,Documents
thatdescribetheoperationanduseoftheprograms.

Characteristicsof Software:
Softwareis
developedorengineered;itisnotmanufacturedintheclassicalsense.Softwaredoesnot—wearo
utl
Although the industry is moving toward component-based construction, most software
continuestobecustom built.

SoftwareEngineering:
The systematic, disciplined quantifiable approach to the development, operation and
maintenanceofsoftware;thatis, theapplicationofengineeringtosoftware.
Thestudyofapproachesasin(1)

EVOLVINGROLEOFSOFTWARE:
Softwaretakes dualrole. Itis bothaproductandavehiclefordeliveringaproduct.
As a product: It delivers the computing potential embodied by computer Hardware or
byanetworkofcomputers.
Asavehicle:ltisinformationtransformer-producing,managing,acquiring,modifying,displaying, ~ or
transmitting information that can be as simple as single bit or as complex as a
multimediapresentation.Softwaredeliversthemostimportantproductofourtime-information.
Ittransformspersonaldata
Itmanagesbusinessinformationtoenhancecompetitivenessltpr
ovides agatewayto worldwideinformationnetworks
Itprovidesthemeansforacquiringinformation

Theroleofcomputer softwarehasundergonesignificantchangeover aspanoflittlemorethan50
yearsDramaticlmprovementsinhardwareperformance
Vastincreasesinmemory
andstoragecapacityAwide varietyofexoticinput
andoutputoptions

1970sand1980s:

Osborne characterizeda —newindustrialrevolution|
Tofflercalledtheadventofmicroelectronicspartof-thethirdwaveofchangelinhumanhistory
Naisbittpredictedthetransformationfromanindustrialsocietytoan-informationsociety|l
Feigenbaum and McCorduck suggested that information and knowledge would be the
focalpointforpowerinthetwenty-firstcentury
Stollarguedthatthe-electroniccommunitylicreatedbynetworksandsoftwarewasthekeyto
knowledgeinterchangethroughouttheworld
1990sbegan:
Toffierdescribeda-powershiftlinwhicholdpowerstructuresdisintegrateascomputersand
softwareleadtoa-democratizationofknowledgel.
YourdonworriedthatU.Scompaniesmightlosetheircompetitiveedgeinsoftwarerelatedbusinessan
dpredicted-thedeclineandfalloftheAmericanprogrammerl.
HammerandChampyarguedthatinformationtechnologiesweretoplayapivotalroleinthe
-reengineeringofthecorporationl.
Mid-1990s:
Thepervasiveness ofcomputersandsoftwarespawnedarashofbooks byneo-luddites.

Pagel

SOFTWAREENGINEERING

Later1990s:
Yourdonreevaluatedtheprospectsofthesoftwareprofessionalandsuggested-therise
andresurrectionloftheAmericanprogrammer.

TheimpactoftheY 2 K—timebombIlwasattheendonOthcentury

2000sprogressed:
Johnsondiscussedthepowerof-emergencellaphenomenonthatexplainswhathappenswhen
interconnectionsamongrelativelysimpleentitiesresultinasystemthat—self-organizes
toformmoreintelligent, moreadaptivebehaviorl.

Yourdonrevisitedthetragiceventsof9/11todiscussthecontinuingimpactofglobalterrorismonthel Tc
ommunity
Wolframpresentedatreatiseona—newkindofsciencelthatpositsaunifyingtheorybasedprimaril
yonsophisticatedsoftwaresimulations
Dacontaandhiscolleaguesdiscussedtheevolutionof-thesemanticwebll.

Today ahugesoftwareindustryhasbecomeadominantfactorin theeconomiesoftheindustrializedworld.
THECHANGINGNATUREOFSOFTWARE:

The7broadcategoriesofcomputersoftwarepresentcontinuingchallengesforsoftwareengineers:System
software
ApplicationsoftwareEngineerin
g/scientific
softwareEmbeddedsoftware
Product-line
softwareWeb-
applications
Artificialintelligencesoftware.

System software: System software is a collection of programs written to service
otherprograms. Thesystemssoftwareischaracterizedby

heavy interaction with computer
hardwareheavyusage bymultipleusers

concurrentoperation thatrequiresscheduling,resourcesharing,andsophisticatedprocess
management

complex

datastructuresmultipleexter

nalinterfaces
E.g.compilers,editorsandfilemanagementutilities.

Applicationsoftware:
Applicationsoftwareconsistsofstandaloneprogramsthatsolveaspecificbusinessneed. Itfacilit
ates businessoperations ormanagement/technicaldecisionmaking.
Itisusedtocontrolbusinessfunctionsinreal-time

E.g.point-of-saletransactionprocessing,real-timemanufacturingprocesscontrol.

Engineering/Scientificsoftware:Engineeringand scientificapplicationsrange

-fromastronomytovolcanology
- fromautomotivestressanalysistospaceshuttleorbitaldynamics
- frommolecularbiologytoautomatedmanufacturing
E.g. computeraideddesign,system simulationandotherinteractiveapplications.
Embeddedsoftware:
Embedded software resides within a product or system and is used to

implementandcontrolfeaturesandfunctionsfortheend-user andforthesystemitself.
Page2

SOFTWAREENGINEERING
It can perform limited and esoteric functions or provide significant function
andcontrolcapability.

Page3

SOFTWAREENGINEERING

E.g.Digital functionsinautomobile,dashboarddisplays, brakingsystemsetc.

Product-line software: Designed to provide a specific capability for use by many
differentcustomers, product-line software can focus on a limited and esoteric market place or
address massconsumermarkets

E.g. Word processing, spreadsheets, computer graphics, multimedia,
entertainment,databasemanagement,personalandbusinessfinancialapplications

Web-applications: WebApps are evolving into sophisticated computing environments that notonly
provide standalone features, computing functions, and content to the end user, but also
areintegratedwithcorporatedatabasesandbusinessapplications.

Artificial intelligence software: Al software makes use of nonnumerical algorithms to
solvecomplex problems that are not amenable to computation or straightforward analysis.
Applicationwithin this area includes robotics, expert systems, pattern recognition, artificial neural
networks,theoremproving, andgameplaying.

Thefollowingarethe newchallengesonthehorizon:
Ubiquitous
computingNetsourcin
g
Opensource
The-neweconomyll

Ubiquitous computing: The challenge for software engineers will be to develop systems and
applicationsoftware that will allow small devices, personal computers and enterprise system to
communicate acrossvastnetworks.

Net sourcing: The challenge for software engineers is to architect simple and sophisticated
applicationsthatprovidebenefittotargetedend-usermarketworldwide.

Open Source: The challenge for software engineers is to build source that is self descriptive but
moreimportantly to develop techniques that will enable both customers and developers to know what
changeshavebeenmadeandhowthosechanges manifestthemselves withinthesoftware.

The-neweconomyll: Thechallengeforsoftwareengineersistobuildapplicationsthatwillfacilitatemass
communicationandmassproductdistribution.

SOFTWAREMYTHS

Beliefs about software and the process used to build it- can be traced to the earliest days of
computingmythshaveanumberofattributes thathavemadetheminsidious.

Managementmyths:
Manageswithsoftwareresponsibility,likemanagersinmostdisciplines,areoftenunderpressuretomaintainbudge
ts, keepschedules fromslipping,andimprovequality.

Myth: We already have a book that‘s full of standards and procedures for building software - Wont
thatprovidemypeoplewitheverythingtheyneedtoknow?

Reality: The book of standards may very well exist but, is it used? Are software practitioners aware of
itsexistence?Doesitreflectmodernsoftwareengineeringpractice?

Myth:Ifwegetbehindschedule,wecanaddmoreprogrammersandcatchup.

Reality: Software development is not a mechanistic process like manufacturing. As new people are
added,people who were working must spend time educating the new comers, thereby reducing the amount
of timespend on productive development effort. People can be added but only in a planned and well
coordinatedmanner.

Myth:Ifldecidetooutsourcethesoftwareprojecttoathirdparty, lcanjustrelaxandletthatfirmbuiltit.

Reality: If an organization does not understand how to manage and control software projects internally,
itwillinvariablystrugglewhenitoutsourcessoftwareprojects.

Page4

SOFTWAREENGINEERING

Customermyths: Thecustomerbelievesmythsaboutsoftwarebecausesoftwaremanagersandpractitionersdolittl
etocorrectmisinformation. Mythsleadtofalseexpectationsandultimately,dissatisfactionwiththedeveloper.

Myth: A general statement of objectives is sufficient to begin with writing programs - we can fill in
thedetailslater.

Reality: Althoughacomprehensiveandstable statementofrequirements is notalwayspossible,anambiguous
statementofobjectivesis recipefordisaster.

Myth: Project requirements continually change, but change can be easily accommodated because
softwareis flexible.

Reality: Itistruethatsoftwarerequirementschange,buttheimpactofchangevaries
withthetimeatwhichitisintroducedandchangecancauseupheavalthatrequiresadditionalresourcesandmajordesi
gnmodification.

Practitioner’s myths: Myths that are still believed by software practitioners: during the early days
ofsoftware,programmingwas viewedas anartfromoldwaysandattitudes diehard.

Myth:Oncewewritetheprogramandgetittowork,ourjobs aredone.

Reality: Someone once said that the sooner you begin writing code, the longer it°ll take you to get
done.Industry data indicate that between 60 and 80 percent of all effort expended on software will be
expendedafteritisdeliveredtothecustomerforthefirsttime.

Myth:Theonlydeliverableworkproductforasuccessfulprojectistheworkingprogram.

Reality: A working program is only one part of a software configuration that includes many
elements.Documentationprovidesguidanceforsoftwaresupport.

Myth:softwareengineeringwillmakeuscreatevoluminousandunnecessarydocumentationandwillinvariablysl
owsdown.

Reality: software engineering is not about creating documents. It is about creating quality. Better
qualityleads toreducedrework.Andreducedreworkresultsinfasterdeliverytimes.

AGENERICVIEWOF PROCESS
SOFTWAREENGINEERING-ALAYEREDTECHNOLOGY:

Process

Aqualityfocus

SoftwareEngineeringlLayers

Page5

SOFTWAREENGINEERING

Software engineering is a layered technology. Any engineering approach must rest on an
organizationalcommitmenttoquality. Thebedrockthatsupportssoftwareengineeringisaqualityfocus.

The foundation for software engineering is the process layer. Software engineering process is the glue
thatholdsthetechnologylayers.Processdefinesaframeworkthatmustbeestablishedforeffectivedeliveryofso
ftwareengineeringtechnology.

Thesoftwareformsthebasis formanagementcontrolofsoftwareprojectsandestablishesthe context
inwhich

- technicalmethodsareapplied,

- work productsareproduced,

- milestonesareestablished,

- qualityisensured,

- Andchangeisproperlymanaged.

Software engineering methods rely on a set of basic principles that govern area of the
technologyandincludemodelingactivities.

Methodsencompassa
broadarrayoftasksthatincludecommunication,
requirements
analysis,design
modeling,program
construction, Testinga
ndsupport.

Software engineering tools provide automated or semi automated support for the process and
themethods.When tools are integrated so that information created by one tool can be used by another,
asystemforthesupportofsoftwaredevelopment,called computer-aidedsoftwareengineering,isestablished.

APROCESS FRAMEWORK:
Softwareprocess mustbeestablishedforeffectivedeliveryofsoftwareengineeringtechnology.
A process frameworkestablishes the foundationfor a complete software process by identifying asmall
number of framework activities that are applicable to all software projects, regardless of their
sizeorcomplexity.
The process framework encompasses a set of umbrella activities that are applicable across the

entiresoftwareprocess. S
Eachframeworkactivityispopulatedbyaset ofsoftwareengineeringactions

Each software engineering action isrepresented by a number of different task sets- each a
collectionofsoftwareengineeringworktasks, relatedworkproducts,qualityassurancepoints,andprojectmilest
ones.

Inbrief
"Aprocessdefineswhois doingwhat,when,andhowtoreachacertaingoal."

AProcessFramework

establishes the foundation for a complete software
processidentifiesasmallnumberofframeworkactivitiesapp
lies to all s/w projects, regardless of
size/complexity.also,setofumbrellaactivities
applicableacross entires/wprocess.

Eachframework activityhas
set of s/w engineering

actions.Eachs/wengineeringaction

(e.g.,design)has

Page6

SOFTWAREENGINEERING

- collection of related tasks (called task
sets):worktasks
work products
(deliverables)quality
assurancepointsprojectmiles

tones.

Softwareprocess

Processframework

Umbrellaactivities

Framework activity

#1Softwareengineeringactio

Softwareengineeringaction

Worktasks
Workproducts
QualityassurancepointsP
roject milestones

Worktasks

hsksets
Workproducts

QualityassurancepointsP
roject milestones

Frameworkactivity#n

Softwareengineeringaction

Tasksets

Softwareengineeringaction

Work
tasksWorkpro
ducts

Quiality assurance

Worktasks
Workproducts

Quality assurance
pointsProject milestones

Page7

SOFTWAREENGINEERING

GenericProcessFramework:ItisapplicabletothevastmajorityofsoftwareprojectsCommunicationact

ivity

Planning

activityModeling

activity

analysisaction
requirements gathering work
taskelaborationworktask
negotiationworktasksp
ecification work
taskvalidation work
task
designaction

datadesignworktaskarchitecturald
esignworktaskinterfacedesignwor
ktaskcomponent-
leveldesignworktask

Construction

activityDeploymenta

ctivity

Communication: This framework activity involves heavy communication and collaboration
withthecustomerandencompassesrequirementsgatheringandotherrelatedactivities.

Planning: This activity establishes a planforthe software engineering work that
follows.Itdescribes the technical tasks to be conducted, the risks that are likely, the resources that
will berequired,theworkproductstobeproduced,andaworkschedule.

Modeling: Thisactivityencompassesthecreationofmodelsthatallowthedeveloperandcustomertobetter
understandsoftwarerequirements andthedesignthatwillachievethoserequirements. The modeling
activity is composed of 2 software engineering actions- analysis anddesign.

Analysis encompassesa setofworktasks.

Designencompassesworktasksthatcreateadesign model.
Construction: Thisactivitycombinescoregenerationandthetestingthatisrequiredtouncovert
heerrorsinthecode.

Deployment: The software is delivered to the customer who evaluates the delivered product
andprovides feedbackbasedontheevolution.

These 5 generic framework activities can be used during the development of small programs,
thecreationoflargewebapplications,andfor theengineeringof large,complexcomputer-basedsystems.

ThefollowingarethesetofUmbrellaActivities.

Softwareproject trackingandcontrol-
allowsthesoftwareteamtoassessprogressagainsttheprojectplanandtakenecessaryactiontomaintai
nschedule.

Risk Management-assesses risks
thatmayeffecttheoutcomeoftheprojectorthequalityoftheproduct.

Software Quality Assurance - defines and conducts the activities required to
ensuresoftwarequality.

Formal Technical Reviews - assesses software engineering work products in an effort
touncoverandremoveerrors beforetheyarepropagatedtothenextactionor activity.

Page8

SOFTWAREENGINEERING

Measurement - define and collects process, project and product measures that assist the team
indeliveringsoftwarethatneedscustomer s
needs,canbeusedinconjunctionwithallotherframeworkandumbrellaactivities.

Softwareconfiguration management-manages
theeffectsofchangethroughoutthesoftwareprocess.

Reusability management - defines criteria for work product reuse and establishes
mechanismstoachievereusablecomponents.

WorkProductpreparationandproduction-
encompassestheactivitiesrequiredtocreateworkproductssuchasmodels,document,
logs,formsandlists.

Intelligentapplicationofanysoftwareprocessmodelmustrecognizethatadaptionisessential

forsuccessbutprocessmodelsdodifferfundamentallyin:
Theoverallflowofactivities andtasks andtheinterdependencies amongactivities andtasks.

Thedegreethroughwhichworktasksaredefined withineach

frameworkactivity. Thedegreethroughwhichworkproductsareidentifiedandrequired.

The mannerwhichqualityassurance activitiesareapplied.
Themannerinwhichprojecttrackingandcontrolactivitiesareapplied.

The overalldegreeofthedetailedandrigorwithwhichtheprocessisdescribed.

Thedegreethrough whichthecustomerandotherstakeholdersareinvolved withtheproject. Thelevel
ofautonomygiventothesoftwareproject team.

Thedegreetowhichteam organizationandrolesareprescribed.

THECAPABILITYMATURITYMODELINTEGRATION(CMMI):

The CMMilrepresentsa processmeta-modelintwodifferentways: As

acontinuousmodel

Asastagedmodel.
Each process area is formally assessed against specific goals and practices and is rated according to
thefollowingcapabilitylevels.
LevelO: Incomplete. Theprocessareaiseithernotperformedor
doesnotachieveallgoalsandobjectivesdefinedbyCMM Iforlevel1capability.

Levell:Performed.Allofthespecificgoalsoftheprocessareahavebeensatisfied. Worktasksrequiredtoproduce
definedworkproductsarebeingconducted.

Level 2: Managed. All level 1 criteria have been satisfied. In addition, all work associated with the
processarea conforms to an organizationally defined policy; all people doing the work have access to
adequateresources to get the job done; stakeholders are actively involved in the process area as required; all
worktasksandworkproducts are—monitored, controlled,andreviewed;

Level 3: Defined. All level 2 criteria have been achieved. In addition, the process is —tailored from
theorganizations set of standard processes according to the organizations tailoring guidelines, and
contributesand work products, measures and other process-improvement information to the organizational
processassetsl.

Level 4: Quantitatively managed. All level 3 criteria have been achieved. In addition, the process area

iscontrolledandimprovedusingmeasurementandquantitativeassessment.|Quantitativeobjectivesforqualityand
processperformanceareestablishedandusedascriteriainmanagingtheprocessl|

Page9

Level 5: Optimized. All level 4 criteria have been achieved. In addition, the process area is adapted
andoptimized using quantitative means to meet changing customer needs and to continually improve
theefficacyoftheprocess areaunderconsiderationl

Pagel

SOFTWAREENGINEERING

TheCMMIdefineseachprocessareaintermsof—specificgoalslandthe-specificpracticeslrequiredto
achievethesegoals.Specificpracticesrefineagoalintoasetofprocess-relatedactivities.

Thespecificgoals(SG)andtheassociatedspecificpractices(SP) definedforprojectplanningare

SG1Establish estimates
SP 1.1Estimatethescopeoftheproject
SP1.2EstablishestimatesofworkproductandtaskattributesSP
1.3Defineprojectlifecycle
SP 1.4Determineestimatesofeffortandcost
SG2Develop aProjectPlan
SP 2.1 Establish the budget and
scheduleSP2.21dentifyprojectrisks
SP2.3Planfordatamanagement
SP 2.4 Plan for needed knowledge and
skillsSP2.5Planstakeholderinvolvement
SP2.6Establish theprojectplan
SG30btaincommitmenttotheplan
SP 3.1 Review plans that affect the
projectSP 3.2 Reconcile work and resource
levelsSP 3.30btainplancommitment

In addition to specific goals and practices, the CMMI also defines a set of five generic goals and
relatedpractices for each process area. Each of the five generic goals corresponds to one of the five
capabilitylevels. Hence to achieve a particular capability level, the generic goal for that level and the
generic practicesthat correspond to that goal must be achieved. To illustrate, the generic goals (GG) and
practices (GP) fortheprojectplanningprocessareaare

GG1Achievespecificgoals
GP1.1Performbasepractices
GG2lInstitutionalizeamanaged process
GP 2.1 Establish and organizational
policyGP 2.2Plantheprocess
GP2.3ProvideresourcesGP2.
4AssignresponsibilityGP
2.5Trainpeople
GP 2.6Manageconfigurations
GP 2.7 Identify and involve relevant
stakeholdersGP 2.8Monitorandcontroltheprocess
GP2.90bjectivelyevaluateadherence
GP2.10Reviewstatus withhigherlevelmanagement
GGa3lnstitutionalizea definedprocess
GP3.1Establishadefinedprocess
GP3.2Collectimprovementinformation

GG4Institutionalizeaquantitativelymanagedprocess
GP4.1Establishquantitativeobjectivesfortheprocess

Pagell

SOFTWAREENGINEERING

GP 4.2Stabilizesubprocess performance

GGb5lnstitutionalizeand optimizingprocess
GP 5.1 Ensure continuous process
improvementGP 5.2Correctrootcauses
ofproblems

PROCESSPATTERNS

The software process can be defined as a collection patterns that define a set of activities,
actions,worktasks,workproductsand/orrelatedbehaviorsrequiredtodevelopcomputersoftware.

A process pattern provides us with a template- a consistent method for describing an
importantcharacteristic of the software process. A pattern might be used to describe a complete process and
a taskwithinaframeworkactivity.

Pattern Name: The pattern is given a meaningful name that describes its function within
thesoftwareprocess.

Intent: Theobjectiveofthepatternis described briefly.

Type:Thepatterntypeis specified. Therearethreetypes
Task patterns define a software engineering action or work task that is part of the process
andrelevanttosuccessfulsoftwareengineeringpractice.Example:RequirementGathering

StagePatternsdefineaframeworkactivityfortheprocess. Thispattern
incorporatesmultipletaskpatternsthatarerelevanttothestage.

Example:Communication

Phase
patternsdefinethesequenceofframeworkactivitiesthatoccurwiththeprocess,evenwhentheov
erallflow ofactivitiesis iterativeinnature.

Example:Spiralmodelor prototyping.

Initial Context: Theconditionsunder whichthepatternappliesaredescribedpriortotheinitiation
ofthepattern,weask

Whatorganizationalor

teamrelatedactivitieshavealreadyoccurred. Whatistheentrystateforthepr

ocess

Whatsoftwareengineeringinformationorprojectinformationalreadyexists

Problem:Theproblemtobesolved bythepattern isdescribed.
Solution: Theimplementationofthepatternis described.

This section describes how the initial state of the process is modified as a consequence the initiation
ofthepattern.

Italsodescribeshowsoftwareengineeringinformation
orprojectinformationthatisavailablebeforetheinitiation
ofthepatternistransformedasaconsequenceofthesuccessfulexecutionofthepattern

Resultin
Context:gl'heconditionsthatwiIIresuItoncethepatternhasbeensuccessfuIIyimplementedaredescribed.Upon
completionofthepatternweask
What organizational or team-related activities must have
occurredWhatistheexitstatefortheprocess
Whatsoftwareengineeringinformationorprojectinformationhasbeendeveloped?

Known Uses: The specific instances in which the pattern is applicable are
indicatedProcess patterns
provideandeffectivemechanismfordescribinganysoftwareprocess.
Thepatternsenableasoftwareengineeringorganization todevelop
ahierarchicalprocessdescriptionthatbeginsatahigh-levelofabstraction.

Pagel2

SOFTWAREENGINEERING
Onceprocesspatternhavebeendeveloped,they canbereusedforthedefinitionofprocessvariants-thatis,a
customized process model can be defined by a software team using the pattern as building blocks for
theprocess models.

Pagel3

SOFTWAREENGINEERING

PROCESSASSESSMENT

The existence of a software process is no guarantee that software will be delivered on time, that
itwill meet the customer‘s needs, or that it will exhibit the technical characteristics that will lead to long-
termquality characteristics.In addition, the process itself should be assessed to be essential to ensure that
itmeets asetof basic process criteria that have beenshowntobeessentialfora successfulsoftwareengineering.

Software

Identifies

v

Software

Identifiescapabilitiesandrisk

Lead

Software Capability

VIOTIVat

A Number of different approaches to software process assessment have been proposed over the past
fewdecades.

StandardsCMMI AssessmentMethodforProcess Improvement(SCAMPI)providesafivestepprocess
assessment model that incorporates initiating, diagnosing, establishing, acting & learning.
TheSCAMPImethodusestheSEICMM Iasthebasisforassessment.

CMM Based Appraisal for Internal Process Improvement (CBA IPI) provides a diagnostic
techniquefor assessing the relative maturity of a software organization, using the SEI CMM as the basis for
theassessment.

SPICE (ISO/IEC15504) standard defines a set of requirements forsoftware process assessments. Theintent
of the standard is to assist organizations in developing an objective evaluation of the efficacy of
anydefinedsoftwareprocess.

ISO 9001:2000 for Software is a generic standard that applies to any organization that wants to
improvethe overall quality of the products, system, or services that it provides. Therefore, the standard is
directlyapplicabletosoftwareorganizations&companies.

PERSONAL AND TEAMPROCESSMODELS:

The best software process is one that is close to the people who will be doing the work.Each
softwareengineer would create a process that best fits his or her needs, and at the same time meets the
broader needsof the team and the organization. Alternatively, the team itself would create its ownprocess,
and at thesametimemeetthenarrowerneedsofindividualsandthebroaderneedsoftheorganization.

Personalsoftwareprocess(PSP)
The personal software process (PSP) emphasizes personal measurement of both the work product that
isproducedandtheresultantqualityoftheworkproduct.

Pagel4

SOFTWAREENGINEERING

The PSP process model defines five framework activities: planning, high-level design, high level
designreview,development, andpostmortem.

Planning: This activity isolates requirements and, base on these develops both size and resource
estimates.In addition, a defect estimate is made. All metrics are recorded onworksheets or templates.
Finally,developmenttasksareidentifiedandaprojectscheduleiscreated.

High level design: External specifications for each component to be constructed are developed and
acomponent design is created. Prototypes are built when uncertainty exists. All issues are recorded
andtracked.

High level design review: Formal verification methods are applied to uncover errors in the design.
Metricsaremaintainedforallimportanttasksandworkresults.

Development:Thecomponentleveldesign
isrefinedandreviewed.Codeisgenerated,reviewed,compiled,andtested. Metrics
aremaintainedforallimportanttaskandworkresults.

Postmortem:Usingthemeasures andmetrics collectedtheeffectiveness oftheprocessis
determined.Measuresandmetricsshouldprovideguidance formodifyingtheprocess
toimproveitseffectiveness.

PSPstresses theneedforeachsoftwareengineertoidentifyerrors
earlyand,asimportant,tounderstandthetypesoferrorsthatheislikelytomake.

PSPrepresentsadisciplined,metrics-based approach tosoftwareengineering.

Teamsoftwareprocess(TSP):ThegoalofTSPistobuilda-self-directedprojectteamthatorganizes
itselftoproducehigh-qualitysoftware. ThefollowingaretheobjectivesforTSP:
Build self-directed teams that plan and track their work, establish goals, and own
theirprocessesandplans. Thesecanbepuresoftwareteamsor integrated
productteams(IPT)of3toabout20engineers.
Showmanagershowtocoachandmotivatetheirteamsandhowtohelpthemsustain
peakperformance.
Acceleratesoftware
processimprovementbymakingCMMlevel5behaviornormalandexpected.Provideimprovementguida
ncetohigh-maturityorganizations.
Facilitate university teaching of industrial-grade team
skills.self-directedteamdefines
rolesandresponsibilitiesforeachteammembertrac
ks quantitativeprojectdata
identifies a team process that is appropriate for the
projectastrategyforimplementingtheprocess
defineslocalstandardsthatareapplicabletotheteamssoftwareengineeringwork;continuallyas
sessesriskandreactstoit
Tracks,manages,andreportsprojectstatus.
TSP defines the following framework activities: launch, high-level design, implementation, integration
andtest, andpostmortem.
TSP makes useofawidevarietyofscripts,forms,andstandardsthatservetoguideteammembers intheirwork.
Scriptsdefinespecificprocess activitiesandothermoredetailedworkfunctionsthatarepartoftheteamprocess.
Eachprojectis-launchedliusingasequenceoftasks.

Thefollowinglaunchscriptisrecommended
Review project objectives with management and agree on and document team
goalsEstablishteamroles
Define the teams development
processMakea
qualityplanandsetqualitytargetsPlan
fortheneededsupportfacilities

Pagel5

SOFTWAREENGINEERING

PROCESSMODELS

Prescriptive process modelsdefine a setof activities, actions, tasks, milestones, and work products thatare
required to engineer high-quality software. These process models are not perfect, but they do provide
ausefulroadmapforsoftwareengineeringwork.

Aprescriptiveprocessmodelpopulatesaprocess
frameworkwithexplicittasksetsforsoftwareengineeringactions.

THEWATERFALLMODEL.:

The waterfall model, sometimes called the classic life cycle, suggests a systematic sequential approach
tosoftware development that begins with customer specification of requirements and progresses
throughplanning,modeling,construction, anddeployment.

Context:Usedwhenrequirementsarereasonablywellunderstood.

Advantage:
Itcanserveasausefulprocess
modelinsituationswhererequirementsarefixedandworkistoproceedtocompleteinalinearmanner.

Communication

oject initiation Planning

requisement gatheriy estiinating Modaling

:s;c:;:‘il.l.l:"g analy sis Constructio
. Beslon code Deployment
test delively

suppoit
feedback

Theproblemsthataresometimesencountered when thewaterfallmodelisapplied are:
Real projects rarely follow the sequential flow that the model proposes. Although the linear
modelcan accommodate iteration, it does so indirectly. As a result, changes can cause confusion as
theprojectteamproceeds.

It is oftendifficult forthe customer to state all requirements explicitly. The waterfall modelrequires
this and hasdifficulty accommodating the natural uncertainty thatexist at the
beginningofmanyprojects.

The customer must have patience. A working version of the programs will not be available
untillate in the project time-span. If a major blunder is undetected then it can be disastrous until
theprogramisreviewed.

INCREMENTAL PROCESSMODELS:

The incremental
modelTheRADmodel

THEINCREMENTALMODEL:

Context: Incrementaldevelopmentisparticularlyusefulwhenstaffingisunavailableforacompleteimple
mentationbythebusinessdeadlinethathasbeenestablishedfortheproject.Earlyincrements can be implemented
with fewer people. If the core product is well received, additional staff canbe addedto implement the next
increment. Inaddition, increments canbe planned to manage technicalrisks.

Pagel6

SOFTWAREENGINEERING

increment#n
‘ j
L] delive
ryof
[] nthincrement

increment#2)

deliveryof
2ndincrement

increment#1

deliv ery
oflst

software functionality and features

projectcalendartime

Theincrementalmodelcombineselementsofthewaterfallmodelappliedinan iterativefashion.

The incremental model delivers a series of releases called increments that provide
progressivelymorefunctionalityforthecustomeras eachincrementisdelivered.

When an incremental model is used, the first increment is often a core product. That is,
basicrequirements are addressed. The core product is used by the customer. As a result, a plan
isdevelopedforthenextincrement.

The plan addresses the modification of the core product to better meet the needs of the
customerandthedeliveryofadditionalfeaturesandfunctionality.

This process is repeated following the delivery of each increment, until the complete product
isproduced.

For example, word-processing software developed using the incremental paradigm might deliver basic
filemanagement editing, and document production functions in the first increment; more sophisticated
editing,and document production capabilities in the second increment; spelling and grammar checking in
the thirdincrement;andadvancedpagelayoutcapabilityinthefourthincrement.

Difference: The incremental processmodel,like prototyping and otherevolutionary approaches,is
iterative in nature. But unlike prototyping, the incremental model focuses on delivery of an
operationalproductwitheachincrement

THERADMODEL:

RapidApplicationDevelopment(RAD)isanincrementalsoftwareprocessmodelthatemphasizesashor
tdevelopmentcycle. TheRADmodelisa-high-speedlladaptionofthewaterfallmodel,
inwhichrapiddevelopmentisachievedbyusingacomponentbaseconstructionapproach.

Context: If requirements are well understood and project scope is constrained, the RAD
processenablesadevelopmentteamtocreatea-fullyfunctionalsystemliwithinaveryshorttimeperiod.

Pagel7

SOFTWAREENGINEERING

Team#n
Mo d e ling
business modeling
processmodeling
Construction
com ponent
Team#2 reuseautomaticco
Communication - |
. Modeling generation
business m
odelingdatam odeling
= processm odeling
Planning
N . Deploymenti
Team#1 nt egrat
iondelivery
Mode feedback
lingbusiness

modelingdat a
maodelinanrocess

Const ruct
ioncomponent
reuseautomaticc
ode

aenerat

-« o
60-9 Odays

TheRADapproach mapsintothegenericframeworkactivities.
Communication works to understand the business problem and the information characteristics
thatthesoftwaremustaccommodate.

Planningisessentialbecausemultiplesoftwareteamsworksinparallelondifferentsystemfunctions.

Modeling encompasses three major phases- business modeling, data modeling and process modeling-
andestablishesdesignrepresentationthatserveexistingsoftwarecomponentsandtheapplicationofautomaticcod
egeneration.

Deployment establishes a basis for
subsequentiterations. TheRADapproachhasdra
whbacks:

Forlarge,butscalableprojects,RADrequiressufficienthuman
resourcestocreatetherighthumberofRADteams.

If developers and customers are not committed to the rapid-fire activities necessary to complete
thesysteminamuchabbreviatedtimeframe,RADprojectswillfail

Ifasystemcannotbeproperlymodularized,buildingthecomponentsnecessaryforRADwillbeprobl
ematic

Ifhighperformance isanissue,
andperformanceistobeachievedthroughtuningtheinterfacestosystemcomponents,
theRADapproachmaynotwork;and

RADmaynotbeappropriatewhentechnicalrisksarehigh.

EVOLUTIONARYPROCESSMODELS:

Evolutionaryprocessmodelsproducewitheach iteration producean
increasinglymorecompleteversionofthesoftwarewitheveryiteration.

Evolutionary models are iterative. They are characterized in a manner that enables software
engineerstodevelopincreasinglymorecompleteversionsofthesoftware.

Pagel8

SOFTWAREENGINEERING

PROTOTYPING:

Prototypingismorecommonlyusedasatechniquethatcanbeimplementedwithinthecontextofanyoneoft
heprocessmodel.

Theprototypingparadigmbeginswithcommunication. Thesoftwareengineerandcustomer meetanddefine
the overall objectives for the software, identify whatever requirements are known, and outlineareas
wherefurtherdefinitionismandatory.

Prototypingiteration isplanned quicklyandmodeling occurs. Thequickdesign
leadstotheconstructionofaprototype. Theprototypeisdeployedandthenevaluatedbythecustomer/user.

Iteration occurs as the prototype is tuned to satisfy the needs of the customer, while at the
sametimeenablingthedevelopertobetterunderstandwhatneedstobedone.

Quickplan

Communication \

Mo deling
Qui ick desig n

/

Const ruct
ionof
prototype

Deployment
Delivery

&Feedback

Context:
If a customer defines a set of general objectives for software, but does not identify
detailedinput,processing,oroutputrequirements,insuchsituationprototypingparadigmisbest approach.
Ifadevelopermaybeunsureoftheefficiencyofanalgorithm,
theadaptabilityofanoperatingsystemthenhecangoforthis prototypingmethod.

Advantages:
Theprototypingparadigmassiststhesoftwareengineerandthecustomer tobetterunderstandwhatis
tobebuiltwhenrequirementsarefuzzy.
Theprototypeservesasamechanismforidentifyingsoftwarerequirements. Ifaworkingprototypeis
built,thedeveloperattemptstomakeuseofexistingprogramfragmentsorappliestools.

Prototypingcanbeproblematicforthefollowingreasons:
Thecustomerseeswhatappears to beaworkingversionof thesoftware,unawarethattheprototype is held
together —with chewing gum and baling wirel, unaware that in the rush to get
itworkingwehaven ‘tconsideredoverallsoftwarequalityorlong-termmaintainability.Wheninformed
that the product must be rebuilt so that high-levels of quality can be maintained,
thecustomercriesfoulanddemandsthat-afewfixeslbeappliedtomaketheprototypeaworking
product. Toooften,softwaredevelopmentrelents.
The developer often makes implementation compromises in order to get a prototype
workingquickly.Aninappropriateoperatingsystemorprogramminglanguagemaybeusedsimplybecaus
e it isavailable andknown;aninefficientalgorithmmaybeimplementedsimplyto

Pagel9

SOFTWAREENGINEERING

demonstrate capability. After a time, the developer may become comfortable with these
choicesandforgetallthe reasonswhy they wereinappropriate.Theless-than-idealchoicehas
nowbecomeanintegralpartofthesystem.

THESPIRALMODEL

Thespiralmodel,originallyproposedbyBoehm,isanevolutionarysoftwareprocessmodelthatcouples the
iterative nature of prototyping with the controlled and systematic aspects of thewaterfallmodel.
Thespiralmodelcanbeadaptedtoapplythroughouttheentirelifecycleofanapplication,from
conceptdevelopmenttomaintenance.

Using the spiral model, software is developed in a series of evolutionary releases. During

earlyiterations,thereleasemight beapapermodel
orprototype.Duringlateriterations,increasinglymorecompleteversionsoftheengineeredsystemare
planningesti
mationsche
dulingriskan
alysis

communication

modeling
analysis
design

\ %ﬁ
—t

construction

delivery
code

feedback
produced. test

Anchor point milestones- a combination of work products and conditions that are attained
alongthepathofthespiral-arenotedforeachevolutionarypass.

Thefirstcircuitaroundthe spiralmight resultinthe developmentofproductspecification;subsequent
passes around the spiral might be wused to develop a prototype and then
progressivelymoresophisticatedversionsofthesoftware.

Each pass through the planning region results in adjustments to the project plan. Cost and
scheduleare adjusted based on feedback derived from the customer after delivery. In addition, the
projectmanageradjuststheplannednumberofiterationsrequiredtocompletethesoftware.

It maintains the systematic stepwise approach suggested by the classic life cycle but incorporates
itintoaniterativeframeworkthatmorerealisticallyreflectstherealworld.

Thefirstcircuitaroundthespiralmightrepresenta-conceptdevelopmentprojectliwhichstartsat
thecoreofthespiralandcontinuestormultipleiterationsuntilconceptdevelopmentiscomplete.

Iftheconceptistobedevelopedintoanactual product,theprocessproceedsoutwardonthespiralanda
-newproductdevelopmentprojectlcommences.

Later acircuitaroundthespiralmightbeusedtorepresenta-productenhancementproject.llinessence,
thespiral,whencharacterizedinthisway,remainsoperativeuntilthesoftwareisretired.

Context: Thespiralmodelcanbeadoptedtoapplythroughouttheentirelifecycleofanapplication,fromconceptde
velopmenttomaintenance.

Advantages:
Itprovidesthepotential for rapiddevelopmentofincreasinglymorecompleteversions ofthesoftware.

Page20

SOFTWAREENGINEERING

The spiral model is a realistic approach to the development of large-scale systems and software. The
spiralmodel uses prototyping as a risk reduction mechanism but, more importantly enables the developer to
applytheprototypingapproachatanystageintheevolutionoftheproduct.

DrawBacks:

The spiral model is not a panacea. It may be difficult to convince customers that the evolutionary
approachis controllable. It demands considerable risk assessment expertise and relies on this expertise for
success. Ifamajorriskisnotuncoveredandmanaged, problemswillundoubtedlyoccur.

THECONCURRENTDEVELOPMENTMODEL :
The concurrent development model, sometimes called concurrent engineering, can be
representedschematicallyasaseriesofframeworkactivities,softwareengineeringactionsandtasks,andtheirassoci

atedstates.
l none '
Modelingactivity

4 / B

representsthesta
of a software
Awaiting
changes
Under
revision

e

Under

development engineeringactiyityortask

Underreview
Baselined

- 4

Theactivitymodelingmaybeinanyoneofthestatesnotedatanygiventime.Similarly,other
activitiesortaskscanberepresentedinananalogousmanner. Allactivitiesexistconcurrentlybutresideindifferentsta
tes.

Anyoftheactivitiesofaprojectmaybeina

particularstateatanyonetimeunderdevelopment

awaiting

changesunder

revisionunderrev

iew

In a project the communication activity has completed its first iteration and exists in the

awaitingchanges state. Themodelingactivitywhichexistedinthenonestatewhileinitialcommunication was

%

SOFTWAREENGINEERING

Page20

completed, now makes a transition into the under development state. If, however, the customer
indicatesthatchanges in requirements must be madethe modeling activity moves from theunder
developmentstateintotheawaitingchangesstate.

The concurrent process model defines a series of events that will trigger transitions from state
tostateforeachofthesoftwareengineeringactivities,actions,ortasks.

The event analysis model correction which will trigger the analysis action from the done state
intotheawaitingchangesstate.

Context: The concurrent model is often more appropriate for system engineering projects where
differentengineeringteamsareinvolved.

Advantages:
Theconcurrentprocessmodelisapplicabletoalltypesofsoftwaredevelopmentandprovidesanaccuratep
ictureofthecurrentstateofaproject.

It defines a network of activities rather than each activity, action, or task on the network
existssimultaneouslywithotheractivities,actionandtasks.

AFINALCOMMENTONEVOLUTIONARYPROCESSES:
Theconcerns ofevolutionarysoftwareprocessesare:

The first concern is that prototyping poses a problem to project planning because of the uncertain number
ofcyclesrequiredtoconstruct theproduct.

Second, evolutionary software process do not establish the maximum speed of the evolution. If
thgevr?lutlon occurs too fast, without a period of relaxation, it is certain that the process will fall
intochaos.

Third,softwareprocesses shouldbefocusedonflexibilityandextensibilityratherthanonhighquality.

THEUNIFIED PROCESS:

The unified process (UP) is an attempt to draw on the best features and characteristics of
conventionalsoftware process models, but characterize them in a way that implements many of the best
principles ofagilesoftwaredevelopment.

The Unified process recognizes the importance of customer communication and streamlined methods
fordescribingthecustomer*sviewofasystem.Itemphasizestheimportantroleofsoftwarearchitectureand
—helps the architect focus on the right goals, such as understandability, reliance to future changes,
andreuse-.Ifsuggestsaprocessflowthatisiterativeandincremental,providingtheevolutionaryfeelthatis
essentialinmodernsoftwaredevelopment.

ABRIEF HISTORY:

During the 1980s and into early 1990s, object-oriented (OO) methods and programming
languagesgained a widespread audience throughout the software engineering community. A wide variety of
object-orientedanalysis (OOA)anddesign(OOD) methods wereproposedduringthesametimeperiod.

Duringtheearly1990s James Rumbaugh,GradyBooch,andlvalJacobsombeganworkingona
-UnifiedmethodlithatwouldcombinethebestfeaturesofeachofOOD&OOA. TheresultwasUML-a unifiedmodeling
language thatcontains a robustnotationfotthe modeling anddevelopmentof OOsystems.

By 1997, UML became an industry standard for object-oriented software development. At
thesametime,theRationalCorporationandothervendors developedautomatedtoolstosupportUMLmethods.

Overthe nextfewyears,Jacobson,Rumbugh,and BoochdevelopedtheUnifiedprocess,aframework for
object-oriented software engineering using UML. Today, the Unified process and UML arewidely used on
OO nprojects of all kinds. The iterative, incremental model proposed by the UP can
andshouldbeadaptedtomeetspecificprojectneeds.

Page20

PHASESOFTHEUNIFIED PROCESS:

TheinceptionphaseoftheUPencompasseshothcustomercommunicationandplanningactivities. By
collaborating with the customer and end-users, business requirements for the software areidentified, a
rough architecture for the system is proposed and a plan for the iterative, incremental nature
oftheensuingprojectisdeveloped.

The elaboration phase encompasses the customer communication and modeling activities of
thegeneric process model. Elaboration refines and expands the preliminary use-cases that were developed
aspart of the inceptionphase and expands the architectural representationto include five different viewsofthe
software- the use-case model, the analysis model, the design model, the implementation model, and
thedeploymentmodel.

The construction phase of the UP is identical to the construction activity defined for the
genericsoftware process. Using the architectural model as input, the construction phase develops or
acquires thesoftware components that will make each use-case operational for end-users. To accomplish
this, analysisanddesignmodelsthatwerestartedduringtheelaborationphasearecompletedto
reflectthefinalversionofthesoftwareincrement.

The transition phase of the UP encompasses the latter stages of the generic construction
activityand the first part of the generic deployment activity. Software given to end-users for beta testing,
and userfeedbackreportsbhothdefectsandnecessarychanges.

The production phase of the UP coincides with the deployment activity of the generic
process.During this phase, the on-going use of the software is monitored, support for the operating
environmentis provided,anddefectreportsandrequestsforchanges aresubmittedandevaluated.

Elaboration

Inception

const ruc tion

Release transition

soft wareincrement

\

production

A software engineering workflow is distributed across all UP phases. In the context of UP, a workflow
isanalogousto atask set. That is, aworkflow identifiesthe tasks required to accomplishanimportantsoftware
engineering action and the work products that are produced as a consequence of
successfullycompletingthetasks.

UNIFIEDPROCESSWORKPRODUCTS:

Duringtheinceptionphase,theintentistoestablishanoverall—visionlifortheproject,
identifyasetofbusinessrequirements,
makeabusinesscaseforthesoftware,and
defineprojectandbusiness risksthatmayrepresentathreattosuccess.

Page21

The most important work product produced during the inception is the use-case modell-a collection

ofuse-cases that describe how outside actors interact with the system and gain value from it. The use-
casemodel is a collection of software features and functions by describing a set of preconditions, a flow
ofeventsandasetofpost-conditionsfortheinteractionthatisdepicted.

Theuse-casemodelis refinedandelaboratedaseach UPphaseisconductedandservesasanimportant input for

the creation of subsequent work products. During the inception phase only 10 to 20percent of the use-case
model is completed. After elaboration, between 80 to 90 percent of the model hasbeencreated.

The elaboration phase produces a set of work products that elaborate requirements and
produceand architectural description and a preliminary design. The UP analysis model is the work
product thatis developed as a consequence of this activity. The classes and analysis packages defined
as part of theanalysis model are refined further into a design model which identifies design classes,
subsystems, andthe interfaces between subsystems. Both the analysis and design models expand and
refine an evolvingrepresentation of software architecture. In addition the elaboration phase revisits
risks and the projectplantoensurethateachremainsvalid.

The construction phase produces animplementation model that translates designclasses
intosoftware components into the physicalcomputing environment. Finally,a test modeldescribes
teststhat are usedtoensurethatusecasesareproperlyreflectedinthesoftwarethathasbeenconstructed.

Thetransitionphasedeliversthesoftwareincrementandassessesworkproductsthatareproduced as
end-users work with the software. Feedback from beta testing and qualitative requests
forchangeisproducedatthistime.

Inceptionphase

. Elaborationphase
Visiondocument

Init ial use-case

modellnit ial project
glossarylnitialbusinessc
aselnit ial risk
assessment
.Projectplan,

phases and it erat
ions.Businessmodel,

if necessary.
Oneormoreprototypes

Use-casemodel
Supplement ary requirement
sincluding non-functional
Analy sis
modelSoftware
architect
ureDescription.
Execut able archit
ecturalprototype.
Preliminary
designmodel Revised
risk listProject
planincluding
it erat ion plan
adapted workflows
milestones
t echnical work product
sPreliminaryusermanual

Constructionphase

Designmodel
Soft ware component
sintegrat edsoft ware
incrementT
estplanand
procedureTestcases
Support document at
ionusermanuals
inst allat ion
manualsdescriptionof
current
increment

Transitionphase

Deliv ered soft
wareincrement Bet a t est
report sGeneraluserfeedback

Page22

UNIT-II

SOFTWAREREQUIREMENTS

Softwarerequirementsarenecessary
To introduce the concepts of user and system

requirementsTodescribefunctionalandnon-
functionalrequirements
Toexplainhowsoftwarerequirementsmaybeorganisedinarequirementsdocument

Whatisarequirement?
The requirements for the system are the description of the services provided by the system
andits operationalconstraints

It may range from a high-level abstract statement of a service or of a system constraint
toadetailedmathematicalfunctionalspecification.

Thisisinevitableasrequirementsmayserveadualfunction

o Maybethebasis for abidforacontract-thereforemustbeopentointerpretation;
o May be the basis for the contract itself - therefore must be defined in

detail;Boththesestatementsmaybecalledrequirements

Requirementsengineering:

Theprocess of
findingout,analysingdocumentingandcheckingtheseservicesandconstraintsiscalledrequirementeng
ineering.

The process of establishing the services that the customer requires from a system and
theconstraints underwhichitoperatesandisdeveloped.

The requirements themselves are the descriptions of the system services and constraints that
aregeneratedduringtherequirementsengineeringprocess.

Requirementsabstraction(Davis):

If a company wishes to let a contract for a large software development project, it must define
itsneeds in a sufficiently abstract way that a solution is not pre-defined. The requirements must
bewritten so that several contractors can bid for the contract, offering, perhaps, different ways
ofmeetingtheclientorganisation sneeds. Onceacontract hasbeenawarded,thecontractormustwrite
a system definition for the client in more detail so that the client understands and canvalidate
what the software will do. Both of these documents may be called the
requirementsdocumentforthe system.”

Typesof requirement:
Userrequirements

Statementsinnaturallanguageplusdiagramsoftheservicesthesystemprovidesandits
operationalconstraints.Writtenforcustomers.
Systemrequirements

A structured document setting out detailed descriptions of the system‘s
functions,servicesandoperationalconstraints. Defineswhatshouldbeimplementedsomayb
epartofacontractbetweenclientandcontractor.

Definitions and
specifications:UserRequirem
entDefinition:

Thesoftwaremustprovidethemeansofrepresentingandaccessingexternalfilescreatedbyother
tools.

Page23

SystemRequirementspecification:
The usershouldbe providedwithfacilitiestodefinethetypeofexternalfiles.

Each external file type may have an associated tool which may be applied to the
file.Eachexternalfiletypemayberepresentedasaspecificicon ontheuser‘sdisplay.

Facilities should be provided for the icon representing an external file type to be defined
bytheuser.

Whenanuserselectsaniconrepresentinganexternalfile,the
effectofthatselectionistoapplythetoolassociated with thetypeoftheexternalfiletothefilerepresented
bytheselectedicon.

Requirementsreaders:

Client managers
User System end-users
: —> Client engineers
s il Contractor managers
System architects
System end-users
System Client engineers
requirements System architects
Software developers
" Client engineers (perhaps)
Soflwa_re des:‘gn —> System architects
spedificatio Software developers
Functional and non-

functionalrequirements: Functional

requirements
Statementsofservices
thesystemshouldprovidehowthesystemshouldreacttoparticularinputsandhowth
esystemshouldbehavein particularsituations.

Non-functionalrequirements
Constraints on the services or functions offered by the system such as
timingconstraints,constraintsonthedevelopmentprocess,standards,etc.

Domainrequirements

Requirements that come from the application domain of the system and
thatreflectcharacteristicsofthatdomain.

1.1) FUNCTIONALREQUIREMENTS:
Describefunctionalityorsystemservices.

Depend onthetypeofsoftware,expectedusersandthetypeofsystemwherethesoftwareisused.

Functional user requirements may be high-level statements of what the system should
dobutfunctionalsystemrequirementsshoulddescribethesystemservicesindetail.

ThefunctionalrequirementsforTheLIBSY Ssystem:
A librarysystemthatprovides asingleinterfacetoanumberofdatabases ofarticles
indifferentlibraries.
Userscansearchfor, downloadandprintthesearticlesforpersonalstudy.
Examplesoffunctional requirements
Theusershallbe able tosearcheitherall ofthe initialset ofdatabasesorselectasubsetfromit.
Thesystemshallprovideappropriateviewers fortheusertoreaddocuments
inthedocumentstore.

Page24

Everyordershallbeallocatedauniqueidentifier
(ORDER _ID)whichtheusershallbeabletocopytotheaccount‘spermanentstoragearea.

Requirementsimprecision

Problemsarise whenrequirementsarenotpreciselystated.
Ambiguousrequirementsmaybeinterpretedindifferent

waysbydevelopersandusers.Considertheterm_appropriateviewers*

o Userintention-specialpurposeviewerforeachdifferentdocumenttype;
o Developerinterpretation- Provide atextviewerthatshowsthe

contentsofthedocument.

Requirementscompletenessandconsistency:
In principle,requirementsshouldbebothcompleteandconsistent. Complete

They should include descriptions of all

facilitiesrequired.Consistent

There should be no conflicts or contradictions in the descriptions of the system facilities.
Inpractice,itisimpossibletoproduceacompleteand consistentrequirementsdocument.

NON-FUNCTIONALREQUIREMENTS

These define system properties and constraints e.g. reliability,
responsetimeandstoragerequirements.
Constraintsarel/Odevicecapability,systemrepresentations,etc.

Processrequirementsmayalsobespecifiedmandatingaparticular CASEsystem,programming

languageordevelopmentmethod.

Non-functional requirements may be more critical than functional requirements. If these

arenotmet, thesystemisuseless.

1.2) Non-functionalrequirementtypes:

Non-functional
requirements
Product Organisational External
requirements requirements requirements
Efficiency Reliability Portability Interoperability Ethical
requirements requirements requirements requirements requirements
Usability Delivery Implementation Standards Legislative
requirements requirements requirements requirements requirements
Performance Space Privacy Safety
requirements requirements requirements requirements

Non-functional requirements
:Productrequirement
s

Page25

Requirementswhich specifythatthedelivered productmustbehavein
aparticularwaye.g.executionspeed,reliability,etc.

Eg:TheuserinterfaceforLIBSY SshallbeimplementedassimpleHT MLwithoutframes
orJavaapplets.

Organisationalrequirements

Requirementswhich areaconsequenceoforganisationalpolicies andprocedures
e.g.processstandardsused,implementationrequirements,etc.

Eg: The system development process and deliverable documents shall conform
totheprocessanddeliverablesdefinedin XY ZCo-SP-STAN-95.

Externalrequirements

Requirements which arise from factors which are external to the system and
itsdevelopmentprocess e.g.interoperabilityrequirements,legislativerequirements,etc.

Eg:Thesystemshallnotdiscloseanypersonalinformationaboutcustomersapartfromth
eirnameandreferencenumbertotheoperatorsofthe system.

Goals andrequirements:

Non-

functionalrequirementsmaybeverydifficulttostatepreciselyandimpreciserequirementsmay
bedifficulttoverify.

Goal
Ageneralintentionoftheusersuchaseaseofuse.

Thesystemshouldbeeasytousebyexperiencedcontrollersandshouldbeorganisedinsuchawayt
hatusererrorsareminimised.

Verifiablenon-functionalrequirement
A statementusingsomemeasurethatcanbeobjectivelytested.

Experienced controllers shall be able to use all the system functions after a total of two
hourstraining.Afterthis training,the average numberof errors made by experiencedusers
shallnotexceedtwoperday.

Goals arehelpfultodevelopersas theyconveytheintentionsofthesystemusers.

Requirements measures:

Property Measure

Speed Processedtransactions/second
User/Event response
timeScreenrefreshtime

Size MBytes
NumberofROM chips

Easeofuse Trainingtime
Numberofhelpframes

Reliability Mean time to
failureProbabilityofunavail
abilityRate of failure
occurrenceAvailability

Robustness Time to restart after
failurePercentageofeventscausingfa
ilure
Probabilityofdatacorruptiononfailure

Page26

Portability Percentage of target dependent
statementsNumberoftargetsystems

Requirementsinteraction:
Conflictsbetweendifferentnon-

functionalrequirementsarecommonincomplexsystems.Spacecraftsystem

To minimise weight, the number of separate chips in the system should
beminimised.
Tominimisepowerconsumption,lowerpowerchipsshouldbeused.

However,usinglowpowerchipsmaymeanthatmorechipshavetobeused.Whichisthemostcritica
Irequirement?

A common problem with non-functional requirements is that they can be difficult to verify.
Usersor customers often state these requirements as general goals such as ease of use, the ability of the
systemto recover from failure or rapid user response. These vague goals cause problems for system
developers astheyleavescopeforinterpretationandsubsequentdisputeoncethesystemis delivered.

1.3) DOMAINREQUIREMENTS
Derivedfromtheapplicationdomainanddescribesystemcharacteristicsandfeaturesthat
reflect thedomain.
Domain requirements be new functional requirements, constraints on existing
requirementsordefinespecificcomputations.
Ifdomainrequirementsarenotsatisfied,thesystemmaybeunworkable.

Librarysystemdomainrequirements:
There shall be a standard user interface to all databases which shallbe based on
theZ39.50standard.
Because of copyright restrictions, some documents must be deleted immediately on
arrival.Depending on the user‘s requirements, these documents will either be printed
locally on thesystemserverformanuallyforwardingtotheuserorroutedtoanetworkprinter.

Domain requirements
problemsUnderstandab

ility
Requirements are expressed in the language of the application
domain;Thisisoften notunderstood bysoftwareengineersdeveloping
thesystem.

Implicitness

Domainspecialistsunderstandtheareasowellthattheydonotthink
ofmakingthedomainrequirementsexplicit.

USERREQUIREMENTS
Shoulddescribefunctionalandnon-functionalrequirementsinsuchawaythattheyare
understandable bysystemuserswhodon ‘thavedetailedtechnicalknowledge.
Userrequirementsaredefinedusingnaturallanguage,
tablesanddiagramsasthesecanbeunderstoodbyall users.

Problemswithnaturallanguage
Lackofclarity
Precision is difficult without making the document difficult
toread.Requirementsconfusion
Functional and non-functional requirements tend to be mixed-
up.Requirementsamalgamation
Severaldifferentrequirementsmaybe expressedtogether.

Requirementproblems
Databaserequirementsincludesbothconceptualanddetailedinformation

+ Describes the concept of a financial accounting system that is to be included
inLIBSYS;

Page27

SOFTWAREENGINEERING-Material

SOFTWAREENGINEERING

However, it also includes the detail that managers can configure this system - this
isunnecessaryatthislevel.

Grid requirement mixes three different kinds of
requirementConceptual functional requirement (the
need for a grid);Non-functionalrequirement(gridunits);
Non-functional Ul requirement (grid
switching).Structuredpresentation

Guidelinesforwritingrequirements
Invent astandardformat anduse itforallrequirements.

Uselanguageinaconsistent
way. Useshallformandatoryrequirements,shouldfordesirablerequirements.

Usetext
highlightingtoidentifykeypartsoftherequirement. Avoidtheuseofco
mputerjargon.

SYSTEMREQUIREMENTS
Moredetailedspecificationsofsystemfunctions, servicesandconstraintsthan userrequirements.

Theyareintended

tobeabasisfordesigningthesystem. Theymaybeincorporatedin
tothesystemcontract.

Systemrequirementsmaybedefined or illustratedusingsystemmodels

Requirementsanddesign
In principle, requirements should state what the system should do and the design
shoulddescribehowitdoesthis.
In practice,requirementsanddesignareinseparable
A systemarchitecturemaybedesignedtostructuretherequirements;
The system may inter-operate with other systems that generate design
requirements; Theuseofaspecificdesignmaybeadomainrequirement.
ProblemswithNL (naturallanguage)specification
Ambiguity
Thereadersandwritersoftherequirementmustinterpretthesamewordsinthesameway
.NLisnaturallyambiguoussothisisverydifficult.
Over-flexibility
Thesamethingmaybesaidinanumberofdifferentwaysinthespecification.Lacko
f modularisation
NLstructuresareinadequatetostructuresystemrequirements.

AlternativestoNLspecification:

Notation Description

Structurednatural This approachdepends ondefiningstandardforms ortemplates toexpressthe
language requirementsspecification.

Designdescription This approach uses a language like a programming language but with more
abstractlanguages featurestospecifytherequirementsbydefininganoperational model ofthesystem.

Thisapproach isnotnowwidelyused althoughitcan beusefulforinterfacespecifications.

Page28

SOFTWAREENGINEERING-Material

SOFTWAREENGINEERING

Graphical A graphicallanguage, supplementedbytextannotationsisusedtodefinethefunctional

notations

requirementsforthesystem.Anearlyexample ofsuchagraphicallanguagewasSADT.
Now,use-casedescriptionsandsequencediagramsarecommonlyused.

Mathematical These are notations based on mathematical concepts such as finite-state machines
orspecifications sets. Theseunambiguousspecificationsreduce theargumentsbetweencustomerand

contractor about system functionality. However, most customers don‘t
understandformalspecificationsandarereluctanttoacceptitasasystemcontract.

3.1)Structuredlanguagespecifications

The freedom of the requirements writer is limited by a predefined template for
requirements.Allrequirementsarewritteninastandardway.
Theterminologyusedinthedescriptionmaybelimited.
Theadvantageisthatthemostoftheexpressiveness
ofnaturallanguageismaintainedbutadegreeofuniformityisimposedonthespecification.

Form-basedspecifications

Definitionofthefunctionorentity.
Descriptionofinputsandwheretheycomefrom.Des
criptionofoutputsandwheretheygoto.
Indicationofotherentitiesrequired.Prean
dpostconditions(ifappropriate). Theside

effects (ifany)ofthefunction.

Tabularspecification

Usedtosupplementnaturallanguage.
Particularlyusefulwhenyou havetodefineanumberofpossiblealternativecourses ofaction.

Graphicalmodels

Graphicalmodelsaremostusefulwhen you needtoshowhowstatechangesor whereyou
needtodescribeasequenceofactions.

Sequencediagrams

Theseshowthesequenceofevents thattakeplaceduring someuserinteraction with
asystem.Youreadthem from toptobottomtoseetheorderoftheactionsthattakeplace.
Cash

withdrawalfromanATMVa

lidatecard,;

Handle

request;Completetran

saction.

Page29

IENSOFTWARE ENGINEERING

SOFTWAREENGINEERING

Sequence diagramofATMwithdrawal

% ATM Database

Card number
Card OK]

PIN request

PIN

v

Option menu

A

Validate card

<<exception>>
invalid card

— _Withdraw request [] Balance request

Balance
Amount request | [*

Amount

-

Handle request

|| Debit (amount)

<<exception>> . r| l
P Debit response

— Card B

Card removed

Complete
transaction

Cash

Cash removed
Receipt

»

Systemrequirementspecificationusing astandardform:
FunctionD
escriptionin
putsSource
OutputsDe
stinationAc
tionRequir
es
Pre-
conditionPost
conditionSide
-effects

Whenastandardformisusedforspecifyingfunctionalrequirements,thefollowinginformationshouldbeincluded:

Description of the function or entity being
specifiedDescriptionofitsinputsand
wherethesecomefromDescription of its outputs and
where these go tolndication ofwhatotherentities
areusedDescriptionoftheactiontobetaken

Ifafunctionalapproach isused,apre-conditionsettingoutwhatmustbetruebeforethefunctionis

calledandapost-conditionspecifyingwhatistrueafterthefunctioniscalled

Page30

R ISOFTWARE ENGINEERING

SOFTWAREENGINEERING

Descriptionofthesideeffectsoftheoperation.

INTERFACESPECIFICATION

Most

systemsmustoperatewithothersystemsandtheoperatinginterfacesmustbespecifiedaspartofthere

quirements.

Threetypesofinterfacemayhavetobedefined
Proceduralinterfaces whereexistingprogramsorsub-systemsofferarangeofservicesthat
are accessed by calling interface procedures. These interfaces are sometimes
calledApplicatinProgramminginterfaces(APISs)
Data structures that are exchanged that are passed from one sub-system
toanother.Graphicaldatamodelsarethebestnotationsforthistypeofdescription Datar
epresentationsthathavebeenestablished for anexistingsub-system

Formal notationsare aneffective technique forinterfacespecification.

5)THE SOFTWAREREQUIREMENTSDOCUMENT:
Therequirementsdocument istheofficialstatementofwhatisrequired ofthesystemdevelopers.
Shouldincludebothadefinition ofuser requirementsandaspecificationofthe

systemrequirements.
ItisNOTadesigndocument. Asfaraspossible,itshouldsetof WHATthesystemshould
doratherthanHOWitshoulddoit

Usersofarequirementsdocument:

Specify the requirements and
System read them to check that they
wstomees B meet their needs. They
specify changes to the
requirements

Use the requirements
document to plan a bid for
the system and to plan the

system development process

Managers ——>

System Use the requirements to
engineers —> understand what system is to
be developed
System test Use the requirements to
engineers » develop validation tests for
the system
System Use the requirements to help

understand the system and
the relationships between its
parts

maintenance — >
engineers

Page31

EFISOFTWARE ENGINEERING

SOFTWAREENGINEERING

IEEErequirementsstandarddefinesagenericstructurefor
arequirementsdocumentthatmustbeinstantiatedforeachspecificsystem.

Introduction.
Purpose of the requirements
documentScopeoftheproject

Definitions,acronymsandabbreviationsR

eferences

Overview of the remainder of the
documentGeneraldescription.

Product

perspectiveProduct

functionsUser

characteristicsGene

ralconstraints

Assumptionsanddependencies

Specific requirements cover functional, non-functional and interface requirements.

Therequirementsmaydocumentexternalinterfaces,describesystemfunctionalityandperformance,s

pecify logical database requirements, design constraints, emergent system properties

andqualitycharacteristics.
Appendices.
Index.

REQUIREMENTSENGINEERINGPROCESSES

The goal of requirements engineering process is to create and maintain a system requirements
document.Theoverallprocessincludesfourhigh-levelrequirementengineeringsub-

processes. Theseareconcernedwith

Assessing whetherthesystemisusefultothebusiness(feasibilitystudy)

Discoveringrequirements(elicitationandanalysis)

Convertingtheserequirementsintosome standardform(specification) o
Checking that the requirements actually define the system that the customer wants(validation)

Theprocessofmanagingthechangesintherequirementsiscalledrequirementmanagement.

Therequirementsengineeringprocess

g Requirements
Feasibility ' _ ' gjicitation and
study analysis
l B
Feasibility
report
System
models

Requirements
specification

v
User and system
requirements

L .

Requirementsengineering:

T
|_)_ Requirements

validation

v

Requirements
document

Page32

EEISOFTWARE ENGINEERING

SOFTWAREENGINEERING

The alternative perspective on the requirements engineering process presents the process as a three-
stageactivity where the activities are organized as an iterative process around a spiral. The amount of time
andeffort devoted to each activity in iteration depends on the stage of the overall process and the type of
systembeing developed. Early in the process, most effort will be spent on understanding high-level business
andnon-functional requirements and the user requirements. Later in the process, in the outer rings of the
spiral,moreeffortwillbedevotedtosystemrequirementsengineeringandsystemmodeling.

This spiral model accommodates approaches to development in which the requirements are developed
todifferent levels of detail. The number of iterations around the spiral can vary, so the spiral can be
exitedaftersomeoralloftheuserrequirementshavebeenelicited.

Some people consider requirements engineering to be the process of applying a structured analysis
methodsuch as object-oriented analysis. This involves analyzing the system and developing a set of
graphicalsystem models, such as use-case models, that then serve as a system specification. The set of
modelsdescribes the behavior of the system and are annotated with additional information describing, for
example,itsrequiredperformanceorreliability.

Spiralmodelofrequirementsengineeringprocesses

System requirements
specification and

modeling

User requirements
specification

Business requirements

specification

System -
requirements User Fe:;'lb'my

elicitation requirements dy

elicitation

Prototyping
Reviews Requirements
validation
System requirements
document

1) FEASIBILITY STUDIES
Afeasibilitystudydecideswhetherornottheproposedsystemisworthwhile.The input tothefeasibility study
is a set of preliminary business requirements, an outline description of the system and howthe system is
intended to support business processes. The results of the feasibility study should be a reportthat
recommends whetheror notit worthcarryingonwiththe requirements
engineeringandsystemdevelopmentprocess.

Ashortfocusedstudythatchecks

— Ifthesystemcontributestoorganisationalobjectives;
— Ifthesystemcanbeengineered usingcurrenttechnologyandwithinbudget;

Page33

EISOFTWARE ENGINEERING

SOFTWAREENGINEERING

— Ifthesystemcanbeintegrated withother systemsthatareused.

Feasibilitystudyimplementation:
Afeasibilitystudyinvolvesinformation assessment,information collection
andreportwriting.Questions forpeopleintheorganisation
— Whatifthesystemwasn ‘timplemented?
— Whatarecurrentprocessproblems?
— Howwilltheproposedsystem help?
— What will betheintegration problems?
— Isnewtechnologyneeded?What skills?
— Whatfacilitiesmustbesupportedbytheproposedsystem?

Inafeasibilitystudy,youmayconsultinformationsourcessuchasthemanagersofthedepartments where
the system will be used, software engineers who are familiarwith the type of systemthat is proposed,
technology experts and end-users of the system. They should try to complete a
feasibilitystudyintwoorthreeweeks.

Onceyouhavetheinformation,youwritethefeasibilitystudy report.Youshouldmakearecommendation
about whether or not the system development should continue. In the report, you
mayproposechangestothescope,budgetandscheduleofthesystemandsuggestfurtherhigh-levelrequirements
forthesystem.

2) REQUIREMENTELICITATIONANDANALYSIS:

Therequirement
engineeringprocessisrequirementselicitationandanalysis.Sometimescalledrequ
irementselicitation orrequirementsdiscovery.

Involves technical staff working with customers to find out about the application
domain,theservicesthatthesystemshouldprovideandthesystem‘s operationalconstraints.
May involve end-users, managers, engineers involved in maintenance, domain
experts,tradeunions,etc. Thesearecalledstakeholders.

Problemsof requirementsanalysis
Stakeholders don‘t know what they really
want.Stakeholders express requirements in their own
terms.Differentstakeholdersmayhaveconflictingrequiremen
ts.

Organisationalandpoliticalfactorsmayinfluencethesystemrequirements.
Therequirementschangeduringtheanalysisprocess.Newstakeholdersmayemergeandthebusin
essenvironmentchange.

Therequirementsspiral

irements Requirements
dmgaﬂon and prioritization and
organisation negotiation
Rogulnmcm: Requirements
iscovery documentation

Page34

EESOFTWARE ENGINEERING

SOFTWAREENGINEERING

Process activities
Requirementsdiscovery
— Interacting with stakeholders to discover their requirements. Domain requirements
arealsodiscoveredatthisstage.
Requirementsclassificationandorganisation
— Groupsrelatedrequirementsandorganisesthem
intocoherentclusters.Prioritisationandnegotiation
— Prioritisingrequirementsandresolvingrequirementsconflicts.Re
quirementsdocumentation
— Requirementsare documentedandinputintothenextroundofthespiral.
The process cycle starts with requirements discovery and ends with requirements documentation.
Theanalyst‘s understandingoftherequirementsimproveswitheachroundofthecycle.
Requirementsclassificationandorganizationisprimarilyconcernedwithidentifyingoverlappingrequirements
from different stakeholders and grouping related requirements. The most common way ofgrouping
requirements is to use a model of the system architecture to identify subsystems and to
associaterequirements witheachsub-system.
Inevitably,stakeholdershavedifferentviewsontheimportanceandpriorityofrequirements,andsometimes these
view conflict. During the process, you should organize regular stakeholder negotiations
sothatcompromisescanbereached.
In the requirement documenting stage, the requirements that have been elicited are documented in such
awaythattheycanbeusedtohelpwithfurtherrequirementsdiscovery.

2.1) REQUIREMENTSDISCOVERY:
Requirementdiscoveryis theprocessofgatheringinformationabouttheproposed andexistingsystems
anddistillingtheuserandsystemrequirementsfromthis information.
Sources of information include documentation, system stakeholders and the
specificationsofsimilarsystems.
Theyinteractwithstakeholdersthrough interviewand
observationandmayusescenariosandprototypestohelpwiththerequirementsdiscovery.
Stakeholders range from system end-users through managers and external stakeholders such
asregulatorswhocertifytheacceptabilityofthesystem.
For example, system stakeholder for a bank ATM
includeBankcustomers
Representatives of other
banksBankmanagers
Counterstaff
Database
administratorsSecurity
managersMarketingdep
artment
Hardware and software maintenance
engineersBankingregulators
Requirementssources(stakeholders,domain,systems)canall berepresentedassystem
viewpoints,whereeachviewpoints, whereeachviewpointpresentsasub-setoftherequirementsforthesystem.

Viewpoints:
Viewpointsareawayofstructuringtherequirementstorepresenttheperspectivesofdifferentstakeholders
.Stakeholdersmaybeclassifiedunderdifferentviewpoints.

Thismulti-
perspectiveanalysisisimportantasthereisnosinglecorrectwaytoanalysesystemrequirements.

Typesofviewpoint:

Interactorviewpoints
— People or other systems that interact directly with the system. These viewpoints
providedetailed system requirements covering the system features and interfaces. In an
ATM, thecustomer*s andtheaccountdatabaseareinteractor VPs.

Indirectviewpoints

Page35

IEESOFTWARE ENGINEERING

SOFTWAREENGINEERING

— Stakeholders who do not use the system themselves but who influence the
requirements.These viewpoints are more likely to provide higher-level organisation
requirements andconstraints.InanATM,
managementandsecuritystaffareindirectviewpoints.

Domainviewpoints

— Domain characteristics and constraints that influence the requirements. These
viewpointsnormally provide domain constraints that apply to the system. In an ATM, an
examplewouldbestandardsforinter-bankcommunications.

Typically,theseviewpointsprovidedifferenttypesofrequirements.

Viewpointidentification:
Identifyviewpointsusing
— Providersandreceiversofsystemservices;
— Systemsthatinteractdirectlywith thesystembeingspecified,;
— Regulationsand standards;
— Sources ofbusiness andnon-functionalrequirements.
— Engineerswhohavetodevelopandmaintainthesystem;
— Marketingandotherbusinessviewpoints.

=3 e

LIBSY Sviewpointhierarchy

7 em
Studenisl Staff I External I msay,ﬁge,s Cataloguers
Interviewing
In formalor
informalinterviewing,theREteamputsquestionstostakeholdersaboutthesystemthattheyuseandthesystemtobe
developed.

Therearetwotypesofinterview
Closedinterviewswhereapre-definedsetofquestions areanswered.
Open interviews where there is no pre-defined agenda and a range of issues are
exploredwithstakeholders.
Interviewsinpractice:
Normallyamixofclosedandopen-endedinterviewing.
Interviews are good for getting an overall understanding of what stakeholders do and
howtheymightinteractwiththesystem.
Interviewsarenotgood forunderstandingdomainrequirements
— Requirementsengineerscannotunderstandspecificdomainterminology;

bray I | b [atice || [Library [| Classification |
manager I | Fance I providers Hawey | staff ! standards system

Page36

EN/SOFTWARE ENGINEERING

SOFTWAREENGINEERING

— Some domain knowledge is so familiar that people find it hard to articulate or think that
itisn‘twortharticulating.

Effectiveinterviewers:
Interviewers should be open-minded, willing to listen to stakeholders and should not have pre-
conceivedideasabouttherequirements.
Theyshouldprompttheintervieweewithaquestion
oraproposalandshouldnotsimplyexpectthemtorespondtoaquestionsuchas _whatdoyouwant®.
Scenarios:
Scenariosarereal-lifeexamplesofhowasystemcanbeused.
Theyshould include
— Adescriptionofthestartingsituation;
— A descriptionofthenormalflowofevents;
— Adescription ofwhatcangowrong;
— Informationaboutotherconcurrentactivities;
— Adescription ofthestatewhenthescenariofinishes.

Usecases
Use-cases areascenariobasedtechniquein
theUMLwhichidentifytheactorsinaninteractionandwhichdescribetheinteractionitself.
Asetofusecasesshoulddescribeallpossibleinteractionswiththesystem.
Sequencediagramsmaybeusedtoadddetailtouse-
caseshyshowingthesequenceofeventprocessinginthesystem.

%
Article printing

/ P
-f S

Library Article printing
User
%

User administration Library

Staff
%

Supplier Catalogue services

Articleprintinguse-case:

LIBSYS usecases:

Page37

EESOFTWARE ENGINEERING

SOFTWAREENGINEERING

Avrticleprintingsequence:

item: [o ightForm: myWorkspace: myPrinter:
Article Fom Workspace Printer
User
request
request
1 -~
complete
retumn
[~ :
copyright OK
deliver
article OK I
I print g send]
L inform T confirm]
an -

delete

Socialandorganisationalfactors
Softwaresystemsareusedinasocialandorganisationalcontext. Thiscan
influenceorevendominatethesystemrequirements.
Socialandorganisationalfactorsarenotasingleviewpointbutareinfluencesonallviewpoints.
Good analysts must be sensitive to these factors but currently no systematicway to
tackletheiranalysis.

2.2) ETHNOGRAPHY::
A
socialscientistsspendsaconsiderabletimeobservingandanalysinghowpeopleactuallywork.Peopledon
othavetoexplainorarticulatetheirwork.
Socialandorganisationalfactorsofimportancemaybeobserved.
Ethnographic studies have shown that work is usually richer and more complex than
suggestedbysimplesystemmodels.

Focusedethnography:
DevelopedinaprojectstudyingtheairtrafficcontrolprocessCom
bines ethnographywithprototyping
Prototype development results in unanswered questions which focus the ethnographic
analysis. Theproblemwithethnographyisthatitstudiesexistingpracticeswhichmayhavesomehistorical
basiswhichisnolongerrelevant.

Ethnographyandprototyping

Ethnographic Debriefing Focused
analysis > meetings >\ ethnography ™~
Prototype
evaluation
Generic system System L
development ’ protoyping

Page38

EEISOFTWARE ENGINEERING

SOFTWAREENGINEERING

Scopeofethnography:
Requirementsthatarederivedfromthewaythatpeopleactuallyworkratherthanthewaylwhichproc
essdefinitionssuggestthattheyoughttowork.

Requirementsthatarederived fromcooperationandawarenessofotherpeople‘sactivities.

REQUIREMENTSVALIDATION
Concerned
withdemonstratingthattherequirementsdefinethesystemthatthecustomerreallywants.
Requirementserror costs arehighsovalidationisveryimportant

—Fixingarequirements error afterdeliverymaycostupto100timesthecostof
fixinganimplementationerror.

Requirementschecking:
Validity:Doesthesystemprovidethefunctionswhichbestsupportthecustomer‘sneeds?
Consistency:Arethereanyrequirementsconflicts?

Completeness: Areallfunctionsrequiredbythecustomerincluded?
Realism:Can therequirementsheimplemented givenavailablebudgetandtechnology
Verifiability:Can therequirements bechecked?

Requirementsvalidationtechniques
Requirementsreviews
— Systematic
manualanalysisoftherequirements.Prototyping
— Usinganexecutablemodelofthesystemtocheckrequirements.CoveredinChapter17.Test-
casegeneration
— Developingtestsforrequirementstochecktestability.

Requirementsreviews:
Regularreviewsshouldbeheld whiletherequirementsdefinition
isbeingformulated.Bothclientandcontractorstaffshouldbeinvolvedinreviews.
Reviewsmaybeformal(withcompleteddocuments)orinformal.Goodcommunicationsbetween
developers, customersanduserscanresolve problemsatanearlystage.

Reviewchecks:
Verifiability: Is the requirement realistically
testable?Comprehensibility: Istherequirementproperlyunderst
ood?Traceability:Isthe originoftherequirement clearlystated?
Adaptability:Can therequirementbechangedwithoutalargeimpactonotherrequirements?

REQUIREMENTSMANAGEMENT

Requirementsmanagementistheprocessofmanagingchangingrequirementsduringthereq
uirementsengineeringprocessandsystemdevelopment.

Requirementsareinevitablyincompleteandinconsistent

— Newrequirementsemergeduringtheprocessasbusinessneedschangeandabetterunderst
andingofthesystemisdeveloped;

— Differentviewpointshavedifferentrequirementsandtheseareoftencontradictory.

Requirementschange
The priority of requirements from different viewpoints changes during the development

process.System customers may specify requirements from a business perspective that conflict
with end-userrequirements.

Thebusinessandtechnicalenvironmentofthesystemchanges duringitsdevelopment.

Page39

SOFTWAREENGINEERING

Requirementsevolution:

Initial Changed
understanding understanding
of problem of problem
Initial Changed
requirements requirements
>
Time

4.1) Enduring andvolatilerequirements:
Enduringrequirements:Stablerequirementsderivedfromthecoreactivityofthecustomerorganisation.
E.g. a hospital will always have doctors, nurses, etc. May be derived from domainmodels
Volatile requirements: Requirements which change during development or when the system is
inuse.Inahospital requirementsderivedfromhealth-carepolicy

Requirementsclassification:

Requirement Description
Type
Mutable Requirements that change because of changes to the environment in which

therequirements organisationisoperating. Forexample,inhospitalsystems, thefundingofpatient
care may change and thus require different treatment information to be
collected.Emergent Requirementsthatemergeasthecustomer'sunderstandingof
thesystemdevelopsrequirements duringthesystemdevelopment.
Thedesignprocessmayrevealnewemergent
requirements.
Consequential Requirements that result from the introduction of the computer system.
Introducingrequirements
thecomputersystemmaychangetheorganisationsprocessesandopenupnewways
ofworkingwhichgeneratenewsystemrequirements
Compatibility Requirements that depend on the particular systems or business processes within
anrequirements organisation.Asthesechange,thecompatibilityrequirementsonthecommissioned
ordeliveredsystemmayalsohave toevolve.

4.2) Requirementsmanagementplanning:
Duringtherequirementsengineeringprocess,you havetoplan:

— Requirementsidentification
Howrequirementsareindividuallyidentified;

— Achangemanagementprocess
Theprocessfollowedwhenanalysingarequirementschange;

— Traceabilitypolicies
Theamountofinformation aboutrequirementsrelationshipsthatismaintained;

— CASEtoolsupport
Thetoolsupportrequiredtohelpmanagerequirements change;

Traceability:
Traceabilityisconcernedwiththerelationshipsbetweenrequirements,theirsourcesandthesystemdesignSourcet
raceability
— Linksfromrequirementstostakeholders
whoproposedtheserequirements; Requirementstraceability
— Linksbetweendependentrequirements;
Designtraceability-Linksfromtherequirementstothedesign;

Page40

SOFTWAREENGINEERING

CASEtool support:
Requirementsstorage
— Requirementsshouldbemanagedin
asecure,manageddatastore.Changemanagement
— Theprocess ofchangemanagementisaworkflowprocess whosestages
canbedefinedandinformationflowbetweenthesestages partiallyautomated.
Traceabilitymanagement
- Automatedretrievalofthelinksbetween requirements.

4.3) Requirementschangemanagement:
Shouldapplytoall
proposedchangestotherequirements.Principalstages
— Problem analysis.Discussrequirementsproblem andproposechange;
— Changeanalysisand costing.Assesseffectsofchangeonotherrequirements;
— Changeimplementation.
Modifyrequirementsdocumentandotherdocumentstoreflectchange.

Changemanagement:
Identified Revised
problem ' p/ohiem analysis and Change analysis Change requirements
change specification and costing implementation

SYSTEM MODELLING
Systemmodellinghelpstheanalysttounderstandthefunctionalityofthesystemandmodelsareusedto
communicatewithcustomers.

Differentmodelspresentthesystemfromdifferentperspectives
o Behaviouralperspectiveshowingthebehaviourofthesystem;

o Structuralperspectiveshowingthesystemordataarchitecture.
Modeltypes

Data processing model showing how the data is processed at different
stages.Composition modelshowinghowentitiesarecomposed ofotherentities.
Architecturalmodelshowingprincipalsub-systems.

Classification model showing how entities have common
characteristics.Stimulus/responsemodelshowingthesystem‘sreactiontoev
ents.

CONTEXTMODELS:
Contextmodelsareusedtoillustratetheoperationalcontextofasystem-theyshowwhatlies
outsidethesystemboundaries.

Social and organisational concerns may affect the decision on where to
positionsystemboundaries.
Architecturalmodelsshowthesystemanditsrelationshipwithothersystems.

Page41

SOFTWAREENGINEERING

Thecontextofan ATMsystem:

Security

system
Branch Aocount

accounting
system database
Auto-teller

system
Branch Usage
counter
system database

Maintenance
system

Processmodels:
Processmodelsshowthe overallprocessandtheprocessesthataresupportedbythesystem.

Dataflowmodels
maybeusedtoshowtheprocessesandtheflowofinformationfromoneprocesstoanother.

BEHAVIOURALMODELS:
Behaviouralmodelsareusedtodescribetheoverallbehaviour
ofasystem.Twotypesofbehaviouralmodelare:
o Data processing models that show how data is processed as it moves through
thesystem;
Statemachinemodels thatshowthesystems responsetoevents.
These models show different perspectives so both of them are required to describe
thesystem ‘sbehaviour.

2.1) Data-processing models:
Data flowdiagrams(DFDs)maybeusedtomodelthesystem‘sdata
processing. Theseshowtheprocessingstepsas dataflows throughasystem.
DFDsareanintrinsicpartof
manyanalysismethods.Simpleandintuitivenotation
thatcustomerscanunderstand.Showend-to-
endprocessingofdata.

OrderprocessingDFD:

Completed Signed Signed Send 1o
order form order form order form supplier —>
Order
details + Complete Validate Record
blank order form order order
order form \ Adjust
Order Signed available
details order form budget
Order
amount
+ account
Orders Budget
file file

Checked and
signed order
+ order
notification

Page42

SOFTWAREENGINEERING

Data flowdiagrams:
DFDsmodelthesystem fromafunctionalperspective.
Trackinganddocumentinghowthedataassociatedwithaprocessishelpfultodevelopanoverallundersta
ndingofthesystem.
Dataflowdiagramsmayalsobeused
inshowingthedataexchangebetweenasystemandothersystemsinitsenvironment.

2.2) State machinemodels:
These modelthe behaviourofthe systeminresponsetoexternalandinternalevents.
They show the system‘s responses to stimuli so are often used for modelling real-time
systems. Statemachinemodelsshowsystemstatesasnodesandeventsasarcsbetweenthesenodes.When
aneventoccurs, thesystemmoves fromonestatetoanother.
StatechartsareanintegralpartoftheUMLandareusedtorepresentstatemachinemodels.

Statecharts:
Allow the decomposition of a model into sub-models (see following
slide). Abriefdescriptionoftheactionsisincludedfollowingthe_do‘ineachstate.
Canbe complementedbytablesdescribingthestatesandthestimuli.

Microwaveovenmodel:

Full
power Full power
> do: set power
=600
A
Timer
Waiting
—a Number
e c!lsplay Full Set time Operation
time
power do: get number do: operate
exit: set time aven
Half \
Half P Door / \
F Timer closed Cancel
Daoor \ - \
y open / Door -
Half power Enabled open Waiting
———= do: set power Door do: display do: display
= closed 'Ready’ time
Disabled
do: display =
'Waiting'
Microwaveovenstatedescription:
State Description
Waiting Theoveniswaitingforinput. Thedisplayshowsthecurrenttime.
Halfpower Theovenpowerissetto300 watts. Thedisplayshows_Half

power ‘. Fullpower Theovenpowerissetto600 watts. Thedisplayshows_Fullpower*.

Settime
Thecookingtimeissettotheuser ‘sinputvalue. Thedisplayshowsthecookingtimeselecte
dandisupdatedasthetimeisset.
Disabled Ovenoperationisdisabledforsafety.Interiorovenlight ison.
Displayshows_Notready*.
Enabled Ovenoperationisenabled. Interiorovenlightisoff.Displayshows_Readytocook®.

Page43

44
SOFTWAREENGINEERING

Operation Oven in operation. Interior oven light is on. Display shows the timer countdown.
Oncompletionofcooking,thebuzzer issounded for5seconds.Ovenlightison.Display
shows_Cookingcomplete® whilebuzzer issounding.

Microwave ovenstimuli:

Stimulus Description
Halfpower Theuserhaspressedthehalfpowerbutton
Fullpower The user has pressed the full power
buttonTimer The user has pressed one of the timer

buttonsNumber Theuserhaspressedanumerickey

Dooropen The oven door switch is not

closedDoorclosed TheovendoorswitchisclosedStart
Theuserhaspressedthestartbutton

Cancel Theuserhas pressedthecancelbutton

SEMANTICDATAMODELS:
Usedtodescribe thelogical structure ofdataprocessedbythesystem.
An entity-relation-attribute model sets out the entities in the system, the
relationshipsbetweenthese entitiesandtheentityattributes
Widely used in database design. Can readily be implemented using relational
databases.Nospecificnotation provided in theUMLDbutobjectsandassociationscanbeused.

Data dictionaries
Datadictionariesarelistsofallofthenamesusedinthesystemmodels. Descriptionsoftheentities,re
lationshipsandattributesarealsoincluded.
Advantages
oSupportnamemanagementandavoidduplication;
Store of organisational knowledge linking analysis, design
andimplementation;ManyCASEworkbenchessupportdatadictionaries.

OBJECTMODELS:
Objectmodels describethesystemin termsofobjectclassesandtheirassociations.
Anobjectclassisanabstraction overasetofobjectswith common attributesandthe
services(operations)providedbyeachobject.

Variousobjectmodelsmaybeproducedin

heritancemodels;

oAggregationmodels;Int

eractionmodels.
Natural waysofreflectingthereal-worldentitiesmanipulatedbythesystemMore
abstractentitiesaremoredifficulttomodelusingthisapproach
Obiject class identification is recognised as a difficult process requiring a deep understanding
oftheapplicationdomain
Objectclassesreflectingdomainentitiesarereusableacrosssystems

4.1) Inheritancemodels:
Organisethe domainobjectclassesintoahierarchy.
Classesat the topofthehierarchyreflectthecommonfeaturesofallclasses.
Object classes inherit their attributes and services from one or more super-classes. these
maythenbespecialisedasnecessary.

Page44

SOFTWAREENGINEERING

Classhierarchydesigncan beadifficultprocess ifduplication in
differentbranchesistobeavoided.

ObjectmodelsandtheUML.:

TheUMLis astandardrepresentationdevisedbythedevelopersofwidelyusedobject-

orientedanalysisanddesignmethods.

Ithasbecome aneffective standardforobject-orientedmodelling.

Notation

oObjectclassesarerectangleswiththenameatthetop, attributesinthemiddlesectionandoperations

inthebottomsection;
Relationshipsbetweenaobject
classes(knownasassociations)areshownaslineslinkingobjects;
Inheritanceisreferredtoasgeneralisation andisshown_upwards‘rather than
_downwards‘inahierarchy.

Libraryclasshierarchy:

Library user
Name
Address
Phone
Registration #
Register ()
De-register ()
| \
Reader Borrower
Affiliation Items on loan
Max. loans
P
! |
Staft Student
Department Major sulﬂect
Department phone Home address
Userclasshierarchy:
Library uset

Name

Address

Phone

#*
Register Z; 0
\ I
Reader Borrower
Affiliation Items on loan
Max_ loans

Page45

SOFTWAREENGINEERING

Multipleinheritance:

Ratherthaninheritingtheattributesandservicesfromasingleparentclass,asystemwhichsupportsmultipleinh

eritanceallowsobjectclassestoinheritfromseveralsuper-classes.
Thiscanleadtosemanticconflicts whereattributes/services
withthesamenameindifferentsuper-classeshavedifferentsemantics.
Multipleinheritancemakes classhierarchyreorganisationmorecomplex.

Multipleinheritance

Book Voice recording

Author Speaker

Edition Duration
Publication date Recording date
ISBN

& T
Talking book
Tapes

Objectaggregation:
An aggregation modelshowshow classesthatarecollectionsarecomposedofotherclasses.
Aggregationmodelsaresimilartothepart-ofrelationshipinsemanticdatamodels.

4.2) Objectaggregation

Study pack
Course title
Number
Year
Instructor
i OHP slid Lecture Videota
Assignment ides iesas pe
Credits Slides Text Tape ids.
Exercises Solutions
#Problems Text
Description Diagrams

Objectbehaviourmodelling

Page46

SOFTWAREENGINEERING

Abehaviouralmodelshowstheinteractionsbetweenobjectstoproducesomeparticularsystemb

ehaviourthatisspecifiedasause-case. o]]]
Sequencediagrams(or collaborationdiagrams)in theUMLareused tomodelinteraction
betweenobjects.

STRUCTUREDMETHODS:
Structuredmethodsincorporate systemmodellingasaninherentpartofthemethod.

Methodsdefineasetofmodels,aprocessforderivingthesemodelsandrulesandguidelinesthatshouldapp
Iytothemodels.

CASEtoolssupportsystemmodellingaspartofastructuredmethod.

Methodweaknesses:

Theydonotmodelnon-functionalsystemrequirements.
Theydonotusuallyincludeinformationaboutwhetheramethodisappropriateforagivenproblem.
Themayproducetoomuchdocumentation.

The systemmodelsaresometimestoodetailedanddifficultforuserstounderstand.

CASEworkbenches:
Acoherentsetoftoolsthatisdesignedtosupportrelatedsoftwareprocessactivitiessuchas
analysis,designortesting.

Analysis and design workbenches support system modelling during both
requirementsengineeringandsystemdesign.
Theseworkbenchesmaysupportaspecificdesignmethod or mayprovidesupportfor a
creatingseveraldifferenttypesofsystemmaodel.

Ananalysisanddesignworkbench

Data Structured Report
: ze diagramming generation
dictionary tools facilities
Central 7 Query
efnzdraior — information — language
g repository facilities
Forms Design, analysis
creation and checking Im?:critlli::ort
tools tools

Page47

SOFTWAREENGINEERING

Analysisworkbenchcomponents:
Diagrameditors
Model analysis and checking
toolsRepositoryand
associatedquerylanguageDatadictionary
ReportdefinitionandgenerationtoolsF
orms definitiontools
Import/export
translatorsCodegeneratio
ntools

Page48

SOFTWAREENGINEERING

UNIT-
IHIDESIGNENGINEERI
NG

Design engineering encompasses the set of principals, concepts, and practices that lead

tothedevelopmentofahigh-qualitysystemorproduct.) o
Design prlr&uples establish an overriding philosophy that guides the designer in the work that
isperformed.
Dt?signconcepts:mus_tbeunderstoodbeforethemeg:hanicsofde_signpracticeareapp_liedand .
Design practice itself leads to the creation of various representations of the software that serve as a guide
fortheconstructionactivitythat follows.

Whatisdesign:

Design is what virtually every engineer wants to do. It is the place where creativity rules —customer*‘s
requirements, business needs, and technical considerations all come together in the formulationof a
product or a system. Design creates a representation or model of the software, but unlike the
analysismodel, the design model provides detail about software data structures, architecture, interfaces,
andcomponentsthatarenecessarytoimplementthesystem.

Whyisitimportant:

Design allows a software engineer to model the system or product that Is to be built. This model
canbeassessed forqualityandimproved beforecodeis generated,testsareconducted,andend—
usershecomeinvolvedinlargenumbers.Designistheplacewheresoftwarequalityis established.

The goal of design engineering is to produce a model or representation that exhibits
firmness,commodity, and delight. To accomplish this, a designer must practice diversification and
thenconvergence. Another goal of software design is to derive an architectural rendering of a system.
Therenderingserves asaframeworkfromwhich moredetaileddesignactivities areconducted.

1) DESIGNPROCESSANDDESIGNQUALITY:
Softwaredesignisaniterativeprocess throughwhichrequirementsaretranslatedintoa
-blueprintlforconstructingthesoftware.

Goals ofdesign:

McGlaughlinsuggeststhreecharacteristicsthatserveasaguidefortheevaluationofagooddesign.
Thedesignmustimplementalloftheexplicitrequirements containedintheanalysis
model,anditmustaccommodateall oftheimplicitrequirementsdesiredbythecustomer.
The design must be a readable, understandable guide for those who generate code and for those who
testandsubsequentlysupport thesoftware.)))
Thedesignshouldprovideacompletepictureofthesoftware,addressingthedata, functional ,andbehavioral
domainsfrom animplementationperspective.

Quiality guidelines:
Inorder toevaluatethequalityof adesignrepresentationwemustestablish
technicalcriteriaforgooddesign. Thesearethefollowingguidelines:
Adesignshouldexhibitan architecturethat
hasbeencreatedusingrecognizablearchitecturalstylesorpatterns
iscomposedofcomponentsthatexhibitgooddesign characteristics and
canbeimplementedin an
evolutionaryfashion,therebyfacilitatingimplementationandtesting.
Adesignshouldbemodular;thatis,thesoftwareshouldbelogicallypartitionedintoelementsorsubsyst
ems.
A design should contain distinct representation of data, architecture, interfaces and
components.Adesignshouldleadtodatastructuresthatareappropriatefortheclassestobeimplementeda
ndaredrawnfromrecognizabledatapatterns.
Adesignshouldleadtocomponentsthatexhibitindependentfunctionalcharacteristics.

Page49

SOFTWAREENGINEERING-Material

SOFTWAREENGINEERING

Adesignshouldleadtointerfacethatreducethecomplexityofconnections
betweencomponentsandwiththeexternalenvironment.

Adesignshouldbederived
usingarepeatablemethodthatisdrivenbyinformationobtainedduringsoftwarerequirementsan
alysis.

Adesignshouldberepresentedusinganotationthateffectivelycommunication itsmeaning.

These design guidelines are not achieved by chance. Design engineering encourages good design
throughtheapplicationoffundamentaldesignprinciples,systematicmethodology,andthoroughreview.

Qualityattributes:
TheFURPSqualityattributesrepresentatargetfor allsoftwaredesign:

Functionalityisassessedbyevaluatingthefeaturesetandcapabilitiesoftheprogram,thegeneralityofthef
unctionsthataredelivered,andthesecurityoftheoverallsystem.

Usabilityisassessedbyconsideringhumanfactors,overallaesthetics,consistencyanddocumentation.

Reliability is evaluated by measuring the frequency and severity of failure, the accuracy of
outputresults, and the mean — time —to- failure (MTTF), the ability to recover from failure,”and
thepredictabilityoftheprogram.

Performance ismeasured by processing speed, response time, resource consumption, throughput,
andefficiency

Supportability combines the ability to extend the program (extensibility), adaptability, serviceability-
thesethreeattributesrepresent amorecommontermmaintainability

Not every software quality attribute is weighted equally as the software design
isdeveloped.
Oneapplicationmaystressfunctionalitywithaspecialemphasisonsecurity. Anothermaydeman
dperformancewithparticularemphasisonprocessingspeed.

Athirdmightfocusonreliability.

2) DESIGNCONCEPTS:

M.A Jackson once said:IThe beginning of wisdom for a software engineer is to recognize the
differencebetweengetting a program to work, and getting it right.| Fundamental software designconcepts
providethenecessaryframeworkfor—gettingitright.|

Abstraction:Manylevels ofabstractionarethere.

Atthehighestlevelofabstraction,asolutionisstatedin broadtermsusingthelanguageoftheproblemenvironment.
Atlowerlevelsofabstraction,amoredetaileddescriptionofthesolutionisprovided.

A procedural abstraction refers to a sequence of instructions that have a specific and limited function.
Thenameofproceduralabstractionimpliesthesefunctions,butspecificdetailsaresuppressed.
Adataabstractionisanamed collectionofdatathatdescribesadataobject.

In the context of the procedural abstractionopen, we can define a data abstraction called door. Like anydata
object, the data abstraction for door would encompass a set of attributes that describe the door
(e.g.,doortype,swingoperation,openingmechanism,weight,dimensions). Itfollowsthattheproceduralabstraction
openwould makeuseofinformationcontainedin theattributesofthedataabstractiondoor.

Architecture:

Softwarearchitecturealludesto-theoverallstructureofthesoftwareandthewaysinwhichthatstructure provides
conceptual integrity for a systeml. In its simplest form, architecture is the structure or organizationof
program components (modules), the mannerinwhich these components interact, and the structure
ofdatathatareusedbythecomponents.

One goal of software design is to derive an architectural rendering of a system. The rendering serves as
aframeworkfromwhichmoredetaileddesignactivities areconducted.

Page50

SOFTWAREENGINEERING-Material

SOFTWAREENGINEERING

Thearchitecturaldesign can berepresentedusingoneor moreofanumberofdifferentmodels.
Structuredmodelsrepresentarchitectureasan organized collectionofprogramcomponents.

Framework models increase the level of design abstraction by attempting to identify
repeatablearchitecturaldesignframeworks thatareencounteredinsimilartypes ofapplications.

Dynamicmodelsaddressthebehavioralaspects
oftheprogramarchitecture,indicatinghowthestructureorsystemconfigurationmaychangeasafunctionexternale
vents.

Process models focus on the design of the business or technical process that the system
mustaccommodate. Functionalmodelscanbeused torepresentthefunctionalhierarchyofasystem.

Patterns:

BradAppletondefinesadesignpatterninthefollowingmanner:-apatternisanamednuggetofinside which conveys
that essence of a proven solution to a recurring problem within a certain context amidstcompeting
concerns.| Stated in another way, a design pattern describes a design structure that solves
aparticulardesignwithinaspecificcontextandamid—forces lithatmayhaveanimpactonthemannerin
whichthepatternisappliedandused.
The intent of each design pattern is to provide a description that enables a designer to
determineWhetherthepatterniscapabletothecurrentwork,
Whetherthepatterncan bereused,
Whetherthepatterncanserveasaguidefordevelopingasimilar,butfunctionallyorstructurallydifferent
pattern.

1VV. Modularity:

Software architecture and design patterns embody modularity; software is divided into
separatelynamed and addressable components,sometimescalledmodules that are integrated to satisfy
problemrequirements.

Ithasbeenstatedthat-modularityisthesingleattributeofsoftwarethatallowsaprogramtobeintellectually
manageablel.Monolithic software cannot be easily grasped by a software engineer. Thenumber of control
paths, span of reference, numberof variables, and overall complexity = would
makeunderstandingclosetoimpossible.

The-divideandconquerlistrateqy-
it‘'seasiertosolveacomplexproblemwhenyoubreakitintomanageablepieces. Thishasimportantimplicationswithre
gardtomodularityandsoftware.Ifwesubdivide software indefinitely, the effort required to develop it will
become negligibly small. The effort todevelop an individual software module does decrease as the total
number of modules increases. Given thesame set of requirements, more modules means smaller individual
size. However, as the number of modulesgrows,theeffortassociatedwithintegratingthemodulesalsogrow.

Undermodularityorovermodularityshouldbeavoided.Wemodularizeadesignsothatdevelopment can
be more easily planned; software increment can be defined and delivered; chamges can bemoreeasily
accommodated;testingand debuggingcanbeconductedmore efficiently,and long-
termmaintenancecanbeconductedwithoutserioussideeffects.

InformationHiding:

Theprincipleofinformationhidingsuggeststhatmodulesbe-characterizedbydesigndecisionthat
hidesfromallothers.|
Modules should be specified and designed so that information contained within a module is
inaccessibletoothermodulesthathavenoneedforsuchinformation.

Hiding implies that effective modularity can be achieved by defining a set of independent
modulesthatcommunicatewithoneanotheronlythatinformationnecessarytoachievesoftwarefunction.Abstracti
on helps to define the procedural entities that make up the software. Hiding defines and
enforcesaccessconstraintstobothproceduraldetailwithinamoduleandlocaldatastructureusedbymodule.

The use of information hiding as a design criterion for modular systems provides the
greatestbenefits when modifications are required during testing and later, during software maintenance.
Becausemost data and procedure are hidden from other parts of the software, inadvertent errors introduced
duringmodificationarelesslikelytopropagatetootherlocationswithinsoftware.

Page51

SOFTWAREENGINEERING-Material

SOFTWAREENGINEERING

VI. Functional Independence:

The concept of functional independence is a direct outgrowth of modularity and the concepts
ofabstraction andinformationhiding. Functionalindependence isachievedbydevelopingmoduleswith
-singlemindedl functionandan-aversionlitoexcessiveinteractionwithothermodules.Statedanother way, we want
to design software so that each module addresses a specific sub function of requirements
andhasasimpleinterfacewhenviewedfromotherparts oftheprogramstructure.

Software with effective modularity, that is, independent modules, is easier to develop
becausefunction may be compartmentalized and interfaces are simplified. Independent sign or code
modificationsare limited, error propagation is reduced, and reusable modules are possible. To summarize,
functionalindependenceisakeytogooddesign, anddesignisthekeytosoftwarequality.

Independence is assessed using two qualitative criteria: cohesion and coupling. Cohesion is
anindicationoftherelativefunctionalstrengthofamodule. Couplingisanindicationofthe
relativeinterdependenceamongmodules. Cohesionisanaturalextensionoftheinformationhiding.

A cohesion module performs a single task, requiring little interaction with other components
inotherpartsofaprogram. Statedsimply,acohesivemoduleshoulddojustonething.

Coupling is an indication of interconnection among modules in a software structure.
Couplingdepends on the interface complexity between modules, the point at which entry or reference is
made to amodule, and what data pass across the interface. In software design, we strive for lowest possible
coupling.Simpleconnectivityamongmodulesresultsinsoftwarethatiseasiertounderstandandlesspronetoa
-rippleeffectl,causedwhenerrorsoccuratonelocationandpropagatesthroughoutasystem.

VII. Refinement:

Stepwise refinement is a top- down design strategy originally proposed by Niklaus wirth. A program
isdevelopmentbysuccessivelyrefininglevelsofproceduraldetail. Ahierarchyisdevelopmentbydecomposing a
macroscopic statement of function in a step wise fashion until programming languagestatementsarereached.

Refinement is actually a process of elaboration. We begin with a statement of function that
isdefined at a high level of abstraction. That is, the statement describes function or information
conceptuallybut provides no information about the internal workings of the function or the internal structure
of the data.Refinement causes the designer to elaborate on the original statement, providing more and more
detail aseachsuccessiverefinementoccurs.

Abstraction and refinement are complementary concepts. Abstraction enables a designer to
specifyprocedure and data and yet suppress low-level details. Refinement helps the designer to reveal low-
leveldetails as design progresses. Both concepts aid the designer in creating a complete design model as
thedesignevolves.

VIII. Refactoring :

Refactoring is a reorganization technique that simplifies the design of a component without changing
itsfunctionorbehavior.Fowlerdefinesrefactoringinthefollowingmanner:-refactoringistheprocessof changing a
software system in such a way that it does not alter the external behavior of the code yetimproves
itsinternalstructure.|

Whensoftware is refactored,the existing designis examinedforredundancy,unuseddesign
elements, inefficient or unnecessary algorithms, poorly constructed or inappropriate data structures,or any
other design failure that can be corrected to yield a better design. The designer may decide that
thecomponent should be refactored into 3 separate components, each exhibiting high cohesion. The result
willbesoftwarethatiseasiertointegrate,easiertotest, andeasiertomaintain.

IX. Designclasses:
Thesoftwareteammustdefineasetofdesign classesthat
Refinetheanalysisclasses byprovidingdesigndetailthatwillenabletheclasses tobeimplemented, and

Page52

IEEISOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Create a new set of design classes that implement a software infrastructure to support the
designsolution.
Five different types of design classes, each representing a different layer of the design

architecturearesuggested.
User interface classes: define all abstractions that are necessary for human computer
interaction.In many cases, HCL occurs within the context of a metaphor and the design classes for
theinterfacemaybevisualrepresentationsoftheelementsofthemetaphor.

Business domain classes: are often refinements of the analysis classes defined earlier. The
classesidentify the attributes and services that are required to implement some element of the
businessdomain.

Processclassesimplementlower—levelbusinessabstractionsrequiredtofullymanagethebusinessdomainclasses.
Persistentclasses representdatastores thatwillpersistbeyondtheexecutionofthesoftware.
Systemclassesimplementsoftware managementandcontrolfunctions . .
thatenablethesystemtooperateandcommunicatewithinitscomputingenvironmentandwiththeoutsideworld.

As the design model evolves, the software team must develop a complete set
ofattributesandoperationsforeachdesignclass. Thelevelofabstraction
isreducedaseachanalysisclassistransformedintoadesignrepresentation.Eachdesignclassbereviewedtoensurethat
itis—well-formed.Il Theydefinefourcharacteristicsofawell-formeddesignclass.

Completeandsufficient: Adesignclassshould be the complete encapsulationof all attributesandmethods that
can reasonably be expected to exist for the class. Sufficiency ensures that the design
classcontainsonlythosemethodsthataresufficienttoachievetheintentoftheclass,nomoreandnoless.

Primitiveness: Methods associated with a design class should be focused on accomplishing one service
forthe class. Once the service has been implemented with a method, the class should not provide another
waytoaccomplishthesamething.

High cohesion: A cohesive design class has a small, focused set of responsibilities and single-
mindedlyapplies attributesandmethodstoimplementthoseresponsibilities.

Low coupling: Within the design model, it is necessary for design classes to collaborate with one
another.However, collaboration should be kept to an acceptable minimum. If a design model is highly
coupled thesystem is difficult to implement, to test, and to maintain over time. In general, design classes
within asubsystem should have only limited knowledge of classes in other subsystems. This restriction,
called thelawofDemeter,suggests thatamethodshouldonlysentmessages tomethods inneighboringclasses.

THEDESIGNMODEL.:

Thedesignmodelcanbeviewedintodifferentdimensions.

The process dimension indicates the evolution of the design model as design tasks are executed

asapart ofthesoftwareprocess.

The abstraction dimension represents the level of detail as each element of the analysis
modelis transformedintoadesignequivalentandthenrefinediteratively.
The elements of the design model use many of the same UML diagrams that were used in the
analysismodel. Thedifferenceisthatthesediagramsare
refinedandelaboratedasapathofdesign;moreimplementation- specific detail is provided, and architectural
structure and style, components that residewithin the architecture, and the interface betweenthe components
and with the outside world are allemphasized.

It is important to mention however, that model elements noted along the horizontal axis are
notalwaysdevelopedinasequentialfashion.Inmostcasespreliminaryarchitecturaldesignsetsthestageandis
followed by interface design and component-level design, which often occur in parallel. The
deploymentmodelususuallydelayeduntilthedesignhas beenfullydeveloped.

Page53

Y ISOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

high

analysismodel

abstraction dimension

class
diagramsanalysis
packagesCRCmo
dels
collaborationdiagrams
dataflowdiagramscontr
ol-
flowdiagramsprocessin
- g.na[rgtiy_gi

S

design class realizat
ionssubsystems
collaboration diagrams

low

dn:ignmndnl

refinementsto:

design class realizat
ionssubsystems

collaborationdiagrams

use- cases - t

extuse-

casediagrams
activitydiagramsswim
lane
diagramscollaborat ion
diagramsstatediagrams
sequencediagrams

=~ —

—_——— o

t echnical int erf
acedesign

Navigat ion

designGUIdesign

class diagrams
analysispackagesCRC
modelscollaboration
diagramsdataflowdiagra
mscont rol- f low
diagramsprocessing
narrat ives stat e
diagrams
sequencediagrams

T
T ———
—_—

component
diagramsdesign
classes act

ivitydiagr: sequenc
ediagram

refinementsto:

-]

component
diagramsdesignclass
es

Requirement
s:constraintsin
t
eroperabilityta
rgetsand
configuration

e ——
————

design class realizat
ionssubsystems
collaboration diagrams
component
diagramsdesignclass
es

act ivity
diagram*quence

diagrams

architecture
levelelements

Data designelements:
Datadesign sometimesreferred toasdataarchitecting createsamodelofdataand/orinformation
thatisrepresented at a high level of abstraction. This data model is then refined into progressively
moreimplementation-specificrepresentationsthatcanbeprocessed bythecomputer-basedsystem.
Thestructureofdatahasalways beenanimportantpartofsoftwaredesign.

interface
elements

Clmyin g
diagramssequence
diagrams

deployment diagrams

component -leveldeployment -

elements

processdimension

elements

At the program component level, the design of data structures and the associated algorithms required
tomanipulatethemisessential tothecriterionofhigh-qualityapplications.

Attheapplicationlevel,thetranslationofadatamodelintoadatabaseispivotaltoachievingthebusinessobjectivesofasyst

em.

Atthebusinesslevel,thecollectionofinformation stored indisparatedatabases andreorganizedintoa
-datawarehouselenablesdataminingorknowledgediscoverythatcanhaveanimpactonthe success

Architecturaldesignelements:

Inte

ofthebusinessitself.

Thearchitecturaldesignforsoftwareistheequivalenttothefloorplanofahouse. Thearchite
cturalmodelisderivedfromthreesources.
Informationabouttheapplicationdomainforthesoftwaretobebuilt.

Specificanalysismodelelementssuchasdataflowdiagramsor
analysisclasses,theirrelationships andcollaborationsfortheproblemathand,and

Theavailabilityofarchitecturalpatterns

rfacedesignelements:

The interface design for software is the equivalent to a set of detailed drawings for
thedoors,windows,andexternalutilities ofahouse.

Page54

IEESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

The interface design elements for software tell how information flows into and out of the
systemandhowitiscommunicatedamongthecomponentsdefinedaspartofthearchitecture. Thereare3im
portantelementsofinterfacedesign:

Theuserinterface(Ul);

Externalinterfacestoothersystems,devices,networks,orotherproducesorconsumersofinfor
mation;and

Internalinterfacesbetweenvariousdesigncomponents.

Theseinterfacedesignelementsallowthesoftwaretocommunicatedexternallyandenableinternalcommu
nicationandcollaborationamongthecomponentsthatpopulatethesoftwarearchitecture.

Uldesign isamajor softwareengineeringaction.

Thedesignof aUlincorporatesaestheticelements (e.g.,layout,color,graphics,interactionmechanisms),
ergonomic elements (e.g., information layout and placement, metaphors, Ul navigation), andtechnical
elements (e.g., Ul patterns, reusable components). In general, the Ul is a unique subsystem
withintheoverallapplicationarchitecture.

Thedesignofexternalinterfacesrequiresdefinitiveinformationabouttheentitytowhichinformation is
sent or received. The design of external interfaces should incorporate error checking
andappropriatedsecurityfeatures.

UML defines an interface in the following manner:lan interface is a specifier for the externally-
visibleoperationsofaclass,component,orother classifier withoutspecificationofinternalstructure. |

MobilePhone

WirelessPDA

o/
~————

ControlPanel

LCDdisplayLEDindicat \ V
ors
keyPadCharacteristics KeyPad

wirelessInterface

readKeySt
roke()decodeKey
()displaySt at
us()light
LEDs()sendContro

<<interface>>
KeyPad

readKeyst
roke()decodeKe

Figure9.6UMLinterfacerepresent ationforContro IPan e |

Page55

IEESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

iv. Component- level design elements: The component-level design for software is equivalent to
asetofdetaileddrawings.
The component-leveldesignforsoftware fully describesthe internal detail of
eachsoftwarecomponent. To accomplish this, the component-level design defines data structures
for all localdata objects and algorithmic detail for all processing that occurs within a component
and aninterfacethatallowsaccesstoallcomponentoperations.

SensorManagement
———————— b= Sensor

v. Deployment-level design elements: Deployment-level design elements indicated how
softwarefunctionality and subsystems willbe allocated within the physicalcomputing
environmentthatwillsupportthesoftware

ControlPanel CPlserver
Security homeownerAccess
—— -—F-

|
I

I /
|
| |
| |
| |
| |
| |
| |
| |
| +
Personalcomputer |
|
|
externalAccess |
|
o — —— —— ——] b —— |

—
Security Surveillance
homeManagement communication

Figure9.8UMLdeploymentdiagramforSafeHome

ARCHITECTURALDESIGN
1) SOFTWARE

ARCHITECTURE:WhatlsArchitecture

?
Acrchitectural design represents the structure of data and program components that are
requiredtobuildacomputer-basedsystem.ltconsiders

Page56

IEF/SOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

thearchitecturalstylethatthesystemwill take,
thestructureand propertiesof thecomponentsthatconstitutethesystem,andthe
interrelationshipsthatoccuramongallarchitecturalcomponentsofasystem.

Thearchitectureisarepresentation thatenablesasoftwareengineer to
analyzetheeffectivenessofthedesign in meetingitsstatedrequirements,
consider architectural alternatives at a stage when making design changes is still
relativelyeasy,(3)reducingtherisksassociatedwiththeconstructionofthesoftware.

Thedesign ofsoftwarearchitectureconsiderstwolevels ofthedesign
pyramiddatadesign

architecturaldesign.
Datadesignenablesustorepresentthedatacomponentofthearchitecture.

Architecturaldesignfocusesontherepresentationofthestructureofsoftwarecomponents, theirproperties,
andinteractions.

WhylsArchitecturelmportant?

Bassandhiscolleagues|[BAS98]identifythree keyreasonsthatsoftware architectureisimportant:
Representationsofsoftwarearchitectureareanenablerforcommunicationbetweenall

parties(stakeholders)interestedinthedevelopmentofacomputer-basedsystem.

The architecture highlights early design decisions that will have a profound impact on all
softwareengineeringworkthatfollowsand,asimportant,ontheultimatesuccessofthesystemasan
operationalentity.
Architecture-constitutesarelativelysmall,intellectuallygraspablemodelofhowthesystem is
structuredandhowitscomponentsworktogetherl|

DATA DESIGN:
The data design activity translates data objects as part of the analysis model into data structures

atthesoftwarecomponentleveland,whennecessary,adatabasearchitectureattheapplicationlevel.
Attheprogramcomponentlevel,thedesignofdatastructuresandtheassociatedalgorithmsrequiredtomanipu
latethemisessentialtothecreationofhigh-qualityapplications.

Atthea%alicationlevel,thetranslationofa L o o
datamodel(derivedaspartofrequirementsengineering)intoadatabaseispivotaltoachievingt
hebusinessobjectivesofasystem.

At the business level, the collection of information stored in disparate databases and
reorganizedintoa-datawarehouselenablesdataminingorknowledgediscoverythatcanhaveanimpacton
thesuccessofthebusinessitself.

2.1) Data design attheArchitecturalLevel:
Thechallengeforabusinesshasbeentoextractusefulinformation
fromthisdataenvironment,particularlywhentheinformationdesiredis crossfunctional.

To solve this challenge, the business IT community has developed data mining techniques,
alsocalled knowledge discovery in databases (KDD), that navigate through existing databases in an attempt
toextract appropriate business-level information. An alternative solution, called a data warehouse, adds
anadditional layer to the data architecture. a data warehouse is a large, independent database that
encompassessome, but not all, of the data that are stored in databases that serve the set of applications
required by abusiness.

2.2) Data designattheComponentLevel:
Data design at the component levelfocusesonthe representationof data structures that
aredirectlyaccessedbyoneormoresoftwarecomponents. Thefollowingsetofprinciplesfordataspecification:
The systematic analysis principles applied to function and behavior should also be applied to
data.Alldatastructuresandtheoperationstobeperformedoneachshouldbeidentified.
Adata dictionaryshouldbeestablishedandusedtodefinebothdataandprogramdesign. Low-
leveldatadesign decisionsshould bedeferreduntillatein thedesignprocess.

Page57

IESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

The representation of data structure should be known only to those modules that must
makedirectuseofthedatacontainedwithinthestructure.

A
libraryofusefuldatastructuresandtheoperationsthatmaybeappliedtothemshouldbedevelope
d.

Asoftwaredesignandprogramminglanguageshould supportthespecification
andrealizationofabstractdatatypes.

ARCHITECTURAL STYLESANDPATTERNS:

The builder has used an architectural style as a descriptive mechanism to differentiate the
housefromotherstyles(e.g.,A-frame,raisedranch,CapeCod).

The software that isbuiltforcomputer-basedsystemsalsoexhibitsoneofmany architectural
styles.

Eachstyledescribesa systemcategorythatencompasses

A set of components (e.g., a database, computational modules) that perform a
functionrequiredbyasystem;

Asetofconnectorsthatenable-communication,coordinationsandcooperationllamong
components;

Constraintsthatdefinehowcomponents canbeintegratedtoformthesystem;and

(4)
Semanticmodelsthatenableadesignertounderstandtheoverallpropertiesofasystembyanalyzingtheknownprop
ertiesofitsconstituentparts.

Anarchitecturalpattern,likeanarchitectural style,
imposesatransformationthedesignofarchitecture.However,apatterndiffers fromastylein anumberof
fundamentalways:

Thescopeofapatternisless
broad,focusingononeaspectofthearchitectureratherthanthearchitectureinitsentirety.

A pattern imposes a rule on the architecture, describing how the software will handle some
aspectofitsfunctionalityattheinfrastructurelevel.

Acrchitecturalpatternstendtoaddressspecificbehavioralissueswithinthecontextofthearc
hitectural.

3.1) A Brief Taxonomy of Styles
andPatternsData-
centeredarchitectures:

A data store (e.g., a file or database) resides at the center of this architecture and is
accessedfrequently by other components that update, add, delete, or otherwise modify data within the store.
Avariationonthisapproachtransformstherepositoryintoa-blackboardlithatsendsnotificationtoclient
softwarewhendataofinteresttotheclientchanges

Data-centered architectures promote integrability. That is, existing components can be
changedand new client components canbe added to the architecture without concernabout otherclients
(becausethe client components operate independently). In addition, data can be passed among clients using
theblackboardmechanism

client client
software software

olient client

software AT
Data store
[reposiory or i

client Hack board) c:{ent

software software

client client
software software
— L

Page58

IEESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Data-flow architectures. This architecture is applied when input data are to be transformed through
aseries of computational or manipulative components into output data. A pipe and filter pattern has a set
ofcomponents, called filters, connected by pipes that transmit data from one component to the next.
Eachfilter works independently of those components upstream and downstream, is designed to expect data
inputofacertainform, andproduces dataoutputofaspecifiedform.

If the data flow degenerates into a single line of transforms, it is termed batch sequential.
Thispattern acceptsabatchofdataandthen appliesaseriesofsequentialcomponents(filters)totransformit.

// pipes \ — filter [filter _L
— filter | filter [—— filter - filter |——f
' Giter g filter ‘I—: filter | — 4
] filter

-y

(@) pipes and filters

— filter S filter f——~ filter f—— filter |——

(b batch secuential

Callandreturnarchitectures. Thisarchitecturalstyleenablesa softwaredesigner(system architect)toachieve
a program structure that is relatively easy to modify and scale. A number of substyles
[BAS98]existwithinthiscategory:

Main program/subprogram architectures. This classic program structure decomposes
functionintoacontrolhierarchywherea—mainliprograminvokesanumberofprogramcomponents,
whichinturnmayinvokestillothercomponents.Figurel13.3illustratesanarchitectureofthis

type.

Remoteprocedurecallarchitectures. Thecomponentsofamainprogram/subprogramarchitectureared
istributedacrossmultiplecomputers onanetwork

3 IMI
fan-out
la] 2]
depth
Lt 1lg][n] EXERNAREE
v fan-in
¥ ! |_f—|
- width -

Page59

I SOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Object-oriented architectures. The components of a system encapsulate data and the operations that
mustbe applied to manipulate the data. Communication and coordination between components is
accomplishedviamessagepassing.

Layered architectures. The basic structure of a layered architecture is illustrated in Figure 14.3. A
numberof different layers are defined, each accomplishing operations that progressively become closer to
themachine instruction set. At the outer layer, components service user interface operations. At the inner
layer,componentsperformoperatingsysteminterfacing. Intermediatelayersprovideutilityservicesandapplicatio
nsoftwarefunctions.

components

userinterface layer
applicaton layer

uflity layer

[]
D core layer
A\

[]

3.2) ArchitecturalPatterns:
Anarchitecturalpattern,likeanarchitectural style,
imposesatransformationthedesignofarchitecture. However,apattern differsfromastylein anumberof
fundamentalways:
Thescopeofapatternisless
broad,focusingononeaspectofthearchitectureratherthanthearchitectureinitsentirety.

Apatternimposes aruleon thearchitecture,describinghow
thesoftwarewillhandlesomeaspectofitsfunctionalityattheinfrastructurelevel.

Acrchitectural patterns tend to address specific behavioral issues within the context
ofthearchitectural.

Thearchitectural

patternsforsoftwaredefineaspecificapproachforhandlingsomebehavioralcharacteristics

ofthesystem

Concurrency—applications must handle multiple tasks in a manner that
simulatesparallelismooperatingsystemprocess managementpattern
otaskscheduler pattern

Persistence—Datapersists ifitsurvives pasttheexecution

oftheprocessthatcreatedit. Twopatternsarecommon:
a database management system pattern that applies the storage and retrieval capability
ofaDBMStotheapplication architecture
an application level persistence pattern that builds persistence features
intotheapplicationarchitecture

Page60

N FISOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Distribution— the manner in which systems or components within systems communicate with one
anotherinadistributedenvironment

Abrokeractsasa_middle-man‘betweentheclientcomponentandaservercomponent.

OrganizationandRefinement:

The design process often leaves a software engineer with a number of architectural alternatives, it
isimportant to establish a set of design criteria that can be used to assess an architectural design that
isderived. Thefollowingquestionsprovideinsightintothearchitecturalstylethathas beenderived:

Control.

Data.

Howiscontrolmanagedwithinthearchitecture?
Doesadistinctcontrolhierarchyexist,andifso,whatistheroleofcomponentswithinthiscontrolhierarchy?
Howdocomponentstransfercontrolwithinthesystem?

Howiscontrolsharedamongcomponents?

Howaredatacommunicatedbetweencomponents?
Istheflowofdatacontinuous,oraredataobjectspassedtothesystemsporadically?
Whatisthemodeofdatatransfer(i.e.,aredatapassedfromonecomponenttoanotheroraredataavailablegloballytobe
sharedamongsystem components)?
Dodatacomponents(e.qg.,ablackboardorrepository)exist,andifso,whatistheirrole?Howdofuncti
%alcomponentsinteractwithdata components?

re
datacomponentspassiveoractive(i.e.,doesthedatacomponentactivelyinteractwithothercomponentsinthesyste
m)?How dodataandcontrolinteractwithinthesystem?

4) ARCHITECTURAL DESIGN:

RepresentingtheSysteminContext:

At the architectural design level, a software architect uses an architectural context diagram (ACD)

tomodel

the manner in which software interacts with entities external to its boundaries. The generic

structureofthearchitecturalcontextdiagramisillustratedinthefigure

Superordinatesystems

Safehome Internet-
Product basedsyst

]

control
y ' targets
panel ystem: surveillance
SecurityFunction Tunction
uses
homeowner [
uses ‘ peers
uses
sensors Sensors

Subordinatesystems

Superordinatesystems—
thosesystemsthatusethetargetsystemaspartofsomehigherlevelprocessingscheme.

Page61

N FISOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Subordinate systems - those systems that are used by the target system and provide data or

processingthatarenecessarytocompletetargetsystemfunctionality.

Peer-levelsystems -thosesystemsthatinteracton apeer-to-peerbasis

Actors-

thoseentitiesthatinteractwiththetargetsystembyproducingorconsuminginformationthatisnecessaryforre

quisiteprocessing

DefiningArchetypes:

An archetype is a class or pattern that represents a core abstraction that is critical to the design
ofarchitecture for the target system. In general, a relative small set of archetypes is required to design

evenrelativelycomplexsystems.

In many cases, archetypes can be derived by examining the analysis classes defined as part of

theanalysis model.Insafehomesecurityfunction, thefollowingarethearchetypes:

Node: Represent a cohesive collection of input and output elements of the home
securityfunction. For example a node might be comprised of (1) various sensors, and (2) a

variety ofalarmindicators.

Detector: An abstraction that encompasses all sensing equipment that feeds information

intothetargetsystem

Indicator: Anabstractionthatrepresentsallmechanismsforindicationthatanalarmconditionisoccu

rring.

Controller: An abstraction that depicts the mechanism that allows the arming or disarming
ofa node. If controllers reside on a network, they have the ability to communicate with

oneanother.

Controller

communicateswith

Node

Detector

Indicator

Figure10.7UMLrelationships

forSafeHomesecurityfunctionarchetypes(adaptedfrom[BOS00])

RefiningtheArchitectureintoComponents:

As the architecture is refined into components, the structure of the system begins to emerge.
Thearchitectural designer begins with the classes that were described as part of the analysis model.
Theseanalysisclassesrepresent entitieswithintheapplicationdomainthatmustbeaddressedwithinthesoftware

Page62

I ESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

architecture. Hence, the application domain is one source is the infrastructure domain.
Thearchitecture must accommodate many infrastructure components that enable application
domain.Foreg:memorymanagementcomponents,communicationcomponentsdatabasecomponents,a
ndtaskmanagementcomponentsareoftenintegratedintothesoftwarearchitecture.

In the safeHome security function example, we might define the set of top-level components that
addressthefollowingfunctionality:

External communication management- coordinates communication of
thesecurityfunctionwithexternalentities

Controlpanelprocessing- managesall control panelfunctionality.
Detectormanagement-coordinatesaccesstoalldetectorsattachedtothesystem.
Alarmprocessing-verifies andactsonallalarmconditions.

Designclasseswould bedefined
foreach. Itisimportanttonote,however thatthedesigndetailsofallattributes

[SafeHome

[] Executive
/7 ‘“\ Funct
- N SN TS ionselecti
-~ ~ =, ~
- \ SN
- N ~ N \\
~ o St ™
ExternalCommu \\ \\\ \~\\
nication \\ \._\ ‘\\\
Management N e S~<
~ "
\ ~ -~

Homema
nagement

Security Surveillance
; \ vee

[I] GuI |£| Int
T R -
] ernetinte s ~
i \
L \
Control det ect alarm
panelpr ormanageme processing
ocessing
|

andoperationswouldnotbespecifieduntilcomponent-leveldesign.

~
~
S
a

ComponentStructure

Describing Instantiations of the System: An actual instantiation of the architecture means
thearchitecture is applied to a specific problem with the intent of demonstrating that the
structureandcomponentsareappropriate.

Page63

I SOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

|| safeHome
) Executive

- N\ Mg
e \ ¥ e
- \ -~
A . g,
External ~ ~ - ~
. N ~
Communication ey S~
Management N ~
N\
7 .
, \\ Security eew
/ N
0 ocu O3 internet
M ['nterface =~ ~o
Z LY ~
Controlpa detectorma alarmpr
nelprocess nagement ocessing
ing
1 7 il
Keypad ’ \

processing

scheduler

phonecom

munication

\

CP display
functions

Object AndObject Classes

Object: Anobjectisanentitythathasastateandadefinedsetofoperationsthatoperateonthatstate.

Anobectclassdefinationisbothatypespecificationandatemplateforcreatingobects.

Itincludesdeclarationofalltheattributesandoperationsthatareassociatedwithobjectofthatclass.

ObjectOrientedDesignProcess
There are five stages of object oriented design

processl)Understand and define the context and the modes of

use of thesystem.2)Designthesystemarchitecture
3) Identifytheprincipleobjectsinthesys
tem.4)Develop adesignmodels

5) Specify the object
interfacesSystemscontextandmod

es ofuse

It specify the context of the system.it also specify the relationships between the software that

isbeingdesignedanditsexternalenvironment.

Ifthesystemcontextisastaticmodelitdescribetheothersysteminthatenvironment.

If the system context is a dynamic model then it describe how the system actually interact with

theenvironment.

Page64

I ESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

SystemArchitecture

Oncetheinteraction
betweenthesoftwaresystemthatbeingdesignedandthesystemenvironmenthavebeendefined

Wecan usetheaboveinformationasbasisfordesigningtheSystemArchitecture.
Objectldentification

Thisprocessisactuallyconcerned
withidentifyingtheobjectclasses.Wecanidentifytheobjectclassesbythefo
llowing
1)Use a grammatical
analysis2)Use a tangible
entities 3)Usea
behaviourialapproach
4) Use a scenario
basedapproachDesign
model
Design models arethebridgebetween
therequirementsandimplementation. Therearetwotypeofdesignmodels
1) Static model describe the relationship between the
objects.2)Dynamicmodel describetheinteraction
betweentheobjects
Object Interface Specificationlt is concerned with specifying the details of the interfaces
toanobjects.
Designevolution
The main advantage OOD approach is to simplify the problem of making changes to
thedesign.Changingtheinternaldetailsofanobectis unlikelytoeffectanyothersystemobject.

Page65

NEESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

USERINTERFACEDESIGN

Interfacedesignfocusesonthreeareasofconcern:
thedesignofinterfacesbetweensoftwarecomponents,
thedesign ofinterfacesbetweenthesoftwareand other
nonhumanproducersandconsumersofinformation(i.e.,otherexternalentities),and
thedesignoftheinterfacebetweenahuman(i.e. ,theuser)andthecomputer.

What isUser InterfaceDesign?

User interface design creates an effective communication medium between a
humanandacomputer.Followingaset ofinterfacedesignprinciples,
designidentifiesinterfaceobjectsandactionsandthencreatesascreen
layoutthatformsthebasisforauser interfaceprototype.

WhyisUserInterfaceDesignimportant?

If software is difficult to use, if it forces you into mistakes, or if it frustrates your efforts
toaccomplish your goals, you won‘t like it, regardless of the computational power it exhibits or
thefunctionalityitoffers.Becauseitmoldsa user‘sperceptionofthesoftware,theinterfacehastoberight.

1.1 THEGOLDENRULES
TheoMandelcoinsthree-goldenrulesi:
Placetheuserincontrol.Reduce
the user‘s memory
load.Maketheinterfaceconsisten
t.
These golden rules actually form the basis for a set of user interface design principles that
guidethisimportantsoftwaredesignactivity.

PlacetheUserin Control
Mandel [MAN97] definesanumberofdesignprinciplesthatallowtheuser tomaintaincontrol:

Define interaction modes in a way that does not force a user into unnecessary or
undesiredactions.Wordprocessor— spellchecking—movetoeditandback;enterandexitwithlittleornoeffort

Provide for flexible interaction. Several modes of interaction — keyboard, mouse, digitizer pen
orvoice recognition, but not every action is amenable to every interaction need. Difficult to draw
acircleusingkeyboardcommands.

Allow user interaction to be interruptible and undoable. User stop and do something and then
resumewhereleft off.Beabletoundoanyaction.

Streamline interaction as skill levels advance and allow_the interaction to be customized. Perform
sameactionsrepeatedly;havemacromechanismsousercancustomizeinterface.

Hide technical internals from the casual user. Never required to use OS commands; file
managementfunctionsorotherarcanecomputingtechnology.

Design for direct interaction with objects that appear on the screen.User has feel of control
wheninteractdirectlywithobjects;stretchanobject.

ReducetheUser’sMemory Load:
Themoreauserhastoremember,themoreerror-proneinteractionwith thesystemwillbe.

Goodinterfacedesigndoesnottaxtheuser‘smemory
Systemshouldrememberpertinentdetailsandassisttheuserwithinteraction scenariothatassistsuserrecall.

Mandeldefinesdesign principlesthatenableaninterfacetoreducetheuser‘smemoryload:

Page66

INF/SOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Reduce demand on short-term memory. Com{)Iex tasks can Put a significant burden
onshort term memory. System designed toreduce the requirement to remember past actions
andresults;visualcuestorecognizepastactions,ratherthanrecallthem.

Establish meaningful defaults. Initial defaults for average user; but specify individual preferences
withareset option.

Defineshortcuts thatare intuitive.Usemnemonics likeAlt-P.
The visuallayoutofthe interfaceshouldbe basedonarealworldmetaphor.Billpayment

—check book andcheck registermetaphor toguideauser through thebillpaying
process;userhaslesstomemorize

Discloseinformationinaprogressivefashion.Organizehierarchically.Highlevelofabstraction
and then elaborate. Word underlining function — number of functions, but not
alllisted. Userpicksunderliningthenalloptionspresented

MakethelnterfaceConsistent
Interfacepresentandacquireinformationin aconsistentfashion.

All visualinformationisorganizedtoadesignstandardforallscreendisplays

Inputmechanismsareconstrainedtolimitedsetused consistentlythroughouttheapplication

Mechanisms for navigation from task to task are consistently defined and
implementedMandel[MAN97]definesa setofdesignprinciplesthathelpmaketheinterfaceconsistent:

Allow the user to put the current task into a meaningful context. Because of many screens
andheavy interaction, it is important to provide indicators — window tiles, graphical icons,
consistentcolorcoding so that the user knows the context of the work at hand; where came from
andalternatives ofwheretogo.

Maintainconsistencyacrossafamilyofapplications.Forapplicationsorproductsimplementationshou
Idusethesamedesignrulessothatconsistencyismaintainedforallinteraction

If past interactive models have created user expectations, do not make changes unless there is
acompellingreason to do so.Unless a compellingreasonpresentsitself don‘tchange
interactivesequencesthathavebecomedefactostandards. (alt-Stoscaling)

USERINTERFACEDESIGN

1.2.1 Interface DesignModels
Fourdifferentmodels comeintoplaywhenauserinterfaceistobedesigned.
Thesoftwareengineercreatesadesignmodel,

a humanengineer(orthe softwareengineer)establishesausermodel,

the end-user develops a mental image that is often called the user's model or the
systemperception,and

the implementersofthesystemcreateaimplementationmodel.

The role of interface designer is to reconcile these differences and derive a consistent representation
oftheinterface.

User Model: The user model establishes the profile of end-users of the system. To build an effective
userinterface, "all design should begin with an understanding of the intended users, including profiles of their
age,sex,physicalabilities,education,culturalorethnicbackground, motivation,goalsandpersonality™

[SHN90].In addition,userscan becategorizedas
Novices.
Knowledgeable, intermittent
users.Knowledgeable,frequentuser
S.

Page67

EESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

DesignModel:Adesign
modeloftheentiresystemincorporatesdata,architectural,interfaceandproceduralrepresentationso
fthesoftware.

Mental Model: The user‘s mental model (system perception) is the image of the system that end-
userscarryintheirheads.

Implementation Model: The implementation model combines the outward manifestation of the computer-
based system (the look and feel of the interface), coupled with all supporting information (books,
manuals,videotapes,helpfiles)thatdescribesystemsyntaxandsemantics.

Thesemodels
enabletheinterfacedesignertosatisfyakeyelementofthemostimportantprincipleofuser
interfacedesign: " Know theuser,know thetasks.""

1.2.2 The UserlnterfaceDesignProcess:(stepsininterfacedesign)
The user interface design process encompasses four distinct framework activities
:User,task, andenvironmentanalysisandmodeling

Interface
designInterfaceconstr
uctionInterfacevalidat
ion

interface ———t—— user, task and
validation environmentanalysis

implementaﬁ interface design
2]

/

\

\

UserInterfaceDesignProcess

(1) UserTask andEnvironmental Analysis:

The interface analysis activity focuses on the profile of the users who will interact with
thesystem. Skill level, business understanding, and general receptiveness to the new system are recorded,;
anddifferent user categories are defined. For each user category, requirements are elicited. In essence,
thesoftwareengineer attemptstounderstandthesystemperception(Section 15.2.1)foreach classofusers.
Once general requirements have been defined, a more detailed task analysis is conducted. Those
tasksthattheuser performstoaccomplish thegoalsofthesystemareidentified,described,andelaborated

The analysis of the user environment focuses on the physical work environment.
Amongthequestionstobeaskedare
Wherewilltheinterfacebe locatedphysically?

Will theuserbesitting,standing,orperformingothertasksunrelatedtotheinterface?Doesthe
interfacehardwareaccommodatespace, light, ornoiseconstraints?
Arethere special humanfactorsconsiderationsdrivenbyenvironmentalfactors?

Theinformation gathered aspartoftheanalysisactivityisused tocreatean
analysismodelfortheinterface.Usingthismodelas abasis, thedesignactivitycommences.

Page68

IESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

(2) InterfaceDesign:
Thegoalofinterfacedesignistodefineasetofinterfaceobjectsandactions(andtheirscreenrepresentations) that
enable a user to perform all defined tasks in a manner that meets every usability goaldefinedforthesystem.

(3) InterfaceConstruction(implementation)

The implementation activity normally begins with the creation of a prototype that enables
usagescenarios to be evaluated. As the iterative design process continues, a user interface tool kit (Section
15.5)maybeusedtocompletetheconstructionoftheinterface.

(4) InterfaceValidation:
Validationfocuseson
(1) theabilityoftheinterfacetoimplementeveryusertaskcorrectly,toaccommodatealltaskvariatio
ns,andtoachieveallgeneraluserrequirements;
thedegreetowhichtheinterfaceiseasytouseandeasytolearn;andtheusers*

acceptanceoftheinterfaceasausefultoolintheirwork.

INTERFACEANALYUSIS
A Key tenet of all software engineering process models is this: you better understand the problem before you
attemptto design a solution. In the case of user interface design, understanding the problem means understanding (1)
Thepeople who will interact with the system through the interface; (2) the tasks that tend-users must perform to do
theirwork, (3) the content that is presented as part of the inter face, an (4) the environment in which these tasks will
beconducted. In the sections that follow, we examine each of these elements of interface analysis with the intent
ofestablishingasolidfoundationforthedesigntasksthatfollow.

12.3.1 Useranalysis
Earlier we noted that each user has a mental image or system perception of the software that may be different
fromthementalimagedevelopedbyotherusers.

User Interviews. The most direct approach, interviews involve representatives from the software team who
meetwith end-users to better understand their needs, motivations work culture, and a myriad of other issues. This
can beaccomplishedinone-on-onemeetingsorthroughfocus groups.

Sales input. Sales people meet with customers an users on regular basis and can gatherinformation that will
helpthesoftwareteamtocategorizeusersandbetterunderstandtheirrequirements.

Marketinginput. Marketanalysiscanbeinvaluableindefinitionofmarketsegmentswhileprovidinganunderstandingofho
weachsegmentmightusethesoftwareinsubtlydifferentways.

Support input. Support staff talk with users on a daily basis, making them the most likely soured of information
onwhat works an what doesn‘t, what users like and what they dislike, what features generate questions, and
whatfeaturesareeasytouse.

Thefollowingsetofquestions(adapted form(HAC98)
)willhelptheinterfacedesignerbetterunderstandtheusersofasystem:
Avre user trained professionals, technicians, clerical or manufacturing

workers?Whatlevelofformaleducationdoestheaverageuserhave?
Aretheuserscapableoflearningfromwrittenmaterialsorhavetheyecpressedadesireofclassroomtrainin
g?

Are users expert typists or keyboard

phobic?Whatistheagerangeoftheusercommuni

ty?

Willtheusersberepresentedpredominatelybyonegender?How

areuserscompensatedforthe worktheyperform?
Dousersworknormalofficehours,ordotheyworkuntilthejobis done.

Isthesoftwaretobean integralpartofthework usersdo,or willitbeused onlyoccasionally?

Page69

I iSOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Whatistheprimaryspokenlanguageamongusers?
Whataretheconsequences ifausermakes
amistakeusingthesystem?Areusers
expertsinthesubjectmattertheisaddressedbythesystem?
Douserswanttoknowaboutthetechnologythat sitsbehindtheinterface?

The answers to these an similar questions will allow the designer to understand who the end-users are, what is
likelyto motivate and please them, how they can be grouped into different user classes or profiled, what their
mentalmodels ofthesystemare, andhowtheuserinterfacemustbecharacterizedtomeettheirneeds.

12.3.2 TaskAnalysisandModeling
Thegoaloftalkanalysisistoanswerthefollowing questions:
Whatworkwilltheuser performin specificcircumstances?

Whatspecificproblemdomain objectswilltheusermanipulateasworkisperformed?What
isthe sequence ofworktasks-theworkflow?
Whatisthehierarchyoftasks?

To answer these questions, the software engineer must draw upon analysis techniques discussed in Chapters 7 and
8,butinthisinstance, thesetechniquesareappliedtotheuserinterface.
Inearlierchapterwenotedthattheuse-
casedescribethemannerinwhichanactor (inthecontextofuserinterfacedesign,
anactorisalwaysaperson)interactswithasystem.
Theuse-caseprovidesabasicdescriptionofoneimportantworktaskforthecomputer-aideddesignsystem.
From,it,thesoftwareengineer can extracttasks,objects,andtheoverallflowoftheinteraction.

Task elaboration. Task analysis of interface design uses an elaborative approach to assist in understanding
thehumanactivitiestheuserinterfacemustaccommodate. Tounderstandthetasksthatmustbeperformedtoaccomplish the
goal of the activity, a humanengineer mustunderstand the tasks that humans currently perform(when using a manual
approach) and then map these into a similar (but not necessarily identical) set of tasks that
areimplementedinthecontextoftheuserinterface. Alternatively,thehumanengineercanstudyanexistingspecification ~ for
computer-based solution and derive a set of user tasks that will accommodate the user model, thedesign model, and
the system perception. For example, assume that a small software company wants to build acomputer-aided design
systemexplicitly for interior designers. By observing an interior designer at work, theengineer notices that interior
designcomprises a number of majoractivities: further layout (note the use-casediscussed earlier), fabric and material
selection, wall and window coverings selection, presentation (to the customer),costing, and shopping. Each of these
major tasks can be elaborated into subtasks. For example, using informationcontained in the use-case, furniture
layout can be refined into the following tasks: (1) draw a floor plan based onroom dimensions; (2) place windows
and doors at appropriate locations;(3a) use furniture templates to draw
scaledaccentsonfloorplan(4)movefurnitureoutlines;(6)drawdimensionstoshowlocation;(7)drawperspectiverenderingvi
ewforcustomer.Asimilarapproachcouldbeused foreachoftheothermajortasks.

Object elaboration. The software engineer extracts the physical objects that are used by the interior designer.
Theseobjects can be categorized into classes. Attributes of each class are defined, and an evaluation of the actions
appliedto each object provide the designer with a list of operations. For example, the furniture template might
translate intoa class called Furniture with attributes that might include size, shape, location and others. The interior
designerwould select the object from the Furniture class, move it to a position on the floor plan (another object in
thiscontext), draw the furniture outline, and so forth. He tasks select, move, and draw are operations. The user
interfaceanalysis model would not provide a literal implementation for each of these operation for each of these
operations.However, asthedesigniselaborated, thedetailsofeachoperationaredefined.

Workflowanalysis.Whenanumberofdifferentusers,eachplayingdifferentroles,makesusesofauserinterface, it is
sometimes necessary to go beyond task analysis and object elaboration and apply workflow analysis. Thistechnique
allows a software engineer to understand how a work process is completed when several people areinvolved.
Theflowofevents(showninthefigure)enabletheinterfacedesignertorecognizethreedayinterfacecharacteristics.
Eachuserimplements different tasks viathe interface;therefore,the lookand feelof the interfacedesigned
forthepatientwillbedifferentformtheonedefined forpharmacistsorphysicians.

Page70

I ZISOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Theinterfacedesignforpharmacistsandphysiciansmustaccommodateaccesstoanddisplayofinformation form
secondary information sources(e.g., access to inventory of the pharmacist and access
toinformationaboutalternativemedications forthephysician)

Many of the activities noted in the swimlane diagram can be further elaborated using talk analysis and
/orobject elaboration(e.g., fills prescription could imply a mail-order deliver, a visit to a pharmacy, or a
visit toaspecialdrugdistributioncenter.

Hierarchicalrepresentation. Astheinterfaceisanalyzed,aprocessofelaborationoccurs.Onceworkflowhasbeenestablish
ed, a task hierarchy can e defined for each user type. The hierarchy is derived by a stepwise elaboration ofeach task
identified for the user. For example, consider the user task requests that a prescription be refilled.
Thefollowingtaskhierarchyisdeveloped:
Request that a prescription be

refilledProvideidentifyinginfor

mationSpecifyname

Specifyuserid

Specify PIN and

passwordSpecify

prescription

numberSpecifydaterefillisreq

uired
Tocompletetherequestthataprescriptionberefilledtasks,threesubtasksaredefined.Oneofthesesubtasks,provideinden
tifyinginformation,isfurtherelaboratedinthreeadditionalsub-subtasks.

12.3.3 Analysisof DisplayContent
Systemresponsetimeismeasured fromthepointatwhich theuserperforms
somecontrolaction(e.g.,hitsthereturnkeyorclicksamouse)untilthesoftwarerespondswiththedesiredoutputoraction.
Systemresponsetimehastwoimportantcharacteristics:lengthandvariability. Ifsystemresponseisistoolong,
user frustration and stress is the inevitable result. Variability refers to the deviation form average responsetime, and,
in many ways, it is the most important response time characteristic. Low variability enables the user toestablish an
interaction rhythm, even if response time is relatively long. For example, a 1-second response to acommand will
often be preferable to a response that varies from 0.1 to 2.5 seconds. When variability is
significant,theuserisalwaysoffbalance,alwayswonderingwhethersomething-defferentlhasoccurredbehindthescenes.

Help facilities. Modern software provides on-line help facilities that enable a user to get a question answered
orresolve a problem without leaving the interface. A number of design issues must be addressed when a help facility
isconsidered:
Willhelpbeavailableforallsystemfunctionsandatalltimesduringsysteminteraction?Optionsincludehelpforonl
yasubsetofall functionsandactionsorhelpforallfunctions.
How will the user request help? Options include a help menu, a special function day, or a HELP
command.How will help be represented? Options include a separate window, a reference to a printed
document, or aone-ortwo-linesuggestionproducedinafixedscreenlocation.
Howwilltheuser returntonormalinteraction?Optionsincludeareturnbutton displayed
onthescreen,afunctionkey,orcontrolsequence.
Howwillhelpinformationbestructured?Optionsincludea-flatistructureinwhichallinformationis
accessedthroughakeyword,alayeredhierarchyorinformationthatprovidesincreasingdetailastheuserproceeds
intothestructure,ortheuserofhypertext.
In general, every error message or warning produced by an interactive system should have
thefollowingcharacteristics:
The message should describe the problem in language the user can
understand. Themessageshouldprovideconstructiveadvicefor
recoveringformtheerror.

Themessageshouldindicateanynegativeconsequencesoftheerror(e.g.,potentiallycorrupteddatafiles)sotha

t theusercanchecktoensurethattheyhavenotoccurred.

The message should be nonjudgmental. That is, the wording should never place blame on the
user.But an-effective error message philosophy can do much to improve the quality of an interactive system and
willsignificantlyreduceuserfrustrationwhenproblemsdooccur.

A number of design issues arise when typed commands or menu labels are provided as mode of
interaction:Willeverymenuoptionhaveacorrespondingcommand?

Page71

ZISOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Whatformwillcommandstake?Optionsincludeacontrolsequence(e.g.,alt-

p),functionkeys,oratypedword.

How difficult will it be to learn and remember the commands? What can be done if a

commandisforgotten?

Cancommandsbecustomizedor abbreviatedbytheuser?

Aremenulabelsself-explanatorywithinthecontextoftheinterface?

Are submenusconsistent withthefunctionimpliedbyamastermenuitem?
Applicationaccessibility.Accessibilityforusersandsoftwareengineers)whomaybephysicallychallengedisanimperati
ve for moral, legal, and business reasons. A variety of accessibility guidelines many designed for
Webapplications but often applicable to all types of software-provide detailed suggestions for designing
interfaces
thatachievevary8inglevelsofaccessibility.Othersprovidespecificguidelinesor-assistivetechnologylithataddresses
theneedsofthosewithvisual,hearing, mobility,speech, andlearningimpairments.

Internationalization. The challenge should be designed to accommodate a generic core of functionality that
canbe delivered to all who use the software. Localization features enable the interface to be customized for a
specificmarket.

A variety of internationalization guidelines are available to software engineers. These guidelines address
broaddesign issues and discrete implementation issues. The Unicode standard has been developed to address the
dauntingchallengeofmanagingdozensofnaturallanguages withhundredofcharactersandsymbols.
12.5DESIGNEVALUATION

After the design model has been completed, a first-level prototype is created. The prototype is evaluated by
theuser, who provides the designer with direct comments about the efficacy of the interface. In addition, if
formalevaluation techniques are used e.g., questionnaires, rating sheets), the designer may extract information form
thesedata (e.g., 80percent of all users did not like the mechanism for saving data files). Design modifications are
madebased on user input, and the next level prototype is created. The evaluation cycle continues until no
furthermodificationstotheinterfacedesignarenecessary.Ifadesignmodeloftheinterfacehasbeencreated,anumberofeval
uationcriteriacanbeappliedduringearlydesignreviews:

The length and complexity of the written specification of the system and its interface provide

anindicationoftheamountoflearningrequiredbyuserofthesystem.

Thenumberofuser tasksspecified andtheaveragenumberofactionspertask providean

indicationoninteractiontimeandtheoverallefficiencyofthesystem.

Thenumberofactions,tasks,and systemstatesindicatedbythedesign

modelimplythememoryloadonusersofthesystem.

Interfacestyles,helpfacilities,anderrorhandlingprotocolprovideageneralindicationofthecomplexity

oftheinterfaceandthedegreetowhichitwillbeacceptedbytheuser.

Once the first prototype is built, the designer can collect a variety of qualitative and quantitative data that
willassist in evaluating the interface. To collect 2qualitaive data, questionnaires can be distributed to users of
theprototype.Questionscanbe(1)simpleyes/noresponse,(2)numericresponse, (3)
scaled(subjective)response,(4)Likertscales(e.g.,strongly.

Users are observed during interaction, and data-such as number of tasks correctly completed over
astandardtimeperiod,frequencyofactions,sequenceofactions,timespent-lookingllatthedisplay,numberand types of
errors, error recovery time, time spent using help, and number of help references per standard timeperiod-
arecollectedandusedasaguideforinterfacemodification.

Page72

I ESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

preliminary
design

prototype #n

build

build
prototype #1
interface

interface \

design
modifications
are made

user
evaluate's
interface

—

H'

evaluation
P is studied by
designer

Interface design
is complete

Page73

2 SOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

UNIT-IV

AstrategicApproachforSoftwaretesting
SoftwareTesting
Oneoftheimportantphasesofsoftwaredevelopment
Testingistheprocessofexecutionofaprogramwiththeintentionoffindingerrorsinvolves40%

oftotalprojectcost
TestingStrategy

Aroad mapthatincorporatestestplanning,testcasedesign,testexecution andresultantdatacollectionand
execution
Validationreferstoadifferentsetofactivitiesthatensuresthatthesoftwareistraceabletothecustomerrequirements.
V&Vencompassesawidearrayof SoftwareQualityAssurance
PerformFormalTechnicalreviews(FTR)touncovererrorsduringsoftwaredevelopment
Begintestingatcomponentlevelandmoveoutwardtointegrationofentire componentbasedsystem.
Adopttestingtechniquesrelevantto stagesoftesting
TestingcanbedonebysoftwaredeveloperandindependenttestinggroupTesti

ng and debugging are different activities. Debugging follows

testingLowleveltestsverifies smallcodesegments.

Highleveltestsvalidatemajor systemfunctionsagainstcustomerrequirements

Testing Strategies for
ConventionalSoftwarel)UnitTestin
g

2) Integration
Testing3)ValidationTest
ingand4)SystemTesting

Spiral Representation for
Conventional Software

— ————

/""-’?')*'S'Om feshine TN
Validation lesting

Inlegratio tesling

Unit testing
Code /
Design
Reguirements
‘\\\Sjien €1 yineering __,_/’/

Criteria forcompletionofsoftwaretesting
No body is absolutely certain that software will not
failBasedonstatisticalmodelingandsoftwarereliabilitymodels

Page74

I ESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING N) o
95 percentconfidence(probability)that1000CPUhoursoffailurefreeoperationisatleast0.995
SoftwareTesting
« Twomajorcategoriesofsoftware testing
Black box
testingWhiteboxt
esting
Black boxtesting
Treatsthesystemasblackbox whosebehaviorcan bedetermined
bystudyingitsinputandrelatedoutputNotconcernedwiththeinternalstructureoftheprogram

BlackBoxTesting

It focuses on the functional requirements of the software ie it enables the sw engineer to
deriveasetofinputconditionsthatfullyexerciseallthefunctionalrequirementsforthatprogram
Concernedwith functionalityandimplementation

1) Graphbasedtestingmethod

2) Equivalencepartitioning
Graphbased testing

Drawagraphofobjectsandrelations

Devisetestcasestuncoverthegraphsuchthateachobjectanditsrelationshipexercised.

Page75

I ESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Node

Undirected weight

link
Parallel Links

Equivalencepartitioning
Dividesallpossibleinputsintoclasses such
thatthereareafiniteequivalenceclasses.Equivalenceclass

Setof objectsthatcan belinked
byrelationshipReduces thecostoftesting
Example
Inputconsistsofltol0
Thenclassesaren<1,1<=n<=10,n>10

Chooseonevalid classwithvaluewithin theallowed
rangeandtwoinvalidclasseswherevaluesaregreaterthanmaximumvalueandsmallerthanmini
mumvalue.

BoundaryValueanalysis

Selectinputfromequivalenceclassessuch
thattheinputliesattheedgeoftheequivalenceclasses

Set of data lies on the edge or boundary of a class of input data or generates the data that lies
attheboundaryofaclassofoutputdata

Example

If0.0<=x<=1.0

Then testcases (0.0,1.0)forvalidinputand (-0.1and1.1) forinvalid
inputOrthogonalarrayTesting

Toproblems inwhichinputdomainisrelativelysmallbuttoolargeforexhaustivetesting
Example

Threeinputs A,B,Ceachhavingthreevalues willrequire27testcases

L9 orthogonaltestingwillreducethenumberoftestcaseto9 asshownbelow

A B C
1 1 1
1 2 2
1 3 3
2 1 3
2 2 3
2 3 1
3 1 3

Page76

IZ/SOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

WhiteBoxtesting
Alsocalledglassboxtesting
Involvesknowingtheinternalworkingofaprogram
Guaranteesthatallindependentpathswillbeexercisedatleastonce.Exercises
alllogicaldecisionsontheirtrueandfalsesides
Executesallloops
ExercisesalldatastructuresfortheirvalidityWh
iteboxtestingtechniques
Basis path
testingControlstructuret
esting

Basis pathtesting
ProposedbyTomMcCabe
Defines a basic set of execution paths based on logical complexity of a procedural
designGuarantees toexecuteeverystatementintheprogramatleastonce
StepsofBasis PathTesting
Drawtheflowgraphfromflowchartoftheprogram
Calculatethe cyclomaticcomplexityoftheresultant
flowgraphPreparetestcases thatwillforceexecutionofeachpath
Threemethods
tocomputeCyclomaticcomplexitynumberV(G)=E-N+2(E
is number of edges, N is number of
nodesV(G)=Numberofregions
V(G)= Number of predicates
+1ControlStructuretesting
Basispathtestingissimpleandeffectiveltis
notsufficientinitself
Controlstructurebroadensthebasictestcoverageand improvesthequalityofwhiteboxtesting
Condition
TestingData flow
TestingLoopTesti

ng

ConditionTesting
--Exercisethelogicalconditionscontained inaprogrammodule
--Focusesontestingeachcondition in theprogramtoensurethatitdoescontain errors
--Simple

conditionEl<relationope

rator>E2
--Compoundcondition

simplecondition<Booleanoperator>simplecondition

Dataflow Testing
Selects test paths according to the locations of definitions and use of variables in a
programAimstoensurethatthedefinitionsofvariablesandsubsequentuseistested
Firstconstructadefinition-usegraphfromthecontrolflowofaprogram

LoopTesting
Focuses on the validity of loop
constructsFourcategories canbedefined
Simple
loopsNestedloopsC
oncatenated
loopsUnstructuredlo
ops

Page77

I ESOFTWARE ENGINEERING —Material
SOFTWAREENGINEERING

Testingofsimpleloops
-- Nisthemaximumnumberofallowablepasses through theloop

Page78

I ESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Skiptheloopentirely

Onlyonepass

throughtheloop Twopassesthro

ugh theloop

m passes through the loop

wherem>NN-1,N,N+1passes

theloop
NestedLoops
Startattheinnermostloop.Setallotherloopstomaximumvalues

Conduct simple loop test for the innermost loop while holding the outer loops at
theirminimumiterationparameter.

Workoutwardconductingtestsforthenextloopbutkeepingallother
loopsatminimum.Concatenatedloops

Followtheapproachdefined forsimpleloops,ifeach oftheloop isindependentofother.

If the loops are not independent, then follow the approach for the
nestedloopsUnstructuredLoops

Redesign the program to avoid

unstructuredloops ValidationTesting

Itsucceedswhenthesoftwarefunctionsin amannerthatcanbereasonablyexpected
bythecustomer.

1) ValidationTestCriteria
2)ConfigurationReview3)
Alpha
AndBetaTestingSystemT
esting
Its primary purpose is to test the
completesoftware. 1)RecoveryTesting
2) Security
Testing3Stress Testing
and4)Performance
TestingThe Art
ofDebugging
Debugging occursasaconsequencesofsuccessfultesting.
Debugging
Stratergies1)Brute Force
Method.2)Back Tracking
3)CauseElimination
and4)Automated
debuggingBruteforce
Most commonandleastefficient
Applied when all else
failsMemorydumpsaretake
n
Tries
tofindthecausefromtheloadofinformationBacktracking
Commondebuggingapproach
Usefulforsmallprograms

Page79

L SOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING
Beginningatthesystemwherethesymptomhasbeenuncovered,thesourcecodetracedbackwardun
tilthesiteofthecauseisfound.

Page80

FISOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

CauseElimination
Based ontheconceptofBinarypartitioning
Alistofallpossiblecauses is developed andtestsareconductedtoeliminateeach

SoftwareQuality

Conformance to explicitly stated functional and performance requirements,
explicitlydocumenteddevelopment standards,
andimplicitcharacteristicsthatareexpectedofallprofessionallydevelopedsoftware.

Factors that affect software quality can be categorized in two broad
groups:Factorsthatcan bedirectlymeasured(e.g.defects
uncoveredduringtesting)
2. Factorsthat canbe
measuredonlyindirectly(e.g.usabilityormaintainability)McCall‘squalityfactor
S
Productoperation
Correctness
Reliability
Efficiencyl
ntegrityUs
ability
ProductRevision
Maintainability
FlexibilityTest
ability
ProductTransition
PortabilityReus
abilitylnteroper
ability
1SO9126Quality
Factors 1.Functionality
2.Reliability
3.Usability4.Eff
iciency5.Maintai
nability6.Portabi

lity

Page81

EFISOFTWAREENGINEERING-Material

SOFTWAREENGINEERING
Moinlainabilily

Flexibility
Testability

PRODUCT REVISION

Portability
Reusability
Interoperability

PRODUCT TRANSITION

PRODUCT OPERATION

Correchness

Reliability

Productmetrics

Usability

Efficiency
Infegrity

Productmetricsforcomputersoftwarehelpsustoassessquality.Meas

ure

Provides a quantitative indication of the extent, amount, dimension, capacity or size of some

attributeofaproductorprocess
Metric(IEEE93definition)

Aquantitative measureofthe degreetowhichasystem,componentorprocesspossessagivenattributelndicator
Ametricoracombinationofmetricsthatprovideinsightintothesoftwareprocess,asoftwareprojectoraprodu

ct itself

ProductMetricsforanalysis,Design, TestandmaintenancePr

oductmetricsfortheAnalysis model

Function pointMetric
FirstproposedbyAlbrecht

MeasuresthefunctionalitydeliveredbythesystemFPc

omputed fromthefollowingparameters

Numberofexternalinputs(EIS)Number

externaloutputs(EOS)Number of
external
Inquiries(EQS)NumberofinternalLogi
calFiles(ILF)
Numberofexternalinterfacefiles(EIFS)

Eachparameter isclassified assimple,averageorcomplexandweightsareassignedasfollows

«InformationDomain Count
EIS 3
EOS 4
EQS 3
ILFS 7
EIFS 5

FP=Count total
*[0.65+0.01*E(Fi)]MetricsforDesi
gnModel

Simple avg
4
5
4
10
7

Complex

55o~o

Page82

N EISOFTWAREENGINEERING-Material

SOFTWAREENGINEERING

DSQI(Design Structure Quality
Index)US
airforcehasdesignedtheDSQI
Computesltos7fromdataandarchitecturaldesignS1:T
otalnumberofmodules
S2:NumberofmoduleswhosecorrectfunctiondependsonthedatainputS3:Numb
er of modules whose function depends on prior
processingS4:Numberofdatabaseitems
S5:Number of unique database
itemsS6:Numberofdatabasesegments
S7:Number of modules with single entry and
exitCalculateD1toD6froms1tos7asfollows:
D1=1 if standard design is followed otherwise
D1=0D2(moduleindependence)=(1-(s2/s1))
D3(module not depending on prior processing)=(1-
(s3/s1))D4(Databasesize)=(1-(s5/s4))
D5(Database compartmentalization)=(1-
(s6/s4)D6(Moduleentry/exitcharacteristics)=(1-
(s7/s1))
DSQI=sigmaofWiDi
i=1to6, WiisweightassignedtoDi
Ifsigmaofwiislthenallweightsareequalto0.167
DSQlofpresentdesignbecompared withpastDSQI.IfDSQI
issignificantlylowerthantheaverage,furtherdesignworkandrevieware indicated
METRICFORSOURCECODE
HSS(HalsteadSoftwarescience)
Primitivemeasurethatmaybederived after thecodeisgeneratedor estimated
oncedesigniscomplete

« m=thenumberofdistinctoperatorsthatappearinaprogram

« nz=thenumberofdistinctoperandsthatappearinaprogramNi=the
totalnumberofoperatoroccurrences.
N2 = the total number of operand
occurrence.Overall program length N can be
computed:N=n:log2ni+ nzlog2n:

V =Nlogz(ni+
n2)METRICFORTESTIN
G

« nm = the number of distinct operators that appear in a
programnz = the number of distinct operands that appear in a
programNi=the total numberofoperatoroccurrences.

N2 = the total number of operand
occurrence.ProgramLevelandEffort
PL = 1/[(n1/ 2) x (N2/

nzl)]e=V/PL

METRICS FORMAINTENANCE
Me=thenumberofmodules inthecurrentrelease
Fc=thenumberofmodules
inthecurrentreleasethathavebeenchangedF.=thenumberofmodules
inthecurrentreleasethathavebeenadded.
Fa =thenumberofmodules
fromtheprecedingreleasethatweredeletedinthecurrentrelease TheSoftwareMaturitylndex,SMI,
isdefinedas:
SMI=[Me(FetFatFayMi]
METRICSFORPROCESSANDPROJECTS

SOFTWAREMEASUREMENT
Softwaremeasurementcanbecategorizedin twoways.
Direct measuresof the software engineering process include costand effort applied.Directmeasures

Page83

Y SOFTWAREENGINEERING-Material

SOFTWAREENGINEERING
of the product include lines of code (LOC) produced, executionspeed, memory
size,anddefectsreportedoversomesetperiodoftime.

Page84

N ESOFTWAREENGINEERING-Material

SOFTWAREENGINEERING

Indirectmeasuresoftheproductincludefunctionality,quality,complexity,efficiency,reliability, maint
ainability,andmanyother"—abilities"
Size-OrientedMetrics
Size-oriented software metrics are derived by normalizing quality and/or productivity
measuresbyconsideringthe sizeofthesoftwarethathasbeenproduced.
To develop metrics that can be assimilated with similar metrics from other projects, we choose lines
ofcode as our normalization value. From the rudimentary data contained in the table, a set of simple
size-orientedmetricscanbedevelopedforeachproject:
Errors per KLOC (thousand lines of
code).Defects perKLOC.
$perLOC.
Pageofdocumentation perKLOC.
In addition, other interesting metrics can be
computed:Errorsperperson-month.
LOCperperson-month.
Sperpageofdocumentation.

Function-OrientedMetrics

Function-oriented software metrics use a measure of the functionality delivered by the application as
anormalization value. Since _functionality cannot be measured directly, it must be derived indirectly using
otherdirect measures. Function-oriented metrics were first proposed by Albrecht, who suggested a measure
called thefunction point. Function points are derived using an empirical relationship based on countable
(direct)measuresofsoftware'sinformation domainandassessmentsofsoftwarecomplexity.

Proponents claim that FP is programming language independent, making it ideal for

applicationusing conventional and nonprocedural languages, and that it is based ondata that are

mare likelyto be known early in the evolution of a project, making FP more attractive as an

estlmatlonapPrpach.

Opponentsclaim thatthe method requires some—sleightof handlinthatcomputation

isbasedsubjective rather than objective data, that counts of the information domaincan be

difficulttocollectafterthefact, andthatFPhasnodirectphysicalmeaning-it‘sjustanumber.
TypicalFunction-OrientedMetrics:

errorsperFP(thousand

linesofcode)defectsperFP

$perFP

pagesofdocumentationperFPF
Pperperson-month

1.3) Reconciling DifferentMetricsApproaches

The relationship between lines of code and function points depend upon
theprogramming language that is used to implement the software and the quality of the
design.Function pointsandLOC
basedmetricshavebeenfoundtoberelativelyaccuratepredictorsofsoftwaredevelopmenteffortandcost.

1.4) ObjectOrientedMetrics:
Conventional software project metrics (LOC or FP) can be used to estimate

objectorientedsoftwareprojects.LorenzandKiddsuggestthefollowingsetofmetricsforOOprojects:

Number of scenario scripts: A scenarig script is a detailed sequence of steps that describes

theinteractionbetweentheuserandtheapplication.

Numberofkeyclasses:Keyclassesarethe-highlyindependentcomponentsthataredefinedearlyin object-

orientedanalysis.

Number)) .)

ofsugf)ortclass_es:Supportclassesarerequ|redt0|mplementthesystembutarenotlmmedlatelyreIatedtoth

eproblemdomain.

Average number of support classes per key class: Of the average number of sugpo_rt classes

Eerkey class were known for a given problem domain estimation would be much simplified.
orenzand Kidd suggest that applications with a GUI have between two and three times the

number ofsupportclassesaskeyclasses.

Page85

L SOFTWAREENGINEERING-Material

SOFTWAREENGINEERING

Number of subsystems: A subsystem is an aggregation of classes that support a function that
isvisible to the énd-userof a syStem. Once subsystems are identified, it is easier to lay out
areasonablescheduleinehicwork onsubsystemsis partitioned amongprojectstaff.

1.5) Use-CaseOrientedMetrics

Use-casesdescribeuser-visiblefunctionsandfeaturesthatarebasicrequirementsforasystem. Theuse-
casesisdirectlyproportionaltothesizeoftheapplicationinLOCandtothenumberofuse-casesis directly
proportional to the size of the application in LOC and to the numberof test cases that will
havetobedesignedtofullyexercisetheapplication.

Because use-cases can be created at vastly different levels of abstraction, there is no standard
sizefor a use-case. Without a standard measure of what a use-case is, its application as a normalization
measureis suspect.

1.6) WebEngineeringProjectMetrics

The objective of all web engineering projects is to build a Web application that delivers a

combinationofcontentandfunctionalitytotheend-user.
Number of static Web pages: These pages represent low relative complexity and generally
requirelesseffort to_construct thandynamic pages. This measuresprovidesan indicationof the
overallsizeoftheapplicationandtheeffortrequiredtodevelopit.
NumberofdynamicWebpages::Webpageswithdynamiccontentareessentialinalle-)
commerceapplications,searchengines,financialapplication,andmanyotherWebAppcategories. These
pages represent higher relative complexity and require more effort to constructthan static pages.
This measure provides an indication of the overall size of the application and
theeffortrequiredtodevelopit.
Number of Internal page link: Internal page links are pointers that provide an indication of the degree
ofarchitecturalcouplingwithintheWebApp.
Number of persistent data objects: As the number of persistent data objects grows, the complexity of the
WebAppalsogrows, andefforttoimplementit increasesproportionally.
Number of external systems interfaced: As the requirement for interfacing grows, system complexity
anddevelopmenteffort alsoincrease. i .)
Number ~ of static contentobjects: Static contentobjects ~_encompass static text-
based,graphical,video,animation,andaudioinformationthat arelncorpor_atedW|th|ntheWebApép.
Number of dynamic content objects: Dynamic content objects are generated based on end-
useractions and encompass internally génerated text-based, graphical, video, animation, and
audioinformationthatareincorporatedwithintheWebApp. i])
Number of executable functions: An executable function provides some computational service
tothe end-user. As the number of executable functions increases, modeling and construction
effortalsoincrease.

2)METRICSFORSOFTWAREQUALITY

Theoverridinggoalofsoftwareengineering is toproducea high-quality system,application,orproduct
within a timeframe that satisfies a market need. To achieve this goal, software engineers must
applyeffectivemethods coupledwith moderntools within thecontextofamaturesoftwareprocess.

2.1MeasuringQuality

The measures of software qualityare correctness, maintainability, integrity, and usability.

Thesemeasures willprovideusefulindicatorsfortheprojectteam.
Correctness. Correctness is the degree to which the software performs its required function.
Themost common measure for correctness is defects per KLOC, where a defect ‘is defined as a
verifiedlackofconformancetorequirements.
Maintainability. Maintainability is the ease with which a program can be corrected if an error
isencountered, adapted if its environment changes, or enhanced if the customer desires a change
inrequirements. A simple time-oriented metric Is mean-time-tochange (MTTC), the time it takes
toanalyze the change request, design an appropriate modification, implement the change, test it,
anddistributethechangetoallusers.

Integrity.Attackscanbemadeonallthreecomponentsofsoftware:programs,data,anddocuments.

Page86

N /SOFTWAREENGINEERING-Material

SOFTWAREENGINEERING

To measure integrity, two additional attributes must be defined: threat and security. Threat is
theprobability (which can be estimated or derived from empirical evidence) that an attack of a
specifictypewilloccurwithina
giventime.Securityistheprobability(whichcanbeestimatedorderivedfromempiricalevidence)thattheattack
ofaspecifictypewillberepelled. Theintegrityof
asystemcanthen bedefined as

integrity=> [1-(threat x [/(1-security))]
Usability: Usabilityisanattempttoquantifyuser-friendlinessandcan bemeasuredintermsoffourcharacteristics:

DefectRemoval Efficiency

Aqualitymetricthatprovidesbenefitatboth
theprojectandprocesslevelisdefectremovalefficiency (DRE). In essence, DRE is a measure of the
filtering ability of quality assurance
andcontrolactivitiesastheyareappliedthroughoutallprocessframeworkactivities.
Whenconsideredforaprojectasawhole, DREisdefinedinthefollowingmanner:DRE

=E/(E+D)
where E is the number of errors found before delivery of the software to the end-
userandDisthenumberofdefectsfoundafterdelivery.

Thoseerrorsthatarenotfoundduringthereviewoftheanalysismodelarepassedontothedesign task
(where they may or may not be found). When used in this context, we redefine DRE
asDREi=Ei/(Ei+Ei+1)
Eiisthenumberoferrors foundduringsoftwareengineeringactivityiand
Ei+1 is the number of errors found during software engineering activity i+1 that are traceable to
errorsthatwerenotdiscoveredinsoftwareengineeringactivityi.

A quality objective for a software team (or an individual software engineer) is to achieve DRE
thatapproaches1.Thatis, errorsshouldbefilteredoutbeforetheyarepassedontothenextactivity.

Page87

I SOFTWAREENGINEERING-Material

SOFTWAREENGINEERING

UNIT-V
RISK
MANAGEMENTREACTIVE VS.PROACTIVE

RISKSTRATEGIES

At best, a reactive strategy monitors the project for likely risks. Resources are set aside to
dealwith them,shouldtheybecomeactualproblems.Morecommonly,thesoftwareteamdoesnothing
aboutrisksuntilsomething goes wrong.Then,theteamfliesintoaction

inanattempttocorrecttheproblemrapidly. Thisis oftencalledafirefightingmode.
project teamreactstoriskswhentheyoccur
mitigation—
planforadditionalresourcesinanticipationoffirefightingfixonfailure—
resourcearefoundandapplied whentheriskstrikes
crisis management—failuredoesnotrespondtoappliedresourcesandprojectisinjeopardy

A proactive strategy begins long before technical work is initiated. Potential risks are
identified,theirprobabilityandimpactareassessed,andtheyarerankedbyimportance. Then,

thesoftwareteamestablishesaplanformanagingrisk.
formalriskanalysisisperformed
organizationcorrectstherootcausesofrisk

o examiningrisksourcesthatliebeyondtheboundsofthesoftware
o developingthe skilltomanagechange

RiskManagementParadigm

= Il
S KE=

SOFTWARERISK

Riskalwaysinvolvestwocharacteristics
Uncertainty—theriskmayormaynothappen; that is,thereareno100%probable risks
Loss—iftheriskbecomesareality,unwantedconsequencesorlosseswilloccur.
Whenrisksareanalyzed,itisimportanttoquantifythelevelofuncertaintyinthedegreeoflossassociatedwit
heachrisk. Toaccomplishthis,differentcategories ofrisksareconsidered.
Projectrisksthreatentheprojectplan. Thatis,ifprojectrisks
becomereal,itislikelythatprojectschedulewillslipandthatcostswillincrease.
Technical risks threaten the quality and timeliness of the software to be produced. If a technical
riskbecomes a reality, implementation may become difficult or impossible. Technical risks
identifypotentialdesign,implementation,interface, verification,andmaintenanceproblems.
Business risks threaten the viability of the software to be built. Business risks often jeopardize
theprojectortheproduct.Candidatesforthetopfivebusiness risksare
Buildingaexcellentproductorsystemthatnoonereal lywants(marketrisk),
Buildingaproductthatnolongerfitsintotheoverallbusinessstrategyforthecompany(strategicrisk),

Page88

EE SOFTWAREENGINEERING-Material

SOFTWAREENGINEERING

Buildingaproductthatthesales forcedoesn'tunderstandhowtosell,
Losing thesupportofsenior
managementduetoachangeinfocusorachangeinpeople(managementrisk),and
Losingbudgetaryorpersonnelcommitment(budgetrisks).
Known risksarethosethatcanbeuncoveredaftercarefulevaluationoftheprojectplan,thebusinessandtechnical
environment inwhichtheprojectisbeingdeveloped,andotherreliableinformationsources.

Predictable risksareextrapolatedfrompast project experience.

Unpredictable risks are the joker in the deck. They can and do occur, but they
areextremelydifficulttoidentifyinadvance.

2) RISKIDENTIFICATION
Risk identification is a systematic attempt to specify threats to the project plan. There are two
distincttypesofrisks.
Generic risks
andproduct-
specificrisks.
Genericrisksareapotentialthreattoeverysoftwareproject.
Product-specificrisks can beidentified onlybythosewith aclear understanding
ofthetechnology,thepeople,andtheenvironmentthatisspecifictotheprojectthatistobebuilt.

Knownandpredictablerisksinthefollowing genericsubcategories:
Productsize—risksassociatedwiththeoverallsizeofthesoftwaretobebuiltormodified.
Businessimpact—risksassociatedwith o
constraintsimposedbymanagementorthemarketplace. Customercharacteristics—
risksassociatedwiththesophisticationofthe
customerandthedeveloper'sabilitytocommunicatewiththecustomerinatimelymanner.
Processdefinition—risksassociatedwiththedegreetowhich o
thesoftwareprocesshasbeendefinedandisfol lowedbythedevelopmentorganization.

DeveIoPment environment—risks associated with the availability and quality of the tools to be used
tobuildtheproduct.

Technology to be built—risks associated with the complexity of the system to be built and
the"newness"ofthetechnologythat ispackagedbythesystem.

Staff size and experience—risks associated with the overall technical and project experience of
thesoftwareengineerswhowill dothework.

AssessingOverallProjectRisk
Thequestionsareorderedbytheirrelateimportancetothesuccess ofaproject.
Havetop softwareandcustomermanagersformallycommitted tosupporttheproject?
Areend-usersenthusiasticallycommittedtotheprojectandthesystem/producttobebuilt?Are
requirements fully understood by the software engineering team and their
customers?Havecustomers beeninvolvedfullyinthedefinitionofrequirements?
Do end-users have realistic
expectations?ls projectscopestable?
Doesthesoftwareengineeringteamhavetherightmixofskills?Areproj
ectrequirementsstable?
Doestheprojectteamhaveexperiencewiththetechnologytobe
Implemented?
Is thenumberofpeopleontheprojectteamadequatetodothejob?
Do all customer/user constituencies agree on the importance of the project and on the
requirementsforthesystem/producttobebuilt?

3.2Risk Components andDrivers
Theriskcomponentsaredefinedinthefollowingmanner:
Performancerisk—
thedegreeofuncertaintythattheproductwillmeetitsrequirementsandbefitforitsintendeduse.
Costrisk—thedegreeofuncertaintythattheprojectbudgetwillbemaintained.
Supportrisk—thedegreeofuncertaintythattheresultantsoftwarewillbeeasytocorrect,
adapt,andenhance.
Schedule risk—the degree of uncertainty that the project schedule will be maintained and that
theproductwillbedeliveredontime.

Page89

L SOFTWAREENGINEERING-Material

SOFTWAREENGINEERING

The impact of each risk driver on the risk component is divided into one of four impact categories—
negligible,marginal, critical,orcatastrophic.

RISKPROJECTION
Risk projection, also called risk estimation, attempts to rate each risk in two ways—the likelihood
orprobability that the risk is real and the consequences of the problems associated with the risk, should
itoccur.
The project planner, along with other managers and technical staff, performs four risk projection
activities:establishascalethatreflectstheperceivedlikelinoodofa risk,
delineatetheconsequencesoftherisk,
estimatetheimpactoftheriskontheprojectandtheproduct,and
notetheoverallaccuracyoftheriskprojectionsothattherewillbenomisunderstandings.

4.1 Developing a Risk
TableBuildingaRis

A project team begins by listing all risks (no matter how remote) in the first column of the
table.EachriskiscategorizedinNext;theimpactofeachriskisassessed.
Thecategoriesforeach ofthefourriskcomponents—performance,support,cost,and schedule—
areaveragedtodetermineanoverallimpactvalue.
High-probability, high-impact risks percolate to the top of the table, and low-probability
risksdroptothebottom. Thisaccomplishesfirst-orderriskprioritization.
The projectmanagerstudiestheresultant sortedtableanddefinesacutoffline.
The cutoff line (drawn horizontally at some point in the table) implies that only risks that lie above the
linewill be given further attention. Risks that fall below the line are re-evaluated to accomplish second-
orderprioritization.
4.2 AssessingRiskImpact

Threefactors affecttheconsequences thatarelikelyifariskdoesoccur:itsnature,its scope,anditstiming.
Thenatureoftheriskindicatestheproblemsthatarelikelyifitoccurs.
Thescopeofariskcombinestheseverity(justhowseriousisit?)
withitsoveralldistribution.Finally,thetimingofa risk considerswhenand forhowlongtheimpact
will be felt.

The overall risk exposure, RE, is determined using the
followingrelationshipRE=PxC
WherePistheprobabilityofoccurrenceforarisk, andCisthecosttotheprojectshouldtheriskoccur.

Risk identification. Only 70 percent of the software components scheduled for reuse will, in
fact,beintegratedintotheapplication. Theremaining functionalitywillhavetobecustomdeveloped.

Page90

R ISOFTWAREENGINEERING-Material

SOFTWAREENGINEERING

Riskprobability.80%(likely).
Riskimpact. 60reusablesoftwarecomponents wereplanned.
Risk exposure.RE=0.80x25,200~$20,200.

Thetotalrisk exposureforallrisks(abovethecutoffintherisktable)
canprovideameansforadjustingthefinalcostestimateforaprojectetc.

RISKREFINEMENT
Onewayforriskrefinementistorepresenttheriskincondition-transition-consequence(CTC)
format. Thisgeneralcondition canberefinedinthefollowing manner:

Subconditionl. Certain reusablecomponentsweredevelopedbyathird
partywithnoknowledgeofinternaldesignstandards.

Sub condition 2. The design standard for component interfaces has not been solidified and
maynotconformtocertainexistingreusablecomponents.

Subcondition 3.Certainreusablecomponentshavebeen
implementedinalanguagethatisnotsupportedonthetargetenvironment.

5) RISKMITIGATION,MONITORING,ANDMANAGEMENT
Aneffectivestrategymustconsider
threeissues:Riskavoidance
Risk monitoring
Riskmanagementandcontingencyplanning
Ifasoftwareteamadoptsaproactiveapproachtorisk,avoidanceisalways thebeststrategy.
To mitigate this risk, project management must develop a strategy for reducing turnover.
Amongthepossiblestepstobetakenare
Meetwithcurrent
stafftodeterminecausesforturnover(e.g.,poorworkingconditions,lowpay,competitivejobmarket).
Mitigatethosecausesthatareunderourcontrol beforetheprojectstarts.
Once the project commences, assume turnover will occur and develop techniques
toensurecontinuitywhenpeopleleave.
Organize projectteamssothat informationabouteachdevelopmentactivityiswidelydispersed.
Definedocumentationstandardsandestablishmechanismstobesurethatdocumentsaredevelo
pedinatimelymanner.
Conductpeer reviews
ofallwork(sothatmorethanonepersonis"uptospeedl).*Assignabackupstaffmemberforeverycr
iticaltechnologist.
Astheprojectproceeds,riskmonitoringactivitiescommence. Thefollowingfactorscanbemonitored: Generalattit
udeofteammembersbasedonprojectpressures.
The degree to which the team has
jelled.Interpersonal relationships among team
members.Potentialproblemswithcompensationandb
enefits
Theavailabilityofjobswithinthecompanyandoutsideit.

[]
Softwaresafetyandhazardanalysisaresoftwarequalityassuranceactivitiesthatfocusontheidentification ~ and
assessment of potential hazards that may affect software negatively and cause an entiresystem to fail. If
hazards can be identified early in the software engineering process, software designfeatures
canbespecifiedthatwilleithereliminateorcontrolpotentialhazards.

6) THERMMMPLAN

Ariskmanagementstrategycanbeincludedin thesoftwareprojectplan ortheriskmanagementsteps
canbeorganizedintoaseparate RiskMitigation,MonitoringandManagementPlan.

TheRMMM plan documentsallworkperformedas partofriskanalysis andis
usedbytheprojectmanageraspartoftheoverallprojectplan.

Page91

EFISOFTWAREENGINEERING-Material

SOFTWAREENGINEERING

Risk
monitoringisaprojecttrackingactivitywiththreeprimaryobjectives:toasse
sswhetherpredictedrisksdo, infact,occur;
to ensure that risk aversion steps defined for the risk are being properly applied;
andtocollectinformationthatcanbeusedforfutureriskanalysis.

QUALITY MANAGEMENT

1) QUALITYCONCEPTS:

Quality
managementencompassesaquali
tymanagementapproach,
effectivesoftwareengineeringtechnology(methodsandtools),
formaltechnicalreviewsthatareappliedthroughoutthesoftwareprocess,amult
itieredtestingstrategy,
control ofsoftwaredocumentationandthechangesmadetoit,
a proceduretoensurecompliancewithsoftwaredevelopment
standards(whenapplicable),andmeasurementandreportingmechanisms.

Variationcontrolistheheart ofqualitycontrol.

Quality

TheAmericanHeritageDictionarydefinesqualityas-acharacteristicorattributeofsomething. I
Qualityofdesign referstothecharacteristicsthatdesignersspecify foranitem.
uality of conformance is the degree to which the design specifications are followed
uringmanufacturing.
Insoftwaredevelopment,qualityofdesignencompassesrequirements,specifications,andthedesignofthe
system.Qualityofconformanceisanissue focusedprimarilyonimplementation.Iftheimplementation follows
the design and the resulting system meets its requirements and performance
goals,conformancequalityishigh.
RobertGlassarguesthatamore-intuitivelrelationshipisinorder:

User satisfaction=compliantproduct+goodquality+deliverywithinbudgetandschedule

1.2 QualityControl

Quality control involves the series of inspections, reviews, and tests used throughout the
softwareprocess toensureeachworkproductmeetstherequirementsplaceduponit.

A key concept of quality control is that all work products have defined, measurable specifications to
whichwe may compare the output of each process. The feedback loop is essential to minimize the
defectsproduced.

1.3 QualityAssurance
Qualityassuranceconsistsoftheauditingandreportingfunctionsthatassesstheeffectivenessandcompleteness of
quality control activities. The goal of quality assurance is to provide management with thedata necessary to
be informed about product quality, thereby gaining insight and confidence that
productqualityismeetingitsgoals.

1.4 Cost ofQuality
Thecostofquality includesallcosts incurredin thepursuitofqualityorinperformingquality-
relatedactivities.

Qualitycosts maybedivided intocostsassociated with prevention,appraisal,andfailure.
Preventioncostsinclude

qualityplanning

formaltechnicalreviewst

estequipment

training

Page92

IEESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Appraisalcostsincludeactivitiestogaininsightintoproductconditionthe—firsttimethroughleachproce
ss.Examplesofappraisalcostsinclude

in-process and interprocess

inspectionequipment calibration and

maintenancetesting
Failure costs are those that would disappear if no defects appeared before shipping a product
tocustomers.Failurecostsmaybesubdividedintointernalfailurecostsandexternalfailurecosts.
Internal failure costs are incurred when we detect a defect in our product prior to shipment. Internal
failurecostsinclude

rework

repair

failuremodeanalysis
External failure costs are associated with defects found after the product has been shipped to
thecustomer.Examplesofexternalfailurecostsare

complaintresolution

productreturnandreplacementh

elplinesupport

warrantywork

2) SOFTWAREQUALITYASSURANCE

Software quality is defined as conformance to explicitly stated functional and

performancerequirements, explicitly documented development standards, and implicit

characteristics that areexpectedofallprofessionallydevelopedsoftware.

Thedefinitionservestoemphasizethreeimportantpoints:
Software requirements are the foundation from which quality is measured. Lack of conformance
torequirementsislackofquality.
Specified standards define a set of development criteria that guide the manner in which
softwareis engineered. Ifthecriteriaarenotfollowed,lackofqualitywillalmostsurelyresult.
A set of implicit requirements often goes unmentioned (e.g., the desire for ease of use and
goodmaintainability).Ifsoftwareconformstoitsexplicitrequirementsbutfailstomeetimplicitrequireme
nts,softwarequalityissuspect.

Backgroundlssues

The first formal quality assurance and control function was introduced at Bell Labs in 1916
andspread rapidly throughout the manufacturing world. During the 1940s, more formal approaches to
qualitycontrol were suggested. These relied on measurement and continuous process improvement as key
elements ofqualitymanagement. Today, everycompanyhasmechanismstoensurequalityin itsproducts.

Duringtheearlydaysofcomputing(1950sand1960s), qualitywasthe soleresponsibilityofthe
programmer. Standards for quality assurance for software were introduced in military
contractsoftwaredevelopmentduringthe1970s.

Extendingthedefinition presentedearlier,softwarequalityassuranceisa'plannedand
systematicpattern of actions" that are required to ensure high quality in software. The scope of quality
assuranceresponsibility might best be characterized by paraphrasing a once-popular automobile
commercial:"Quality Is Job #1." The implication for software is that many different constituencies have
softwarequality assurance responsibility—software engineers, project managers, customers, salespeople,
and theindividuals whoservewithinanSQAgroup.

The SQA group serves as the customer's in-house representative. That is, the people
whoperformSQAmustlookatthesoftwarefromthecustomer'spointofview

2.2SQAActivities

Softwarequalityassuranceiscomposedofavarietyoftasksassociatedwithtwodifferentconstituencies—
thesoftwareengineerswhodotechnicalworkand

anSQAgroupthathasresponsibilityforqualityassuranceplanning,oversight,record
keeping,analysis,andreporting.

TheSoftwareEngineeringInstituterecommendsasetofSQA activitiesthataddress
qualityassuranceplanning, oversight, record keeping, analysis, and reporting. These activities are
performed (orfacilitated)byanindependentSQAgroupthatconductsthefollowingactivities.

Page93

Y SOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Prepares an SQA plan for a project. The plan is developed during project planning and is reviewed
byallinterestedparties. Qualityassuranceactivitiesperformedbythesoftwareengineeringteam
andtheSQAgrouparegovernedbytheplan. Theplanidentifies

evaluationstobeperformed

audits andreviewstobeperformedstandards

that are applicable to the projectprocedures

for error reporting and
trackingdocumentstobeproducedbytheSQAgro

up
amountoffeedbackprovidedtothesoftwareprojectteam

Participates in the development of the project’s software process description. The software
teamselects a process for the work to be performed. The SQA group reviews the process description
forcompliance with organizational policy, internal software standards, externally imposed
standards(e.g.,1SO-9001), andotherpartsofthesoftwareprojectplan.

Reviews software engineering activities to verify compliance with the defined software process.
TheSQA group identifies, documents, and tracks deviations from the process and verifies that
correctionshavebeenmade.

Auditsdesignatedsoftwareworkproductstoverifycompliancewiththosedefinedaspartofthesoftware
process. The SQA group reviews selected work products; identifies, documents, and tracksdeviations;
verifies that corrections have been made; and periodically reports the results of its work
totheprojectmanager.

Ensures that deviations in software work and work products are documented and
handledaccordingtoa documentedprocedure.Deviationsmaybeencountered
intheprojectplan,processdescription,applicablestandards,ortechnicalworkproducts.

Records any noncompliance and reports to senior management. Noncompliance items are
trackeduntiltheyareresolved.

3) SOFTWAREREVIEWS

Software reviews are a "filter" for the software engineering process. That is, reviews are applied
atvarious points during software development and serve to uncover errors and defects that can then
beremoved. Software reviews "purify" the software engineering activities that we have called
analysis,design,andcoding.

Many different types of reviews can be conducted as part of software engineering. Each
hasits place. An informal meeting around the coffee machine is a formof review, if technical problems
arediscussed. A formal presentation of software design to an audience of customers, management,
andtechnicalstaffisalsoaformofreview
A formal technical review is the most effective filter from a quality assurance standpoint.
Conductedby software engineers (and others) for software engineers, the FTR is an effective means for
improvingsoftwarequality.

3.1Cost ImpactofSoftwareDefects:

Theprimaryobjectiveofformaltechnicalreviewsistofinderrorsduringtheprocesssothattheydonotb
ecomedefectsafterreleaseofthesoftware.

A number of industry studies indicate that design activities introduce between 50 and 65
percentofallerrorsduringthesoftwareprocess. However,formalreviewtechniqueshavebeenshowntobeupto75
percent effective] in uncovering design errors. By detecting and removing a large percentage of
theseerrors, the review process substantially reduces the cost of subsequent steps in the development
andsupportphases.

Toillustratethecostimpactofearlyerrordetection,weconsideraseries ofrelativecosts thatarebased

onactualcostdatacollected forlargesoftwareprojectsAssumethatanerroruncovered
duringdesignwillcostl.0monetaryunittocorrect.justb
eforetestingcommenceswillcost6.5units;

Page94

IEESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

duringtesting, 15units;
andafterrelease,between60and100units.

3.2)DefectAmplificationandRemoval:
(Thistopiclwilltellyoulater)

FORMALTECHNICALREVIEWS
A

formaltechnicalreviewisasoftwarequalityassuranceactivityperformedbysoftwareengineers(andother
s).TheobjectivesoftheFTRare

to uncover errors in function, logic, or implementation for any representation of

thesoftware;toverifythatthesoftwareunderreviewmeetsitsrequirements;

toensure that

thesoftwarehasbeenrepresentedaccordingtopredefinedstandards;toachievesoftwaret

hatisdevelopedinauniformmanner;and

tomakeprojectsmoremanageable.

TheReviewMeeting
Everyreviewmeetingshouldabidebythefollowingconstraints:
Betweenthreeandfive people(typically)shouldbeinvolvedinthereview.
Advancepreparationshouldoccurbutshouldrequirenomorethantwohoursofworkforeachperson.
The durationofthereviewmeetingshouldbelessthantwohours.
ThefocusoftheFTRisonaworkproduct.
The individual who has developed the work product—the producer—informs the project leader

thattheworkproductiscompleteandthatareviewisrequired.

The project leader contacts a review leader, who evaluates the product for readiness,
generatescopiesofproductmaterials,anddistributesthemtotwoorthreereviewersforadvancepreparatio
n

Each reviewer is expected to spend between one and two hours reviewing the product, making
notes,andotherwisebecomingfamiliarwiththework.
Thereviewmeetingisattendedbythereviewleader,allreviewers,and theproducer.Oneofthe

reviewerstakes ontheroleoftherecorder;thatis,theindividualwhorecords (in
writing)allimportantissuesraisedduringthereview.
At the end of the review, all attendees of the FTR must decide whether
toaccepttheproductwithoutfurthermodification,
reject the product due to severe errors (once corrected, another review must be performed),
oraccepttheproductprovisionally.
The decision made, all FTR attendees complete a sign-off, indicating their participation in the review
andtheirconcurrencewiththereviewteam'sfindings.

4.2 Review ReportingandRecordKeeping
Attheendofthereviewmeetingandareviewissueslistisproduced. Inaddition,aformaltechnicalreviewsummaryre
portiscompleted. Areviewsummaryreportanswersthreequestions:
Whatwasreviewed?
Whoreviewedit?
Whatwerethefindingsandconclusions?
Thereviewsummaryreport isa single page form.
Itis importanttoestablishafollow-up proceduretoensurethatitemson theissues
listhavebeenproperlycorrected.

4.3 ReviewGuidelines

Thefollowingrepresentsaminimumsetofguidelinesforformaltechnicalreviews:
Review the product, not the producer. An FTR involves people and egos. Conducted
properly,theFTRshouldleaveallparticipantswithawarmfeelingofaccomplishment.
Set an agenda and maintain it. An FTR must be kept on track and on schedule. The review
leaderis chartered with the responsibility for maintaining the meeting schedule and should not be
afraidtonudgepeoplewhendriftsetsin.

Page95

IEESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Limit debate and rebuttal. When an issue is raised by a reviewer, there may not be
universalagreementonitsimpact.

Enunciate problem areas, but don't attempt to solve every problem noted. A review is not
aproblem-solving session. The solution of a problem can often be accomplished by the
produceralone orwith the help of only one other individual. Problem solving should be postponed
untilafterthereviewmeeting.

Take written notes. It is sometimes a good idea for the recorder to make notes on a wall board,
sothatwordingandpriorities canbeassessedbyotherreviewers asinformationisrecorded.

Limit the number of participants and insist upon advance preparation. Keep the number
ofpeopleinvolvedtothenecessaryminimum.

Develop a checklist for each product that is likely to be reviewed. A checklist helps the
reviewleadertostructure
theFTRmeetingandhelpseachreviewertofocusonimportantissues.Checklistsshouldbedevelopedfor
analysis,design,code,andeventestdocuments.

Allocate resources and schedule time for FTRs. For reviews to be effective, they should
bescheduledasataskduringthesoftwareengineeringprocess

Conduct meaningful training for all reviewers. To be effective all review participants
shouldreceivesomeformaltraining.

Review your early reviews. Debriefing can be beneficial in uncovering problems with the
reviewprocess itself.

4.4 Sample-DrivenReviews (SDRs):

SDRs attempt to quantify those work products that are primary targets for full FTRs.To accomplish
thisthefollowingstepsaresuggested...
Inspect a fraction aiof each software work product, i. Record the number of faults, fifound
withinai.

« Develop a gross estimate of the number of faults within work product i by multiplying fiby
1/ai.Sort the work products in descending order according to the gross estimate of the number of
faultsineach.
Focusavailablereviewresourcesonthoseworkproductsthathavethehighestestimatednumberoffaults.

Thefractionoftheworkproductthatissampledmust
Berepresentativeoftheworkproductasawholeand
Large enoughtobemeaningful tothereviewer(s)whodoesthesampling.

5) STATISTICAL SOFTWAREQUALITYASSURANCE

For software, statistical quality assurance implies the following
steps: Informationabout
softwaredefectsiscollectedandcategorized.
An attempt is made to trace each defect to its underlying cause (e.g., non-conformance
tospecifications, design error, violation of standards, poor communication with the
customer).UsingtheParetoprinciple(80percentofthedefectscanbetracedto20percentofallpossibleca
uses),isolatethe20percent(the"vitalfew").
Once the vital few causes have been identified, move to correct the problems that have caused
theForsoftware,statisticalqualityassuranceimpliesthefollowingsteps:

The application of the statistical SQA and the pareto principle can be summarized in a
singlesentence: spend your time focusing on things that really matter, but first be sure that you
understandwhatreallymatters.

5.1 SixSigmaforsoftwareEngineering:
Six Sigmaisthemostwidelyusedstrategyforstatisticalqualityassuranceinindustrytoday.
Theterm-sixsigmalisderivedfromsixstandarddeviations—3.4instances(defects)permillion occurrences—
implying an extremely high quality standard. The Six Sigma methodology defines threecoresteps:
Define customer requirements and deliverables and project goals via well-defined methods
ofcustomercommunication

Page96

IET/SOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

Measurethe existingprocessanditsoutputtodetermine currentqualityperformance
(collectdefectmetrics)
Analyzedefectmetricsanddeterminethevital fewcauses.
Ifanexistingsoftwareprocessisin
place,butimprovementisrequired,SixSigmasuggeststwoadditionalsteps.
Improvetheprocessbyeliminatingtherootcausesofdefects.
Controltheprocesstoensurethatfuturework doesnotreintroducethecausesofdefectsThese
core and additional steps are sometimes referred to as the DMAIC (define,
measure,analyze,improve,andcontrol)method.
Ifanyorganization isdevelopingasoftwareprocess(rather than
improvingandexistingprocess),thecorestepsareaugmentedasfollows:
Designtheprocessto
o avoid therootcausesofdefectsand
o tomeetcustomerrequirements
e Verify that the process model will, in fact, avoid defects and meet customer requirements.
Thisvariationissometimescalled theDMADV (define,measure,analyze,design and verify) method.

6) THEISO 9000QUALITYSTANDARDS

A quality assurance system may be defined as the organizational structure,
responsibilities,procedures,processes,andresources forimplementingqualitymanagement

ISO 9000describes
qualityassuranceelementsingenerictermsthatcanbeappliedtoanybusinessregardlessoftheproductsors
ervicesoffered.

ISO 9001:2000 is the quality assurance standard that applies to software engineering. The
standardcontains 20 requirements that must be present for an effective quality assurance system.
Because thelSO
9001:2000standardisapplicabletoallengineeringdisciplines,aspecialsetofl SOguidelineshavebeendevelop
edtohelpinterpretthestandardforuseinthesoftwareprocess.

The requirements delineated by ISO 9001 address topics such

asmanagementresponsibility,

qualitysystem,contractreview,d

esigncontrol,

documentanddatacontrol,

productidentificationandtraceability,p

rocess control,

inspectionand testing,corrective

and preventive action,control of

quality

records,internalqualityaudits,

training,servi

cingand

statisticaltechniques.
In order for a software organization to become registered to 1SO 9001, it must establish policies
andprocedures to address each of the requirements just noted (and others) and then be able to
demonstratethatthesepoliciesandproceduresarebeingfollowed.

SOFTWARERELIABILITY
Software reliability is defined in statistical terms as "the probability of failure-free operation
ofacomputerprograminaspecifiedenvironmentforaspecifiedtime".

7.1Measures ofReliabilityandAvailability:

Mosthardware-relatedreliabilitymodels arepredicatedon failureduetowearratherthan failureduetodesign
defects.Inhardware, failuresduetophysicalwear(e.g.,theeffectsoftemperature,corrosion,
shock)aremorelikelythan adesign-relatedfailure.Unfortunately,theoppositeistrueforsoftware.In fact,all
software failures can be traced to design or implementation problems; wear does not enter into thepicture.
Asimplemeasureofreliabilityismeantime-between-failure(MTBF),where

MTBF=MTTF+MTTR
Theacronyms MTTF andMT TRaremean-time-to-failureandmean-time-to-repair,respectively.

Page97

EESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

In addition to a reliability measure, we must develop a measure of availability. Software availability is
theprobabilitythata programisoperatingaccordingtorequirementsata given pointin timeand isdefined as

Availability=[MTTF/(MTTF+MTTR)]100%

TheMTBFreliabilitymeasureisequallysensitive toMTTFandMTTR.Theavailabilitymeasureis
somewhatmoresensitivetoM T TR, anindirectmeasureofthemaintainabilityofsoftware.

7.2)SoftwareSafety

Software safety is a software quality assurance activity that focuses on the identification
andassessment of potential hazards that may affect software negatively and cause an entire system to
fail.If hazards can be identified early in the software engineering process, software design features

can bespecifiedthatwilleithereliminateorcontrolpotentialhazards.

For example, some of the hazards associated with a computer-based cruise control for an

automobilemightbe
causesuncontrolledaccelerationthat cannotbestopped

doesnotrespondtodepressionofbrakepedal (byturningoff)does

notengagewhenswitchisactivated
slowlyloses orgainsspeed

Once these system-level hazards are identified, analysis techniques are used to assign severity
andprobabilityofoccurrence. Tobe effective,softwaremustbeanalyzedinthecontextofthe entiresystem.

If a set of external environmental conditions are met (and only if they are met), the improper position

ofthe mechanical device will cause a disastrous failure. Analysis techniques such as fault tree
analysis[VES81],real-timelogic[JAN86],orpetrinetmodels[LEV87] can beused
topredictthechainofeventsthatcancausehazardsandtheprobabilitythateachoftheevents

willoccurtocreatethechain.

Once hazards are identified and analyzed, safety-related requirements can be specified for

thesoftware. That is, the specification can contain a list of undesirable events and the desired
systemresponses totheseevents. Theroleofsoftwareinmanagingundesirableeventsisthenindicated.

Although software reliability and software safety are closely related to one another, it
isimportanttounderstandthesubtledifferencebetweenthem.Softwarereliabilityuses statisticalanalysis

todetermine the likelihood that a software failure will occur. However, the occurrence of a failure does
notnecessarily result in a hazard or mishap. Software safety examines the ways in which failures result

inconditions thatcanleadtoamishap.

DefectAmplificationandRemoval:

Development step
Defects

Detection

Errors passed through
Errors from <
evious ste
P Amplified errors 1 : x

Newly generated errors

Percent
efficiency
for error
detection

i Errors passed
to next step

DefectAmplificationModel
A defect amplification model can be used to illustrate the generation and detection of
errorsduringthepreliminarydesign,detaildesign,andcoding stepsofthesoftwareengineeringprocess.
Aboxrepresentsa softwaredevelopmentstep. Duringthestep,errorsmaybeinadvertentlygenerated.Review
may fail to uncover newly generated errors and errors from previous steps, resulting in
somenumberoferrorsthatarepassedthrough.Insomecases,errorspassedthroughfromprevious
stepsareamplified(amplificationfactor,x)bycurrentwork. Theboxsubdivisionsrepresenteachofthese

Page98

IEESOFTWARE ENGINEERING —Material

SOFTWAREENGINEERING

characteristicsandthepercentofefficiencyfordetecting
errors,afunctionofthethoroughnessofthereview.

Referringtothe figure8.3eachteststepis assumedtouncoverandcorrect50percentofallincomingerrors
without introducing any new errors (an optimistic assumption). Ten preliminary design defects
areamplifiedto94 errorsheforetestingcommences. Twelvelatenterrorsarereleasedtothe field.

Figure8.4 considers the same conditions except that design and code reviews are conducted as
partof each development step. In this case, ten initial preliminary design errors are amplified to 24 errors
beforetestingcommences.Onlythreelatenterrorsexist.

Recallingtherelativecostsassociatedwiththediscoveryandcorrectionoferrors,overallcost(withand
without review for our hypothetical example) can be established. The number of errors uncovered
duringeach of the steps noted in Figures 8.3 and 8.4 is multiplied by the cost to remove an error (1.5 cost
units fordesign,6.5costunitsbeforetest,15 costunitsduring test,and67costunitsafterrelease).

Usingthesedata,thetotal cost fordevelopment .
andmaintenancewhenreviewsareconductedis783cost units.
Whenno reviewsareconducted,totalcostis2177units—nearlythreetimesmore

costly.
To conduct reviews, a software engineer must expend time and effort and the
developmentorganizationmustspendmoney.Formaltechnicalreviews(fordesignandothertechnicalacti
vities)provideademonstrablecostbenefit. Theyshouldbe conducted.

FIGURES.3
Defectamplification,noreviews

Preliminary design
0

Detail design
10 6
0 0% I 6 Code/unit test
10 4 4x1.5 0% 37-0 10
x= 1.5 IZZ °
25 27%3 | 20% 2
o4 Integration test 25
’ Validation test
5 0% 47 To integration
-L’ System test
24
0 0 50%
0 L 0 50% (-2
0
latent errors

Page99

	3 -/-/- 3
	OBJECTIVES:
	UNIT -I:
	UNIT - II:
	UNIT- III:
	UNIT - IV:
	UNIT-V:
	TEXTBOOKS:
	REFERENCEBOOKS:
	OUTCOMES:
	UNIT-I
	Characteristicsof Software:
	SoftwareEngineering:
	EVOLVINGROLEOFSOFTWARE:
	1970sand1980s:
	1990sbegan:
	Mid-1990s:
	Later1990s:
	2000sprogressed:
	THECHANGINGNATUREOFSOFTWARE:
	Applicationsoftware:
	Embeddedsoftware:
	Ubiquitous computingNetsourcing
	The―neweconomy‖
	SOFTWAREMYTHS
	AGENERICVIEWOF PROCESS
	Software engineering methods rely on a set of basic principles that govern area of the technologyandincludemodelingactivities.
	APROCESS FRAMEWORK:
	AProcessFramework
	SOFTWAREENGINEERING
	work products (deliverables)quality assurancepointsprojectmilestones.
	\
	THECAPABILITYMATURITYMODELINTEGRATION(CMMI):
	SG1Establish estimates
	SG2Develop aProjectPlan
	SG3Obtaincommitmenttotheplan
	GG1Achievespecificgoals
	GG2Institutionalizeamanaged process
	GG3Institutionalizea definedprocess
	GG4Institutionalizeaquantitativelymanagedprocess
	GG5Institutionalizeand optimizingprocess
	PROCESSPATTERNS
	PROCESSASSESSMENT
	PERSONAL AND TEAMPROCESSMODELS:
	Personalsoftwareprocess(PSP)
	PROCESSMODELS
	THEWATERFALLMODEL:
	Advantage:
	INCREMENTAL PROCESSMODELS:
	THEINCREMENTALMODEL:

	projectcalendartime
	THERADMODEL:
	EVOLUTIONARYPROCESSMODELS:
	PROTOTYPING:
	Context:
	Advantages:
	THESPIRALMODEL
	Advantages: (1)
	DrawBacks:
	THECONCURRENTDEVELOPMENTMODEL:
	Advantages: (2)
	AFINALCOMMENTONEVOLUTIONARYPROCESSES:
	THEUNIFIED PROCESS:
	ABRIEF HISTORY:
	PHASESOFTHEUNIFIED PROCESS:
	Elaboration
	UNIFIEDPROCESSWORKPRODUCTS:

	UNIT-II
	SOFTWAREREQUIREMENTS
	Whatisarequirement?
	Requirementsengineering:
	Typesof requirement:
	Systemrequirements
	Definitions and specifications:UserRequirementDefinition:
	SystemRequirementspecification:
	Requirementsreaders:
	Non-functionalrequirements
	Domainrequirements
	1.1) FUNCTIONALREQUIREMENTS:
	Examplesoffunctional requirements
	Requirementsimprecision
	Requirementscompletenessandconsistency:
	NON-FUNCTIONALREQUIREMENTS
	1.2) Non-functionalrequirementtypes:
	Organisationalrequirements
	Externalrequirements
	Goals andrequirements:
	Requirements measures: Property Measure
	Requirementsinteraction:
	1.3) DOMAINREQUIREMENTS
	Librarysystemdomainrequirements:
	Domain requirements problemsUnderstandability
	Implicitness
	USERREQUIREMENTS
	Problemswithnaturallanguage
	Requirementproblems
	Guidelinesforwritingrequirements
	SYSTEMREQUIREMENTS
	Requirementsanddesign
	ProblemswithNL(naturallanguage)specification
	AlternativestoNLspecification: Notation Description
	3.1)Structuredlanguagespecifications
	Form-basedspecifications
	Tabularspecification
	Graphicalmodels
	Sequencediagrams
	Sequence diagramofATMwithdrawal
	INTERFACESPECIFICATION
	Usersofarequirementsdocument:
	REQUIREMENTSENGINEERINGPROCESSES
	Therequirementsengineeringprocess
	Feasibilitystudyimplementation:
	2) REQUIREMENTELICITATIONANDANALYSIS:
	Problemsof requirementsanalysis
	Therequirementsspiral
	2.1) REQUIREMENTSDISCOVERY:
	Viewpoints:
	Typesofviewpoint:
	Indirectviewpoints
	Domainviewpoints
	Viewpointidentification:
	LIBSYSviewpointhierarchy
	Interviewsinpractice:
	Effectiveinterviewers:
	Scenarios:
	Usecases
	Articleprintinguse-case:
	Articleprintingsequence:
	2.2) ETHNOGRAPHY:
	Focusedethnography:
	Ethnographyandprototyping
	REQUIREMENTSVALIDATION
	Requirementschecking:
	Requirementsvalidationtechniques
	Requirementsreviews:
	Reviewchecks:
	REQUIREMENTSMANAGEMENT
	Requirementschange
	Requirementsevolution:
	Requirementsclassification:
	Type
	4.2) Requirementsmanagementplanning:
	Traceability:
	CASEtool support:
	4.3) Requirementschangemanagement:
	Changemanagement:
	Modeltypes
	CONTEXTMODELS:
	Thecontextofan ATMsystem:
	BEHAVIOURALMODELS:
	2.1) Data-processing models:
	OrderprocessingDFD:
	2.2) State machinemodels:
	Statecharts:
	Microwaveovenmodel:
	Microwave ovenstimuli: Stimulus Description
	SEMANTICDATAMODELS:
	Data dictionaries
	OBJECTMODELS:
	4.1) Inheritancemodels:
	ObjectmodelsandtheUML:
	Libraryclasshierarchy:
	Multipleinheritance:
	Multipleinheritance
	4.2) Objectaggregation
	STRUCTUREDMETHODS:
	Methodweaknesses:
	CASEworkbenches:
	Ananalysisanddesignworkbench
	UNIT-IIIDESIGNENGINEERING
	Whatisdesign:
	Whyisitimportant:
	1) DESIGNPROCESSANDDESIGNQUALITY:
	Goals ofdesign:
	Quality guidelines:
	Qualityattributes:
	2) DESIGNCONCEPTS:
	Architecture:
	Patterns:
	IV. Modularity:
	InformationHiding:
	VI. Functional Independence:
	VII. Refinement:
	VIII. Refactoring :
	IX. Designclasses:
	THEDESIGNMODEL:

	processdimension
	Data designelements:
	Architecturaldesignelements:
	Interfacedesignelements:
	ARCHITECTURALDESIGN
	WhyIsArchitectureImportant?
	DATA DESIGN:
	2.1) Data design attheArchitecturalLevel:
	2.2) Data designattheComponentLevel:
	ARCHITECTURAL STYLESANDPATTERNS:
	3.1) A Brief Taxonomy of Styles andPatternsData-centeredarchitectures:
	3.2) ArchitecturalPatterns:
	OrganizationandRefinement:
	Control.
	Data.
	4) ARCHITECTURAL DESIGN:
	II DefiningArchetypes:
	ComponentStructure
	USERINTERFACEDESIGN
	What isUserInterfaceDesign?
	WhyisUserInterfaceDesignimportant?
	1.1 THEGOLDENRULES
	PlacetheUserin Control
	ReducetheUser’sMemory Load:
	The visuallayoutofthe interfaceshouldbe basedonarealworldmetaphor.Billpayment
	MaketheInterfaceConsistent
	USERINTERFACEDESIGN (1)
	1.2.2 The UserInterfaceDesignProcess:(stepsininterfacedesign)
	UserInterfaceDesignProcess
	(2) InterfaceDesign:
	(3) InterfaceConstruction(implementation)
	(4) InterfaceValidation:
	INTERFACEANALYUSIS
	12.3.1 Useranalysis
	12.3.2 TaskAnalysisandModeling
	12.3.3 Analysisof DisplayContent
	12.5DESIGNEVALUATION
	UNIT-IV
	Black boxtesting
	BlackBoxTesting
	Dataflow Testing
	LoopTesting
	ProductMetricsforanalysis,Design,TestandmaintenanceProductmetricsfortheAnalysis model
	METRICSFORPROCESSANDPROJECTS
	Size-OrientedMetrics
	Function-OrientedMetrics
	TypicalFunction-OrientedMetrics:
	1.3) Reconciling DifferentMetricsApproaches
	1.4) ObjectOrientedMetrics:
	1.5) Use-CaseOrientedMetrics
	1.6) WebEngineeringProjectMetrics
	2)METRICSFORSOFTWAREQUALITY
	2.1MeasuringQuality
	DefectRemoval Efficiency
	UNIT-V
	RiskManagementParadigm
	2) RISKIDENTIFICATION
	AssessingOverallProjectRisk
	3.2Risk Components andDrivers
	RISKPROJECTION
	4.1 Developing a Risk TableBuildingaRis
	4.2 AssessingRiskImpact
	RISKREFINEMENT
	5) RISKMITIGATION,MONITORING,ANDMANAGEMENT
	6) THERMMMPLAN
	QUALITY MANAGEMENT
	Quality
	User satisfaction=compliantproduct+goodquality+deliverywithinbudgetandschedule
	1.3 QualityAssurance
	1.4 Cost ofQuality
	2) SOFTWAREQUALITYASSURANCE
	BackgroundIssues
	2.2SQAActivities
	3) SOFTWAREREVIEWS
	3.1Cost ImpactofSoftwareDefects:
	3.2)DefectAmplificationandRemoval:
	FORMALTECHNICALREVIEWS
	TheReviewMeeting
	4.2 Review ReportingandRecordKeeping
	4.3 ReviewGuidelines
	4.4 Sample-DrivenReviews (SDRs):
	5) STATISTICAL SOFTWAREQUALITYASSURANCE
	5.1 SixSigmaforsoftwareEngineering:
	6) THEISO 9000QUALITYSTANDARDS
	SOFTWARERELIABILITY
	7.1Measures ofReliabilityandAvailability:
	MTBF=MTTF+MTTR
	Availability=[MTTF/(MTTF+MTTR)]100%
	7.2)SoftwareSafety
	DefectAmplificationandRemoval:
	Defectamplification,noreviews

